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Performance analysis of the four time-independent regression
models presently used by Bell operating companies to forecast spe-
cial-services circuit requirements, and the characteristics of actual
special-services demand history observed from three operating com-
panies, indicate a need for a new method to forecast these difficult
time series. A new special-services demand sequential projection
algorithm (ssD-spA) is developed based on a linear Kalman filter
model. It includes methods to detect previous deterministic events, to
accept and process exogenous information affecting the demand, and
to recognize and adapt to a “no-growth” situation. Compared to the
present algorithm, SSD-SPA generates significantly better forecasts:
approximately 30 percent improvement in forecast accuracy and
stability, 25 percent reduction in rms error, and 22 percent reduction
in circuit misplacements.

I. INTRODUCTION AND SUMMARY

In recent years, the demand for special-services circuits has grown
at more than twice the annual rate of the demand for message
telephone service (9 percent versus 4 percent). This rapid growth, the
development of new technologies, and the problems in the existing
special-service provisioning process have led to a reexamination of the
overall process of special-services planning and provisioning.

Key inputs to this process are special-services demand forecasts;
they are required for the marketing, budgeting, and engineering func-
tions. Presently, in most Bell operating companies (Bocs), the short-
range forecast (1 to 5 years) of point-to-point demands for interoffice
special-service circuits is provided by forecasting systems based on
time-independent trending models or by applying a user specified
growth factor to the most recent demand.

Previous studies of the special-service circuits life-time distribution
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found no single, common distribution that reasonably fit the observed
data. The time series consist mainly of small integers with demand
levels ranging from very volatile to perfectly constant, and displaying
numerous “jumps,” probably the effects of deterministic events. These
data characteristics explain the inadequacy of the present time-inde-
pendent (unweighted) regression models used to fit the past data:
linear, exponential, and first- and second-order autoregressive.

Consequently, a new algorithm—the special services demand se-
quential projection algorithm (sspD-sPa)—is proposed, based on a dy-
namic time-series model with deterministic event input, the Kalman
filtering technique for state-vector estimation and prediction, and an
additional procedure to process outliers. The attributes and specific
parameters of this model are derived from the demand history for
special services from three Bocs.

Section II gives background information on the study. It describes
the data available for analyses, summarizes the main characteristics of
the demand time series to be forecasted, and presents the measures to
be used in the empirical investigation of the algorithms’ performances.
A brief overview of the existing forecasting models, and results of the
forecasting algorithm performance analysis follow. A list of the desir-
able features of a new special-services demand projection algorithm
are derived from these results and the characteristics of the actual
demand history mentioned in Section 2.1.

In Section III, a linear Kalman filter model is formulated, and the
choice of specific parameters is studied. Implementation considerations
include initialization, outlier detection, deterministic event (level or
growth) detection and processing, as well as filter gain selection.
Special-services demand sequential projection algorithm forecasts are
then tested and compared to the present forecasting algorithm. Results
include the comparative forecast qualities for the case of small integer
projection and an estimated economic impact of the new algorithm.
Finally, conclusions and recommendations are summarized in Section
Iv.

Il. BACKGROUND

Evaluation and comparison of various demand projection algorithms
require a description of the characteristics of the time series to be
projected, so that the appropriateness of the model can be determined,;
also, a definition of the performance statistics used for algorithm
comparison is needed, so that the best feasible model can be selected.

2.1 Special-services demand
2.1.1 Data for analyses

The term special services refers to all Bell System services other
than ordinary message telephone service. Examples of special services
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are foreign exchange, tie lines, off-premise extensions, and private
lines. The classification of special-service circuits varies from one BoC
to another, and for a single Boc over time. For example, one BOC
recognizes about 500 different circuit types, while another recognizes
only 150.

Two types of special-services history files were available from three
major BoCs to support our studies: detailed-demand history files
(pDHF) and grouped-demand history files (GDHF). The maximum num-
ber of available months varied among the three Bocs: 60 for Company
A, 67 for Company B, and 71 for Company C. The maximum could not
exceed 71 months since this is the maximum that can be stored and
processed by the present forecasting system.

The DDHF contains individual records of the number of special-
service circuits of a given Boc class of service between a pair of central
offices (cos). The large number of possible point-to-point individual
special-service type circuit records on the DDHF (for example, 500 types
for each pair of cos times all possible combinations of co pairs) and
the small size of these groups (more than 90 percent have only one
circuit) makes any attempt to forecast each time series impractical.
Consequently, in the design of the present forecasting system (the
special-services forecasting system, or SsFs), the decision was made to
group the individual records before projection.

This grouping of DDHF records, according to a user specified grouping
strategy, results in a GDHF. The resultant grouped special-service time
series are the basic input to the forecasting routines and represent the
numbers of circuits of one or more types between a given pair of
offices.

For the special-services demand analysis, both types of files were
used. For the present forecasting algorithm performance study, only
the ¢pHFs from Companies B and C could be used since only they had
the format required by the input routine. These two files were also
used for the ssp-spa performance tests.

Both tapes were created using grouping strategies specified by the
facility and equipment planners: 14 grouping types in Company B and
19 types in Company C. The file from Company B covers the time
period between January, 1973 and July, 1978 and contains 20,036 such
grouped records. The file from Company C extends over the period
January, 1973 to November, 1978 and contains 41,073 records.

2.1.2 Demand characteristics

The special-services demand analysis identified the following signif-
icant characteristics:

(i) Very skewed circuit group size distribution, regardless of the

grouping strategy. More than 80 percent of the point-to-point groups
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consist of less than 10 circuits. Fig. 1 plots the maximum number of
circuits in service over the history for each circuit group against the
frequency of that particular size. The histograms for the three Bocs
are remarkably similar, even though the grouping strategies used were
different. The skewness of the size distribution would be accentuated
if we had plotted the group sizes at a given point in time, instead of
the maximum size over the whole history. In the same time, the long
tail of the distribution shows that, although most of the point-to-points
are very small in size, the majority of the special-service circuits are
placed in a few very large groups. For example, in Company C only 6.5
percent of the groups consist of more than 50 circuits, but these groups
are extremely large and account for more than 75 percent of all special
circuits in service.

(i) No seasonal pattern.

(iii) High volatility of the time series, even at high levels of aggre-
gation.
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Fig. 1| —Maximum demand per circuit forecasting group.
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(iv) Jumps in the demand level. This is a frequent phenomenon;
circuit groups remain at one size for an extended period of time, then
jump to another value, and remain at this second level for some time.
This stepwise change in the demand level is probably caused by
deterministic events, such as large customers moving in or out, routing
changes, tariff changes, or market stimulation.

(v) Constant level circuit groups. Approximately 40 percent of each
company’s grouped point-to-point records showed no change in the
demand level over the period of time that data were available.

(vi) Vanishing circuit groups. About 30 percent of the groups have
all their circuits eventually disconnected (i.e., the demand for these
groups goes to zero) with practically no regeneration during the period.

2.2 Algorithm performance measures

Previous studies indicated that good performance measures for
algorithm comparisons are accuracy (average forecast error), rms error
(square root of the mean squared error), and stability (the variability
of consecutive views of the same future period). For the present
analysis, a fourth forecast attribute, misplacement, is defined (total
positive or negative forecast error).

To quantitatively measure and compare the performance of both
ssFs and ssD-sPA forecasting procedures, we used both algorithms to
generate demand forecasts for each circuit group (from the same data
base), and then compared the results using relative forecast error
statistics.

Let:

¥Yn+x = the recorded number of special-service circuits at time n + &
Znenn = the forecasted demand at time n + &, given data through time
n; i.e., a k-period forecast.

Then the relative accuracy, Anin n, of the k-period forecast from period
n is defined to be

- fn n~— Jyn
Annn = (——**‘ s *’“). M
yn+k
The relative rms error, ﬁn+k,u, is defined to be the square root of
- 2
A Xn+kn — Yn
B2 = [_u] , ®
yn+k

The relative stability, S,+xn, of consecutive forecasts from periods
n — 1 and n for a fixed target date n + k& is defined by:

a - 2
A Xn+kn — Xn+kn—1
Stk = |:—-——-—-——] . 3)

Yn+k

SEQUENTIAL PROJECTION ALGORITHM 43



Treatment of y.+» = 0 is discussed later. Accuracy and stability are
actually measuring inaccuracy and instability. Consequently, a de-
crease in either measure is equivalent to an improvement. All three
performance measurements are empirical estimates of the normalized
statistics (accuracy, rms error, and stability) as described in Ref. 2.
Relative statistics, as opposed to absolute statistics, were used so that
a small absolute error on a large group would not obscure large
absolute errors on many other small groups. Network estimates of
accuracy, stability, and rms error are produced by averaging individual
estimates over all groups.
We define total error (TE) to be

Total forecast — total demand
Total demand ’

TE =

Note that TE can be almost zero as a result of error cancellations;
therefore, misplacement is a better measure of the total number of
circuits erroneously forecasted. Misplacements translate directly into
inefficient capital expenditures.

The positive misplacement, M 4., of the total number of circuits
forecasted from period n for the target period n + % is defined by:

N
2 di
i=1

-

M;ﬂk.n = ’ (4)

& (@)
2 Ynrk
=1

wherei=1, 2, - .., N is the index over all circuit groups in the network
and

d:' = xr‘;—#k.n - yg-)&-k if -fg-)l-k,n = yi(':-)l-k

otherwise.

Similarly, the negative misplacement, M ;irn, of the total number of
circuits forecasted from period n for the target period n + & is defined
by:

N
Y. di
ﬂ;hk.n = ;:rzl ' ]
E y 5:’-)|-k
i=1
wherei=1,2, ..., Nis the index over all circuit groups in the network

and
d;= _}’fﬂ-k - fﬂh.n if fﬂk,n < yﬁlk

=0 otherwise.
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We call M7z, a measure of total network overprovisioning and the
negative misplacement, My+x: a measure of total network under-
provisioning. Positive misplacement may translate into underutiliza-
tion, while negative misplacement may translate into orders lost or
held, or misroutings.

Note that TE and misplacements are related as

+ -
TE = Mn-h&,n - n+kn

2.3 Present forecasting algorithm

This section presents a brief overview of the projection algorithm
presently used in ss¥s, the performance testing procedure, and its
results.

2.3.1 Overview

The present forecasting algorithm produces point-to-point demand
forecasts of interoffice special-services circuits for the current year and
for each of the next 5 years.

The forecast is generated in two major steps—the preliminary
forecast and the final forecast. The preliminary forecast employs one
of four statistical models or user-stated growth factors to predict future
circuit requirements. The four regression models are linear, exponen-
tial, and first- and second-order autoregressive. They are used only
when the group has sufficient demand history; at least 12 months of
history are always required, and the default value is 24 months. Before
forecasting, the available history is smoothed using a 3-month moving
average.

The parameters for each model are determined by minimizing an
unweighted sum of squared errors over the smoothed data. The model
with the smallest sum of squared errors or, equivalently, the model
with the highest R? statistic (the coefficient of determination of
“goodness of fit”), is selected. However, the exponential model is
rejected if any of the history is zero or if it would lead to a prediction
of explosive growth, and the autoregressive models are rejected, unless
the demand time series is sufficiently stationary.

Finally, if the model chosen was linear or exponential and the
current demand has shifted significantly from the historical growth
trend, then the forecast is also shifted to coincide with the current
demand. A significant shift is defined relative to the estimated standard
error of the unsmoothed demand history (excluding the current de-
mand) from the trend line. Since at each forecast view all history is
reprocessed to recalculate the regression parameters, treatment of
such discontinuities may be inconsistent from one forecast view to
another. The sensitivity of this test may be adjusted by the user; the
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default value is two standard deviations. No adjustment of this kind is
considered for the autoregressive models.

When the forecast groups do not have the required number of
months of history, forecasts are produced applying default growth
factors to the forecast group’s current demand.

The forecaster reviews the preliminary forecast and makes manual
adjustments when appropriate. An example is when advance knowl-
edge is available on new businesses moving into an area or new services
are being offered.

The following section describes the results of our study to quantify
the present forecasting algorithm performance. This analysis only
covers the preliminary forecast. The impact of manual adjustments
was not studied, since no records were available. The main deficiencies
of the existing forecasting technique are summarized and explained in
view of the demand time series characteristics.

2.3.2 Performance analysis

The algorithm performance is specified in terms of statistical attri-
butes (accuracy, rms error, stability, misplacements); the analysis
sought to verify if there is indeed a benefit in having four different
models to choose from, to identify the main forecasting problem, and,
based on the demand time series characteristics, to derive require-
ments for a new forecasting algorithm. )

A modified version of ssFs was used to produce up to three consec-
utive forecasts for each point-to-point demand, depending on the
length of each demand history available. To ensure compatibility with
other planning tools, ssFs is required to produce quarterly average
forecasts of the future demand for special services. The data files
available extend up to 71 months, and since SSFs requires at least 12
months of history for the forecast initialization, the longest forecast
that can be produced and checked against actuals is 18 to 19 quarters,
i.e., about 4 years. For simplicity, instead of estimating 18 to 19 values
of A, B, S, *E, and M, we only looked at one quarter in each year (the
same quarter each year, right justified by the last quarter of available
data). Consequently, for those records with at least 60 months of
history, three forecasts were provided, as shown in Fig. 2 (1 year
initialization plus 4-year-span forecast, then 2 years initialization and
3-year-span forecast, and 3 years initialization and 2-year-span fore-
cast). Only two forecasts were produced for records with 48 to 59
months of history (3- and 2-year-span forecasts), and only one forecast
for records with 36 to 47 months of history.

Since each forecast is made after at least 12 months of data are
processed, only a steady-state analysis is necessary. Thus, the sub-
scripts n for A,,+k,,,, Rn+k,n, and §,,+k,,1 are dropped. For each circuit
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Fig. 2—Algorithms performance analysis test plan.

group, accuracy, rms error, and stability are estimated using all fore-
casts produced. For example, the accuracy of a 3-year-ahead forecast
for a circuit group with 60 months of history available is estimated by:

2

A él X7774 — Y11 + 2875 — Y18 ’
Y7 Yis

where, if ¢ is the last quarter of available data in the last year of
history, then

%, = forecast of the average demand in quarter g; year i, made from
quarter g; year j.
y; = average measurements of the demand in quarter g; year i.

Or, stability of 3- versus 4-year-ahead forecasts for the same group is
estimated by:

a a
X78,74 — X78,75
Y8

S &

For groups where yn+x = 0, a normalization factor of 1 is used. This
may bias the statistics (to look worse than they actually are), but since
the objective is to compare the performance of different algorithms,
and they all use this rule, we may expect this normalization to affect
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them equally. In fact, the performance results measured using this
normalization were similar to those obtained with nonvanishing groups
only. Three consecutive forecasts were produced for about 56 percent
of the groups (those groups with 60 to 67 months of history*), two
forecasts for about 10 percent (48 to 59 months of history), and only
one forecast for 9 percent (36 to 47 months of history). The remaining
25 percent of the groups were not used, since their recorded histories
were shorter than 36 months.

2.3.2.1 Statistical performance. The results showed that the demand
forecasts are often inaccurate and unstable. The numerical results can
be deduced from the values presented in Section 3.3 on the ssp-spPa
performance, and relative improvement versus the present ssFs.

The accuracy histogram showed about 40 percent of the groups had
1-year forecasts with no error. This was to be expected since about 40
percent of the point-to-point groups have constant demand. Addition-
ally, the existing forecasting algorithms more often overforecasted
than underforecasted.

The significant instability observed for consecutive forecasts was
due not only to the intrinsic volatility of the demand time series, but
also to the change in forecasting models used each year.

Small total errors resulted from cancellations of up to 50 percent
misplaced circuits (large total misplacement). It was interesting to
observe that although accuracy was always positive, many times
(especially for Company C) the total error was negative. This means
that even if on the average most of the circuit groups are overfore-
casted, some of the very large point-to-point groups are underfore-
casted so that the total forecast over the whole company is less than
the realized demand.

2.3.2.2 Correlation between forecasting model fit (R?) and projection
error (accuracy and rms). As previously described, the existing algorithm
chooses from the four regression models the one with the highest
coefficient of determination (RZ, or “goodness of fit”). The intuitive
reason for this is that the curve that best fits the past data should
extrapolate most accurately into the future. If indeed, there is a benefit
in having four different models from which to choose, then we would
expect to find some correlation between how well the chosen models
fit the data (R?) and the forecast quality. Subsequent testing, designed
to consider all combinations of models and forecasting spans, showed
that the choice of four projection models appeared unjustified since
the correlation between the goodness of the model fit to the history

* The number of months of history refers to how long ago the first circuits were
installed on that group, not to the actual length of time the demand was nonzero. About
30 percent of the groups with more than 36 months of recorded history vanished during
that period (demand had zero value eventually).
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data (R?) and the forecast errors (accuracy or rms) was statistically
insignificant. In other words, even perfect knowledge of the past does
not necessarily imply good knowledge of the future.

2.3.2.3 Outlier detection procedure. Many of the demand time series
display a stepwise, highly volatile growth pattern, with the jumps
probably generated by deterministic events. The existing shift option
reacts to a significant difference between the actual demand and the
forecasted value only if it happens in the last month of history. Any
other jumps in previous months are treated as normal trend. Moreover,
the error monitoring capability, which can detect large forecast devia-
tions from the actual demand, is exterior to the main forecasting
process. Consequently, the next projection cannot be improved based
on the detected past errors. Figs. 3a and 3b give examples when the
wrong model or parameters were selected for projection because of
improper treatment of past special events.

Another deficiency is the rather slow response to changes in trend;
the equal weight assigned to each history point prevents the system
from adjusting itself quickly to recent changes.

2.3.2.4 Manual adjustments. The present forecasting algorithm can-
not accept and process exogenous information. The forecaster has to
review manually the forecasts and supply any modifications based on
up-to-date knowledge. For example, about 70 percent of the forecasts
in Company C are manually adjusted.

2.3.2.5 Historyrequirements. The special-services forecasting system
needs at least 12 months (usually 24 months) of history to produce a
forecast based on one of the four statistical models. If less data are
available, growth factors are used (default or manually input values);
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3 (LINEAR MODEL) = {SECOND ORDER
@ 250 y It AUTOREGRESSIVE
T = s T 600 MODEL)
= // = :
4 z Pl B
o 200 e o 500
= P E
3 z 3
© 150 o E 400 START OF §
= \ iy S FORECASTING PERIOD
w e raent) \ <
o START OF 5 \
c 'O “~FORECASTING e 3001 S
w PERIOD - N ——
s s N ~=—1
S 50| S 200~
z =4
0 | | 1 1 1 100 | | | 1
1973 1974 1976 1976 1977 1978 1973 1974 1975 1976 1977 1978

(a) (b)

Fig. 3—Circuit groups with deterministic “jumps.” ssFs forecasting problem: special
event treated as normal growth. (a) Example 1; (b) Example 2.
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15.2 percent of the Company B data base and 17 percent of the
Company C data base consist of circuit group records with less than 24
months of history.

2.3.3 New algorithm requirements

The demand time series characteristics and the results from the
present algorithm’s performance suggest some desirable properties of
a new algorithm:

(i) Unequal weighting of data. Weigh the most recent data more
heavily to allow the forecasting algorithm to adapt to dynamic changes
in the demand pattern.

(i) Acceptance of exogenous information. Point-to-point demand
levels are significantly affected by special events, such as large cus-
tomers moving in or out, tariff changes, or by market stimulation.
Many of these events are known in advance and their impact on the
individual time series can be estimated. The forecasting system should
accept those estimates and use them in projecting future demand
levels.

(iii) Shorter initialization period. The special-services segment of
the total Bell System network is constantly changing and growing.
New technologies, services, and rates are changing the customer de-
mand patterns. Many special-service circuit groups are eventually
disconnected (on an individual basis, 50 percent of the special-services
circuits had a lifetime of less than 36 months; and 30 percent of the
total number of groups “died” over a 5-year period); other groups
come into service. Thus, a forecasting system must produce accurate
forecasts based on small amounts of historical data, e.g., less than 12
months.

(iv) Recognition of past deterministic events (step changes and
constant levels). The system should be able to recognize and react to
“significant” changes in the demand level. Significant has to be defined
as a function of the observed demand time series characteristics.

(v) Forecast of small integers. About 80 percent of the special-
services circuit groups have less than 10 circuits in service. Whatever
the model selected for projection, it should produce stable and accurate
forecasts of integers from 1 to 10.

(vi) Computational efficiency. Users find it useful to run ssFs on a
monthly basis.

Ill. SPECIAL-SERVICES DEMAND SEQUENTIAL PROJECTION
ALGORITHM

A linear dynamic system with linear growth and deterministic input
is shown to be a reasonable and robust approximation for the special-
services demand time series, and a simple (two-dimensional) linear
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Kalman filter is selected as a method to estimate the state variables of
this system. Filter parameter selection is examined and procedures to
detect and respond appropriately to outliers are added to capture the
stepwise growth pattern of the demand time series. Using data from
Companies B and C, we test the performance of this new algorithm
and compare it with the present algorithm.

3.1 Linear Kalman filter model
3.1.1 Model formulation

In a linear dynamic model, as discussed in Reference 2, the behavior
of the discrete time series is determined by an s-dimensional state-
vector process {X,}. The following two equations describe the time
evolution of the process {X.} and the relation between X, and the
corresponding observation y;:

System equation: X,41 = ¢2Xn + Uns1 + wns1 (5)
Observation equation: y. = H,.X, + »,, (6)

where ¢, is an s X s state transition matrix, w, is an s-dimensional
modeling error vector, U, is an s-dimensional deterministic input, H,
is a d X s observation matrix, and », is a s-dimensional measurement
noise vector. Furthermore,

E(vn) = E(wa) = 0
mno O if n#j
E(wnu;)—{Qn if n=j @, an s X s matrix

N[0 i nj
E("""’T)_{R,, if n=; R.andx dmatrix

E(p.w =0 for all n, J.

The s X s matrix, @,, is known as the modeling error covariance
matrix and R, is the measurment error covariance matrix.

In our demand analysis, it was demonstrated that no single common
demand pattern exists for special services, but that for the majority of
groups a linear model fit the historical data best. Furthermore, earlier
work using Kalman filters for forecasting message trunk group loads,"?
showed that for short-term forecasting applications a linear Kalman
filter model performs well even for nonlinear processes such as an
exponential.* Consequently, we chose to develop a linear model that
accounts for the special-demand characteristics discussed earlier.

* Reference 1, for example, analyzed the performance of different Kalman filter
models (linear, log-linear, etc.) to forecast busy season trunk group loads. It showed
that, given measurement and modeling errors and errors in the initial state estimates,
the linear Kalman filter would produce short-term (1 to 5 years) forecasts as good as
any other model with respect to accuracy, rms, and stability measures.
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Given the univariate measurement time series (i.e.,, d = 1) with
linear growth, the special-services demand model can be represented
by a two-dimensional linear model with the following parameters:

%s¢=($}) H, = (1,0); (@)

m=cﬂ (8)

where x represents the demand level at time n, and x2 the incremental
growth.

3.1.2 Kalman filter (filtering and prediction)

The Kalman filter is a recursive method that produces a minimum
variance unbiased estimate of the state vector {X,} of a dynamic linear
system from noisy observations y1, - - -, ¥» and uses these estimates to
predict future state values.

Let X..._: be the estimate of the state vector X, based on information
available through time n — i. Let

Pn = E[(xn - Xn,n—l) (Xn - XJ'L,ri-l)T]
be the one-step prediction error covariance matrix and
Sn = E[(xn - Xn,n) (Xn - Xn,n)T]

be the estimation error covariance matrix. Then, given a prior estimate
of the system state X, .1, the filtering problem is to find an updated
estimated X, ., based on the measurement yn.

The unbiased estimate is given by the linear recursive form

Xn,n = Xn,n—l + Kn(yn - Han,n-l) 3 (9)

where K, is a time-varying weighting matrix known as the Kalman
filter gain matrix. The optimal* K, is given by

K, = P,HY(H,P.HY + R, (10)
The error covariance matrices are found to be:
S.= (- K,H,)P,, (11)

where I is the s X s identity matrix, and
Pn+] = ¢HS!I¢Z‘ + Qn . (12)

* The criterion of optimality is to minimize the mean square estimation error. When
wn and v, are normally distributed, then the same result is obtained by a Bayesian
method or the method of maximum likelihood.

52 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1982



The estimates of the future state vectors are obtained by extrapo-
lation using eq. (5)

X;'1+k.rl = ¢n+k—1xn+k—1,n + Un+k

k=1 k-1 k-1
= ([IIQ ¢n+1) Xn,n + [Z Un+l (Hg ¢n+m) + Un+k . (13)
= =1 m=,

It should be mentioned that if w, and », are Gaussian, the Kalman
filter estimate is at least as good as any other estimate (either linear or
nonlinear). If the noise terms cannot be assumed normal, then the
Kalman filter yields the optimal linear unbiased minimum variance
estimate, but there may be a nonlinear estimate that is superior in
mean square error.*’

To implement the above described algorithm, we note that:

(i) An initial state estimate and error covariance are necessary to
start the recursion. This problem will be considered in Section 3.2.1.

(iZ) Since the estimation error covariance matrix S, and prediction
error covariance matrix P, do not rely on observed data, for given
sequences {@.}, {R.)}, and initial P, ,* the gain sequence {K,.} can be
precalculated. Specification of @, and R, will be discussed in Section
3.2.2. The choice of the gain sequence will be examined in Section
3.2.3.

(iiz) It is not necessary to store the history {yi, .- , ¥»} since all
relevant information concerning the series is included in the state
vector estimate X, .

(iv) The algorithm assumes the knowledge of the future determin-
istic events {U,}. If estimates of the impact of these events are not
available (user input) or are in error, the system needs a recovery
procedure. However, when a significant change in the demand is
observed, the algorithm has to differentiate between outliers (because
of measurement errors, or demand volatility) and deterministic events.
The problems of outlier detection and response to special events are
considered in Sections 3.2.4 and 3.2.5.

3.2 Implementation considerations and parameter selection

In most applications, the exact statistical structure of the individual
time series is unknown. Consequently, implementation of the Kalman
filter model requires selection of estimated values for the algorithm
parameters, usually through experimeintation. Three methods to ob-
tain initial estimates for X, .1 and P, will be analyzed next. Then,
the specification of R and @ and the choice of gains and outlier
thresholds will be considered.

* Time n, is the assumed “present time” for filter initialization, given the available
data history {yi, - -+ Yng -- ¥}
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3.2.1 Filter initialization

Although the special-services segment of the total network is rapidly
growing (at a rate of more than 9 percent per year) there are very few
circuit groups or point-to-point disaggregated groups constantly grow-
ing. Most of them vary around a constant value, many of the groups
have all their circuits disconnected (about 30 percent of the groups
“die” over a 5-year period), and more new groups appear.

This frequent in-and-out activity rules out delaying the forecast
until sufficient data is available to make accurate estimates of X1
and P, It is important to have initial state-vector estimates as soon
as observations are available.

We considered three filter initialization methods for implementation
in ssFs. Subsequent testing on actual data files (described in Section
3.3) was used to decide on the most appropriate one. Each method
assumed that the length of every circuit group history is somewhere
between 2 and 71 months.* As mentioned in Section 2.2, we look at
quarterly average values of the demand for special services. The three
methods are the following:

() Estimate Xnu -1 and P,.o by unweighted least squares. Assume
a linear first-order model of the form y = By + Biz + €, where z is the
time variable (in our case, it is just the index of the observations, since
the seasonal analysis can be assumed equally spaced in time), and e,
an error variable with mean zero and unknown variance ¢°. Given the
observations ¥y = (yo, Y1, *++, ¥n-1) taken at times z = (0, 1, ---,
n = 1), y» is estimated (by least squares) by ¥, = Bo + Brz, and 3 =
Bo. Therefore,

ﬁn=§o+ﬁlzn=ﬁo+ﬁm=ﬁn—l+ﬁ1,
frl;o.no—l = J‘;m -frzio.no-—l = EI, ﬁ}% = var in )

pE=varf, and pr =pr = cov(Fn By

= Yo(var y, + var B, — var Fna1).

The estimates fo, £1, ¥, and 52 are obtained with the usual regression
formulas (as in Ref. 6).

(ii) Use the present ssFs model prediction for X, »,-1 and estimate
Pnn from method (Z).

(iii) Use the first quarter of data (2 or 3 months) to obtain a crude
estimate X;.(£1, = quarterly average, i1 = the slope of a line best
fitting the data). Then use the Kalman filter algorithm sequentially on
each quarterly average demand up to the current date. Estimate, as in

* When only one month is available, an arbitrary growth factor has to be used, and
71 months is the maximum history length stored by the ssFs history files.
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(Z), the initial error covariance matrix as the average of the errors in
extrapolating for the 3 months in the second quarter.

Intuitively, this last method was expected to perform best, since, in
most of the cases, enough history was available for the filter to achieve
steady-state performance. Experimental testing of these initialization
procedures indicated that indeed method (iii), the use of the filter
algorithms as early in the history as possible, resulted in the best
initial state-vector estimates X, »,_, and B,,.

Weighted least squares, using minimum variance initialization esti-
mates,” was not considered because special-services demand data may
have many deterministic jumps. A distinction between these jumps
and possible outliers could not be made since there were no records to
indicate when such significant events occurred. This lack of informa-
tion is equivalent to changing the characteristics of the vector U, in
eq. (5) into a random variable with unknown distribution.

3.2.2 Specification of R and Q

Various procedures exist for the estimation of the {R,} and {@.)}
parameters. The methods vary in their relative complexity and the
number of assumptions needed for the underlying statistical properties
of the system. In most applications with relatively short time series,
little improvement in performance is expected from a highly sophisti-
cated specification procedure. A simpler method is used: instead of
trying to identify {R.} and {@,} for each individual time series, a
scalar R and a matrix @ are determined that approximate the general
nature of all series considered. Consequently, only one gain sequence
{K.} and initialization matrix P,, has to be precomputed and applied
to all circuit histories.

In our case, estimation of R and @ is obscured by the occurrence of
deterministic events. For example, to estimate R, the series first has to
be cleansed of special events, but any special events recognition is
based on a measure of R. Nevertheless, upper bounds for the measure-
ment error variance can be estimated assuming no deterministic
events. The estimate measurement error, R, was found to be approxi-
mately 5 for Company B and 19 for Company C.

It can be shown*® that the calculation of the gain sequence depends
only on the relative magnitude of @ compared to R. Hence, if R is
normalized to unity, only @ needs to be specified. We discuss the
influence of R and @ on the gain sequence, filter responsiveness, and
the selection of specific values for @, based on experimental testing, in
the next section.

3.2.3 The gain sequence

Accurate specification of the elements of @ is important, especially
as they affect the gain sequence {K,} values for large n. Fig. 4 shows
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Fig. 4—Kalman filter gain sequences. (a) K sequence; (b) K2 sequence.

how the gain sequence is influenced by different assumptions made on
the elements of @. For @ = 0 the gain sequence converges to zero,
since @ = 0 is equivalent to a process {X,} evolving deterministically
relative to the initial set of parameters (see Fig. 4, curve A). A nonzero
@ will force the sequence {K.} to give enough weight to new obser-
vations y, so that a nonstationary process is correctly tracked by the
filter (Fig. 4, curve B).

The choice of { K.} is based on the desire to be responsive to changes
in demand, while maintaining relatively stable forecasts. To obtain
this result even when the true statistical nature is not known and @
estimates are difficult to obtain, a truncated gain sequence can be
used.” A truncated gain sequence K, (Fig. 4, curve C) is defined as

K, if n=n*
K, = and n*=1,
K, if n>n*

where K, is calculated under the false assumption that @ =0, and n*
is empirically determined to ensure sufficient responsiveness and near-
optimal filter performance. Another advantage in using the K se-
quence over the optimal sequence is that a finite vector {Kj, -- -, K-}
can be computed and stored. [Fig. 4 is derived from egs. (10), (11), and
(12), and estimates of R, @, and P»,.]

Given the demand data characteristics in our case, the matrix @ had
to be nonzero to ensure filter responsiveness to random variation in
the model parameters. For the normalized R, value of 1, different
matrices @ were tested and corresponding steady-state gains calcu-
lated.

Figure 5 shows the theoretical performance of different gain se-
quences for the ssp-spa algorithm when the true modeling error
covariance matrix is constant and not zero (@ # 0): Curve A is the
theoretical performance when the gain sequence is calculated under
the false assumption that @, = 0, curve B is obtained when the true @
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Fig. 5—Theoretical algorithm performance.

is used in obtaining the gain sequence, while curve C shows the
theoretical performance of the truncated gain sequence (n* = 10), also
computed under the assumption that ¢, = 0. This figure is derived
from the generalized formula for S,

= (I - Kan)Pn(I - KHHH)T + KanKE,

which is true for an arbitrary gain matrix K,.*’

The initial values of the ga.m sequence depend on the P , values.
The absolute values of the P, , were varied to obtain the transient gains
(K, n < 14) that gave the best algorithm performance. This P, ,and €
produced a near constant (over time) gain-vector sequence. Further
testing on many time series indicated that a single algorithm using
constant gains performs as well as any other. This empirical result is
substantiated by theoretical near-optimal performance of a constant
gain sequence, shown in Fig. 5, curve D. The constant gain was selected
to be the best approximation obtained to the optimal gain. Conse-
quently, constant gains were selected for the ssp-spa implementation.

3.2.4 Outlier detection and data validation

An important characteristic of the special-service demand time
series is the high volatility. This volatility affects the expected quality
of the forecasting procedures and the determination of outlier detection
screens and responses. Usually, outliers are defined as those measure-
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ments that are significantly different from the trend because of data
volatility, measurement errors, or deterministic changes in the level.
Significance is determined based on the observed measurement vari-
ance about the assumed trend line (usually a band of 2 to 3 standard
deviations around the expected line). Once a measurement falls beyond
these boundaries, the outlier detection routine determines whether the
measurement indicates a change in the level of the trend or whether
it is an outlier (data volatility or measurement error). The former case
is decided based on subsequent measurements, i.e., if the following
data conform to the change. In the latter case, the measurement has
to be partially or complete ignored, based on the probability of being
a true measurement of volatile demand or an erroneous one.

Previous studies indicated that the majority of the grouped demand
time series is truly of a highly volatile nature with sudden changes;
large and frequent changes (up to 1000 circuits added or subtracted in
a single month), many times in opposite directions (big rise in level
followed shortly by a big drop), were evident.

Consequently, it is impossible in the case of the special-services
demand data to decide if an outlier was produced by a data-base error;
therefore, no data validation decisions are recommended for the outlier
detection routines.

Instead, such errors if present will be handled by the deterministic
event detection and response procedure described in the next section.

3.2.5 Deterministic events detection and response

As mentioned in Section 2.1, two other important demand patterns
must be considered in designing a projection algorithm:

(i) Significant changes in the demand level when subsequent ob-
servations confirm the supposition that a special event had taken
place.

(ii) Zero growth when the time series remain for long periods of
time at constant levels.

3.2.5.1 Step changes in demand levels. Since data is available
monthly, detection of significant level changes should be made
monthly even though the forecast is made quarterly. In this way, a
quarterly response will be the result of at least three, and up to a
maximum of six monthly movements. Let

d; = Ymonth; — Ymonth;_;s

]

= (ymomh,- + ynmnth[-_])/2, and

d? = maximum value |d;| can have before it is considered significant.
Two functional forms are usually used’ to calculate d}: the linear
function df = a + bd; or the mixed linear-exponential function d! =
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d{a + be®). In general, the latter form has the advantage that it
increases the boundaries, percentagewise for small values of d:. For
the special-services demand time series, the integral nature of the d’s
made this advantage insignificant. Optimum values for a, b, and ¢
parameters were experimentally tested for both functional forms, but
no improvement was found in the algorithm performance when the
mixed linear-exponential boundaries were used. Since the simple linear
form reduced the total computational time, we recommended the
following linear deterministic event boundaries for sSD-SPA:

df =07+ 0.11 ( ¥montn, + ymnm‘.fl) forall i=2.

We present next a brief description of the detection and response to

past deterministic changes in the demand.
() Detection step

This procedure first determines if the given d;_, is significant, and
second if the subsequent d; confirms this event. This confirmation
means that either d; has the same sign as d;—i, or the net difference
between |d;| and | di-| is large enough to be a deterministic event by
itself. There are four possible cases: d;_; > 0 and d; > 0; d;_; < 0 and
d;‘<0; diy>0and d; < 0; and d;—; < 0 and d; > 0. In the first two
cases, d;— is confirmed, since the next movement has the same sign. In °
the last two cases, the movements have opposite signs. To distinguish
between volatility and special events, we subtract from both what can
be attributed to volatility, i.e., minimum {|d;|, |di—1|}. There are, then,
two cases: |di-1| > |di|, and |di—1| < |di|-

Case 1: |di-1| > |di|. Then new di-; = di-, + d; and new d; = 0. If
d’;-, compared to d}, is significant, then d/-, is a special event and
d! = 0. If not, both d| and d;-, are zero.

Case 2: |di-1| < |di|. Then new d/ = d; + di—, and new di-, = 0. If
|d{| = d¥, then d/ is a special event and d}-, = 0. Otherwise both are
Zero.

(it) Response step

From these monthly detected level changes, the quarterly events
have to be calculated. A quarterly value Y; is an average of three
months: y;, yi+1, and ;4. (The Kalman filter model uses this Y; as data,
as described in paragraphs 3.2.1 and 3.2.2.) The effect of a monthly
change on the quarterly average depends on the position of the month
in that quarter. If the change happens in the first month of the quarter
(d;), then all ¥’s in Y, are moved to this second level, and the change
in quarterly averages is D; = Y; — Y;_; = d;. If the change happens in
the second month (di+.), then only y:+, and y:.» reflect the change, and
Y, — Y., = %dis1. The remaining Ydi+, will appear as a difference
between Y; and Yj.:. Finally, if the change appears at yis,(di+2), then
Y; — Y1 = %disz and Y1 — Y; = %dis2 .
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Consequently, the changes observed on quarterly values are deter-
mined by five possible monthly events:

D; = Vadi_g + %di_, + d;i + %di + Yadise .

Since we do not know how much of any D is actually normal growth,
we recommend that when D; fully explains the difference between Y;
and Y 1, to consider that it already included the growth. Certainly D;
is not available before Y,, and therefore, the state estimate Z -1 18
calculated first using the estimates &} ;- of future deterministic events
which can be input to sSD-sPaA, or from eq. 13:

Xj,_,;l = 0X i—1,j-1 1+ ﬁj.j_l.

After D; can be calculated (D; = i} ; = estimate of u; after Y; has been
observed), then the state estimate £} ;-1 can be updated by:

ﬁ},,-,l (—.‘f}.jq - ﬁ},j_I +D; if Di#Y;—Y;, or D=0
«— .'f}lj—l - ﬁ},jq + D;— xf_l‘j_l if Di=Y;—Y;, and D;#0.

Then, eq. 9 follows to calculate X; ;.

Since events often do not occur as planned, this procedure also
ensures algorithm recovery when erroneous estimates of future deter-
ministic events are input to SSD-SPA.

3.2.5.2 Zero growth. Two quarters (or 6 months) with constant level
of demand are regarded as sufficient evidence that the main tendency
of that particular circuit group is to stay at that level for a longer
period of time. However, if the filter estimate of the growth is not very
close to zero, it may take many quarters to finally converge to zero
since the filter has to be robust enough to perform on other higher
volatile series. An appropriate procedure to force the growth estimate
to converge to zero faster is to reduce the growth estimate (#2,) by a
factor y (i.e., x2, becomes x,,/y) whenever zero quarterly growth is
observed. Subsequent testing found y = 2 to be a good value and
concluded that this test is very robust for small variations of the y
parameter.

3.3 Performance analysis

Three objectives were identified for the ssp-spa performance anal-
ysis: First, to determine and quantify the improvement in forecast
accuracy, rms error, stability, and misplacements relative to the exist-
ing forecasting algorithm (described in Section 2.3). Second, to deter-
mine if the proposed algorithm has the desired properties (listed in
Section 2.3.3) derived from the special-service demand data character-
istics. Third, to assess the potential economic benefits resulting from
incorporating SSD-SPA into SSFs versus its implementation costs.
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The ssp-spa was evaluated quantitatively using the accuracy, rms
error, stability, and misplacement relative error statistics. To ensure
relative algorithm performance analysis consistency, the same data
was used as in the ssFs study (Sections 2.1 and 2.3.2). For these time
series, equivalent consecutive forecasts were produced using the new
sequential projection algorithm, and forecast performance measures
were calculated.

Network aggregated error statistics were used in the selection of
algorithm parameters, as well as in comparing the new ssp-spA per-
formance to the present algorithm.

The resulting forecasting algorithm was found to be robust over
small variations of all parameters around their optimum values.

3.3.1 Resuilts: Accuracy, rms error, stability, misplacements

Figure 6 displays graphically the performance of the ssD-SPA using
both companies’ history data. Special-services demand sequential pro-
jection algorithm generates forecasts that are significantly more ac-
curate and stable. Tables I and II give the SSD-SPA versus present
algorithm relative improvements in forecast accuracy, rms error, sta-
bility, and total misplacement.

Figures 7a and 7b present two examples of the ssD-sPA versus
present algorithm total error (TE) and misplacement (M) relative
improvements for the forecasts generated in 1974.

Figure 8 gives histograms of relative improvement for the 1-year-
ahead forecast accuracy, rms error, total misplacements, and stability
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Fig. 6—ssp-spa network average forecasting performance.
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Table I—SSD-SPA Percent relative forecast improvement over
present algorithm

Com- 1-Year 2-Year 3-Year 4-Year
Forecast Attribute pany  Span Span Span Span

Accuracy C 30.0 29.6 29.6 319

B 25.0 24.0 25.0 29.0
Root-mean-square C 17.8 18.3 20.7 23.0

B 19.7 19.1 222 24.0

[ —) - ” - —

Stability c 15.0 27.0 38.8

B 20.0 33.0 51.0

Table II—SSD-SPA Percent relative improvement in total
misplacements over present algorithm
Forecasted Year

Base Year

Company Forecast 1975 1976 1977 1978
C 1974 174 19.5 20.2 21.6
1975 18.3 15.7 13.7

1976 18.3 13.1

B 1974 21.9 19.2 19.0 23.3
1975 17.8 19.0 224

1976 22.9 223

(1 versus 2-years-ahead for stability). Much of the observed improved
performance is because the new algorithm can detect and properly
respond to step changes in the demand level. Figs. 9a and 9b show
how ssD-SPA processes the data shown previously in Figs. 3a and 3b as
examples of ssFs poor performance.

It should be noted that both examples only show how past deter-
ministic events (before the start of the forecasting period, i.e., before
July, 1974, in Fig. 9a, and July, 1975, in Fig. 9b) are treated. No
knowledge was assumed about future special events, such as the one
on October, 1976 (Fig. 9b). Once the data up to these events are
available, even if no, incomplete, or wrong information would be input
into ssp-sPA, the algorithm could recognize them and properly adjust
the forecast, as was shown for the events on May, 1974 (Fig. 9a) and
February, 1974 (Fig. 9b). The present ssFs algorithms treated these
events as part of the normal growth, as shown in Figs. 3a and 3b.

3.3.2 Small integer forecast

In Section 2.3.3, we stated six desirable properties for the new
forecasting algorithm based on the demand time series characteristics.

The unequal weighting of data, acceptance of exogenous informa-
tion, and a short initialization period are shown to be part of the
proposed mathematical model itself (Section 3.1). The recursive filter
model adds computational efficiency since it does not explicitly use
past data. Recognition of the past deterministic events and algorithm
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recovery are ensured by the two procedures described in Section 3.2.5.
It only remains to see if ssp-sPA performs adequately when small
integers are to be forecasted.

To quantify this, the tests were repeated using only those point-to-
point time series consisting of integers less than 10 (approximately 80
percent of all point-to-point demand time series).

Results of these tests on both companies’ data bases showed that
for small integers the relative forecast improvement of ssp-SPA is
about 50 percent in accuracy, 30 percent in rms error, 30 to 66 percent
in stability, and 50 percent in total misplacement. Moreover, total
forecast error was found to range between 1 to 3 percent for ssD-sPA
versus 3 to 28 percent for the present method. These last results
excluded the “vanishing” time series in order to obtain unbiased
attribute estimates.
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3.3.3 Economic benefits and implementation costs

The comparative study of the present ssFs forecasting algorithm
and the ssp-spa showed that the new algorithm generates forecasts
that are significantly more accurate and stable. Implementation of
SSD-SPA in 8sFs would, therefore, translate into important economic
benefits in three areas: capital expenditures, forecasters’ time, and
electronic data processing costs.

(i) The major impact is expected to be on capital savings. The
following analysis is based on the ssFs preliminary forecast before any
manual adjustments are made. (There are no records available with
the final adjusted forecasts made at different times in the past, nor
with the exogenous information available to the forecaster.) The
results showed the 1-year ssrs forecast positive misplacement of
circuits to be 12 percent, on the average. That is, 12 percent of the
total special-services circuits in the 1-year forecast could be in the
wrong groups resulting in an overprovisioning. One-year results are
used to be conservative; additionally, for a 1-year error there is less
chance to reuse misplaced facilities.
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The ssD-sPA reduces the misplacement to 7 percent; a reduction of
5 percent. Theoretically, 5 percent of the total special-services circuit
network could be removed without a change in service. Underprovi-
sioning is approximately the same for both algorithms.*

(z) The improved forecast accuracy, the recognition of past deter-
ministic events, and the shorter forecast initialization requirements
are sSD-SPA features that translate into fewer manual forecast adjust-
ments. Fewer adjustments would permit the forecasters to concentrate
more of their efforts to follow the economic conditions and estimate
their impact on the future demand for special services.

(iif) The ssp-spaA is based on one forecasting model only and makes
no explicit use of all the data history. Consequently, run times and
core usage would be reduced. Although the absolute savings are not
large, they would make ssFs very suitable for an on-line use.

IV. CONCLUSIONS

The goal of our work was to design an algorithm able to forecast
future demands for special services: highly volatile time series mainly
consisting of small integers, and with numerous deterministic jumps.
We have shown that a linear, dynamic time-series model with linear
growth and deterministic input, together with the Kalman filtering
technique for state vector estimation and prediction, can produce
demand forecasts which are significantly more accurate and stable

* This apparent positive bias is due to two types of groups. The first is those groups
which “vanish” during the period. The second is those in which large deterministic
f:;nts occurred. In the new algorithm, these events can be handled by input of marketing
information.
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than the forecasts produced by the best (highest R?) choice of four
unweighted regression models: the linear, exponential, and first- and
second-order autoregressive. The new model, its attributes, and spe-
cific parameters were selected based on the characteristics of actual
special-service demand history from three BoCs.

The improvement in accuracy is due to the capability of the system
to track nonstationary processes, and also to recognize and react
properly to deterministic changes in the demand, even when no, or
wrong exogenous input was available. The use of a single model is
responsible for much of the stability improvement. Additionally, ssp-
SPA can produce many views of future demand using different assump-
tions on future events, it requires a short initialization period, and it
results in the need for fewer manual adjustments. Therefore, we
propose to replace the existing algorithm in the ssFs by this simple
and more efficient algorithm.
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