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Trunk servicing is the continual process of collecting trunk group
traffic measurements, monitoring network service, and augmenting
the network when necessary. This study addresses the possibility of
using a short-term forecast to determine the adequacy of trunk
qguantities planned for the imminent busy season. When seasonal
patterns of demand exist, it may be possible to use observed, pre-busy-
season traffic levels to predict accurately that busy-season demand
will exceed the planned trunk group capacity and to determine
appropriate corrective action. Toward this end, we develop a seasonal
load forecasting algorithm based on Kalman filter estimation tech-
niques and analyze the effectiveness of this approach using Bell
operating company data. For trunk groups exhibiting seasonal de-
mand, the short-term (12 months ahead), seasonal forecast error is
50 percent less than that of the sequential projection algorithm (spa),
which linearly trends the yearly busy-season loads. Much of this
improvement is attributed to the ability of the seasonal algorithm to
utilize recent observations; the one-year ahead seasonal forecast
error is only 20 percent less than that of spA. We conclude that the
greater generality and simplicity of sPA makes that algorithm the
appropriate choice for the annual busy-season trunk forecast used in
medium-range network planning. However, the seasonal algorithm
demonstrated the ability to use recent data to respond quickly and
accurately to various situations that result in inaccurate SPA fore-
casts. For this reason, the short-term forecasting algorithm developed
herein is a potentially valuable tool for network administration.

I. INTRODUCTION
1.1 Motivation

Demand servicing is the process responsible for detecting and cor-
recting overload conditions in the trunk network. Such conditions
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inevitably occur when unanticipated traffic levels exceed the planned
capacity, which must be maintained at a reasonably low level to
provide good service at low cost.

The planned capacity for each trunk group is determined primarily
by the annual forecast of busy-season trunk requirements. Trunk
servicing, which includes demand servicing, is the continual process of
collecting trunk group traffic data, monitoring network service, and
augmenting the network when needed. This paper addresses the
possibility of supplementing the annual forecast and weekly monitoring
process with a short-term forecast of imminent busy-season require-
ments. Specifically, when seasonal patterns of demand exist, it may be
possible to use observed, pre-busy-season traffic levels to predict
accurately that busy-season demand will exceed the planned trunk
group capacity. Thus, service problems may be predicted and possibly
avoided by “anticipative” demand servicing action.

When the need for demand servicing arises, the trunk servicer must
decide on the locations and magnitudes of trunk group augments
required to restore service. If current traffic levels already exceed those
forecast, the servicer would like to know whether the peak load level
has already been reached, or whether even higher levels are imminent.
For each trunk group that must be augmented, the servicer should
know the minimum amount of additional capacity required to both
relieve the existing problem and to provide adequate service through
the remainder of the busy season.

1.2 Short-term trunk forecast

Both of the trunk servicing functions described above, namely, the
anticipation of imminent service problems and the determination of
appropriate demand servicing augments, could be performed with the
use of a short-term trunk forecasting system. Such a system would
recognize within-the-year demand patterns and use this information
to make accurate, short-term predictions of busy-season load. As such,
the short-term forecast would serve as a ““back-up” to the yearly busy-
season forecast, recommending remedial action in those cases where
the latter is significantly in error.

The purpose of this study is to investigate a short-term forecast to
provide the trunk servicer with accurate, useful information concerning
near-term traffic levels. With such a tool, service problems could be
avoided by anticipative demand servicing and useful reserve capacity
could be identified. This would allow the servicer to make more
efficient use of existing facilities and equipment, thus, reducing the
amount of reserve capacity required to maintain good service.

1.3 Overview

Section II is a discussion of the general requirements of a short-term
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trunk forecasting system. Motivated by these requirements, we con-
sider in Section III the class of linear dynamic models and show how
these models can be used to represent trunk group load histories
exhibiting seasonal variation. In Section IV, we discuss a recursive
estimation procedure, known as the Kalman filter, that is appropriate
for this class of models. Using trunk group data obtained from a Bell
operating company (Boc), we test the performance of a specific fore-
casting algorithm in Section V, and compare its performance with the
year-to-year forecast produced by the recently developed sequential
projection algorithm (spa)."” Section VI summarizes our findings.

Il. SYSTEM REQUIREMENTS

The selection of an appropriate class of time-series models and
forecasting procedures for consideration in this study depends heavily
on the intended mode of operation and operating environment. The
general requirements of a short-term trunk forecasting system are
discussed in this section. These requirements will motivate the class of
time-series forecasting algorithms considered in Section III.

2.1 Time series model

Underlying any time-series forecasting procedure is a mathematical
model describing the structure of the series being forecast. For short-
term trunk forecasting, the time-series model used must be sufficiently
flexible to model a wide range of trunk group growth patterns accu-
rately and to track changes in these growth patterns closely. This
requirement is shown in Fig. 1. Figure 1a shows the load history of a
Boc only-route group exhibiting a highly regular seasonal pattern
modulating a nearly constant, linear trend. The behavior of such
demand can be accurately predicted by an reasonably appropriate
procedure. In particular, the annual 1-year spa forecasts of busy-season
demand are quite accurate.

In contrast, the trunk group load history shown in Fig. 1b requires
a more sophisticated treatment. The distinctly nonconstant trend leads
to gross errors in the spaA forecasts of busy-season loads, since the spa
algorithm design assumes approximately linear growth or decline.

Although the growth pattern shown in this figure is clearly noncon-
stant, it is not unpredictable. The short-term trunk forecasting algo-
rithm should have sufficient built-in flexibility to accommodate such
behavior.

2.2 Data requirements

To provide good service at low cost, the Bell System network is
constantly evolving. This evolution accounts for the introduction of
new and improved technology with the accompanying changes in
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Fig. 1—(a) Trunk group AA001444—annuhl busy-season forecast. (b) Trunk group
AA024225—annual busy-season forecast.

network configuration, and for change and growth in customer demand
patterns. As the network evolves, new trunk groups, connecting new
switching systems in a more economical network configuration, come
into service and serve traffic previously carried by existing groups,
which may be phased out of service. Also, in the past, trunk group
histories were not maintained and data collection schedules were less
comprehensive. For these reasons, long, uninterrupted trunk group
load histories are, and will continue to be, atypical.

If it is to be useful, the short-term trunk forecasting system must be
capable of operating in this type of environment. It should be capable
of producing accurate forecasts based on relatively small amounts of
historical data (e.g., 2 years). Also, it should be able to process and
respond to information concerning semideterministic events (e.g., main
station transfers and traffic reroutes) that affect the trunk group load
pattern.
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2.3 Computational requirements

In most Bocs, the trunk servicer relies on the Trunk Servicing
System (Tss) to process recent trunk group traffic measurements and
to obtain estimates of current load levels, traffic characteristics, and
trunk requirements.’ On a weekly basis, the system must process
measurements and produce reports on several thousand trunk groups.
Therefore, when considering candidate short-term forecasting algo-
rithms for implementation in such a system, computational efficiency
is of great importance. Equally important is the need for mechanized
procedures requiring minimal intervention by the servicer, who typi-
cally must administer several hundred, and possibly thousands, of
groups. Thus, computational efficiency and automation requirements
rule out those procedures commonly used to perform detailed statis-
tical analyses of individual time series. (See for example, the methods
described in Ref. 4.)

2.4 Summary

In summary, the short-term trunk forecasting algorithms considered
in this study should be able to track the trunk group load series
accurately and adapt to dynamic changes in the demand pattern. In
addition, they should perform adequately after a minimal initialization
period and be computationally efficient.

In the next section, we describe a class of algorithms satisfying these
requirements.

lll. LINEAR DYNAMIC MODELS OF SEASONAL TIME SERIES

In this section, we consider the representation of trunk group load
histories exhibiting seasonal variation by a linear, dynamic time-series
model. The motivation for considering such a model for the application
considered in this paper is discussed in Ref. 5. To summarize, this
formulation is sufficiently general to describe a large number of time
series of practical interest and is compatible with certain computation-
ally efficient estimation techniques that make optimal use of limited
amounts of data. The estimation and forecasting of these models will
be considered in Section IV.

3.1 Mathematical model

A discrete time series is a sequence of observations of some quantity
of interest. We think of such a series as being a realization of some
stochastic process {y:}, which serves as a mathematical model explain-
ing the observations, and which allows us to make inferences concern-
ing future values of the series.

In the linear dynamic model, the behavior of the series is determined
by an n-dimensional state-vector process {X.} and the following two
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equations that describe the time evolution of {X;} and the relation of
X, to the observation y..
The first equation, called the system equation, is

X=X, + W, (1)

where ¢, if an n X n “transition” matrix and {W,} is an n-dimensional,
zero-mean white noise process with

E(W,W;)={° if st @

Q. if s=t¢t
More generally, we can consider the system equation
X=X+ U+ W, (3)

where U, is an n-dimensional deterministic or stochastic input to the
system at time ¢.

The matrix ¢, in egs. (1) and (3) describes the deterministic move-
ment of the state variables comprising X,. The white noise process
{W,} explicitly allows for random variations in these state variables
and, therefore, significantly enhances the flexibility of this formulation.

The second equation, called the observation equation, is

ve=HX: + e, (4)

where H; is a 2 X n “observation” matrix and € is a k-dimensional,
zero-mean, white-noise vector sequence, independent of {X,}, with

L0 i st
E[“‘“}={R, it st ©)

Thus, the observation y; is a linear function of the state variables
corrupted by an additive disturbance e;.

Since we will only consider univariate time series { y.} in this paper,
we will assume henceforth that 2 = 1.

3.2 Examples

Next, we present a few simple, but relevant, examples to demonstrate
that this formulation describes many kinds of time series. Additional
examples can be found in Ref. 6.

3.2.1 Linear growth model

In many applications in which a quantity is to be forecast over a
relatively short time span, it is reasonable to assume that the quantity
is growing approximately linearly with time. In particular, the spa®
design assumes that busy-season trunk group load varies from year to
year along a nearly linear trend.

Linear growth can be described by the two-dimensional linear model
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with the following parameters:

¢fE¢=[é }] H,=H =1, 0];

p
X, = ’: xrzp]- (6)
In this model, x{" represents the level of the series at time ¢, and
x{” the instantaneous rate of growth. The inclusion of the white noise

process described by {Q:} allows the trajectory to deviate randomly
from a straight line.

3.2.2 Seasonal models

A time series {y.} is said to exhibit seasonality if observations
separated in time by some fixed interval (usually one year) exhibit
similar behavior. The simplest kind of seasonality is periodicity; that
i8 ¥t = Yr+nL for some positive integer L and every integer n. Two linear
models of periodic behavior are described below.

A useful model of seasonal variation is available via the trigono-
metric representation for periodic sequences.” Let {y:} be periodic,
with period L. Then { y,} can be represented as follows:

L-1

2
Y=o + 2‘,1 [azcos(jwt) + asjisin(jfwt)] + ar(=1)", (7
=

where w = 27/L and the last term is omitted if L is odd. Hereafter, we
will assume that L is even. The coefficients {ax} in the trigonometric
expansion are determined by

L
) =% '21 ¥i
9 L
ay =, E.l yicos(ijw)
9 L
azj41 = Z §1 sm(L]w)
1 L
o= E yi(—1)" (8)

Note that the first coefficient a, represents the average level of the
series {y}. It can be omitted from the expansion (7) if we are
representing a series having zero mean.

The existence of the representation (7) follows from the fact that
the set of time functions

= [1, cos wt, sin wt, - --, (—1)"]
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forms an orthogonal basis for the linear space of all real, periodic
sequences with period L. Also note that for every integer , the set of
r-translates of Fo, defined by

F, = [1, cos w(t — 7), sin w(t — 7), +++, (~1)""]

also has this property. Therefore, for each 7 there exists a representa-
tion of { y.} as a linear combination of the elements of F;

ye=ai’ + z {af) cos[jw(t — 7)] + asjs sin [Jw(t = 7)])

+ ai"(—l)‘ ! &)

with o = ay as in eq. (7).

The expansion of the series { y:} relative to the set of functions F'
can be viewed as a representation in which ¢ = 7 serves as the new
time origin. In the linear dynamic model described below, at each new
time epoch ¢ = 7 + 1 we will “rearrange” the representation (9) in
terms of the functlons F..: via a simple, linear transformation of the
coefficients {ay’}.

Let ye = ai’ + Z [a$} cos juw(t — T) + ash sin jw(t — 7))

+ a(f)(_l)t—f
ai*? + z: {a5*" cos juw[t — (t + 1)] (10)
+ a‘zgii’ sin jo[t — (r + 1))} + af ™ (=1)"0,

(11)

By expanding each term in eq. (11) and equating coefficients of similar
terms with the coefficients in eq. (10) yields

a;ﬂ = a{r+1)
(r) (r+1)
Qg; -1 | Oz
EARYES
af’ = (-Daf™, (12)
where
-1 _ cosjw —sin jw
b [sin Jw cosjw]' (13)
Let X, =[a{, .-+, af']. (14)
Then
X, = ¢ X,41, (15)
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where ¢~ is the block diagonal matrix defined by
-1 -
T 0
¢z
¢ = - (16)

Equivalently,
X, =o¢X.. (17)

To summarize, the trigonometric expansion (7) of {y:} can be
represented by a linear dynamic system with state vector X, =
[af”, +--, af']" comprising the coefficients in the expansion relative
to the current time 7. The transition matrix ¢, defined by eq. (16),
provides the mechanism by which the coefficients at time 7 + 1 are
obtained from those at time r. Finally, at time 7, we observe

yo=a+Zaf +af +e
J

= HX, + ¢, (18)

where the L-dimensional vector H is given by
H =H, = [1101---01]. (19)
By including a nonzero white-noise input in the dynamics (16), i.e.,
X.mu=0¢X. + W, (20)

we can allow for random variations in the trigonometric coefficients,
and therefore, in the seasonal pattern.

In addition to the trigonometric model described above, another
commonly used seasonal representation, the seasonal index model
(Ref. 6, page 217) was considered. However, empirical performance
results, analogous to those to be presented in Section V, indicated that
the trigonometric model gave somewhat better results. For the sake of
brevity, this model will not be discussed further.

3.3 Seasonal trunk group model

In Section 3.2, we showed how the general linear model egs. (1) to
(4) can be used to represent either linear-growth or periodic time
series. We now demonstrate that these models can be superimposed to
form a model capable of representing a wide variety of trunk group
load series.

Consider again the trunk group load histories shown in Fig. 1. These
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series may be characterized by an underlying linear trend with a
seasonal pattern superimposed. (This observation is consistent with
the assumptions used in the design of spA.® See Section 3.2.1.) The
former component can be represented by the linear growth model
described in Section 3.2.1; the latter, by the periodic model described
in Section 3.2.2. If we assume that these two effects combine in an
additive fashion, we can represent the observed behavior by the linear

model with state vector
X
Xr=[""], (21)
X

where X? is the state vector defined for the linear growth model (6)
and X is that of the periodic model (14). (In the seasonal component
X{®, the “level” term a{” included in eq. (7) is omitted, since a similar
term appears in the linear growth component X{".)

The dynamics of this system are described by the transition matrix

@
[ 2]

where ¢ and ¢’ are the transition matrices of the linear and seasonal

models, respectively.
Similarly, the observation matrix, H, is given by

H = [HY:H"Y], (23)

which decomposes the observation into the sum of a trend component
H®X{" and a seasonal component, H*'X{*.

Finally, random variation in the components of X, is modeled as a
white-noise input, described by the sequence {Q.}. In particular, if the
disturbances to the trend and seasonal components are uncorrelated,
then Q; may be decomposed as

(6] 0
Q- I:Q(; Q}‘”]'
3.4 Summary

In this section, we discussed the class of linear dynamic time-series
models and showed how such models can be used to represent time
series exhibiting both linear growth and seasonal variation. In partic-
ular, a specific model was proposed in Section 3.3 for the representation
of trunk group load histories exhibiting seasonality.

In the next section, we consider the problem of estimating the
parameters of such a model from the observed time series and the use
of these estimates in forecasting.
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IV. PARAMETER ESTIMATION AND PREDICTION

Complementing the class of linear dynamic time-series models is a
sequential parameter estimation algorithm known as the Kalman
filter.*® With this technique, we estimate the model parameters com-
prising the state vector X, from the observations y,, ---, y, and use
this estimate to make inferences concerning future values of the series
(prediction).

The general procedures by which this is accomplished are discussed
in this section. We begin by describing a recursive algorithm for
sequentially updating the state vector estimate as new data becomes
available. The recursion is initiated by a weighted least-squares esti-
mation procedure derived in Section 4.2. The application of these
procedures to the seasonal trunk group model derived in Section ITI
yields a forecasting algorithm capable of accurately tracking and
predicting the values of the seasonal time series considered in this
study.

The performance of this algorithm on actual trunk group data will
be examined in Section V.

4.1 The Kalman filter

Consider the linear dynamic model described by the equations

X=X, + W, (24)

and
ye=HX; + €. (25)

Assume that
E(W,) =0, E(e) =0
E[W.W.] = { o if it (26)
E[W.e,]=0
and

0 if s##t¢
E[€r€3]={R! lf s=1

Suppose that at time ¢, prior to observing y:;, we have available an
initial estimate of the state vector X,. Calling this prior estimate X,,_,,*
let us also postulate that the estimation error X, = X,,_, — X, has zero
mean and is uncorrelated with e, the observation error in y,. Let us
also assume that the error covariance matrix of the estimate,

*In general, the notation X,, will be used to denote an estimate of X, based on
information available at time s.
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P... = EXX), 27

is known.

When the current observation y. becomes available, we want to
combine the prior estimate with the new observation in an optimal
manner. Specifically, we seek unbiased linear estimates X;+k,c, k=0, of
the current and future states, which minimize the quantities trace
(P.+x:), where Py is the error covariance matrix of Xi1xs. Thus, we
are seeking minimum variance, unbiased linear state-vector estimates.

The following procedure, which yields such estimates in a recursive
manner, is known as the Kalman filter.’

4.1.1 Filtering

The problem of determining the optimal estimate X, from data
available at time ¢ is known as the filtering problem. Its solution is
given by

R =RKeos + Kl . — HXoea), (28)
where the optimal gain K,, is determined as
K, =P, H[HP, H:+ R]™" (29)
The error covariance matrix of this estimate is given by
P, =(1-KH)P.,.(I-KH) + KRK: (30)
=[I - KH/]P: (31)

The more complex expression (30) is included since this relationship
is valid for an arbitrary gain matrix K,, whereas (31) is valid only when
K, is the optimal gain (29).

4.1.2 Prediction

Having obtained the optimal linear estimate X.. of X, from the data
available at time ¢, we now want to predict future values of the state
vector and the series. These are obtained by extrapolation, using the
linear dynamics relationship (24).

That is, the optimal linear estimates of X.+x and y:+, based on data
available at time ¢, are given, for 2 > 0, by

k
XHk,t = [H ¢f+i—1] Xr,r (32)
i=1
and
yA£+k.! = H!+kxt+k.t- (33)
In particular, the optimal 1-step predictors are
xt+1.! = ¢£Xt,ty (34)
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and
_)"r+ Lt = H.-+ lxt+1.t-

The error covariance matrix of X,;,, is

P = o:Prioo: + Qg (35)
the one-step forecast error variance is
var(yu1) = Hei P Hieg. (36)

4.1.3 Sequential estimation

We now show how the results of Sections 4.1.1 and 4.1.2 can be used
in an efficient procedure for processing the observations { y,} to obtain
estimates of the parameters of the underlying linear model.

First note that the 1-step prediction X/, given by eq. (34) satisfies
the requirements of the initial estimate of the state vector at time
t + 1. Thus, we can use the filtering procedure described in Section
4.1.1 to process the next observation, y,+1, when it becomes available.

In general, starting with an initial state estimateX, -, at some time
to, we can alternately apply the procedures described in Section 4.1.1
(filtering) and Section 4.1.2 (prediction) to process subsequent obser-
vations y, Yi+1, +++ in an efficient, recursive manner. The procedure
is summarized below.

Inputs: Initial estimate X, with (known) error covariance matrix

P’n-'o_l' Set t= t[).

1. Compute the Kalman gain matrix K., using P,,, and eq. (29).

2. Use the current observation, y., and eq. (28) to compute the updated
state-vector estimate, Xu. The error covariance matrix of this
estimate, P,,, is given by eq. (31).

3. Obtain xm.. and P..., using eqgs. 34 and 35, respectively.

4, Sett=t+ 1. Goto 1.

We make the following observations regarding implementation of
the algorithm described above.

First, at each time ¢, all relevant information concerning the series
is embodied in the state-vector estimate X,.. It is not necessary to
store the history {yi, --- , y}.

Second, the optimal gain sequence {K,} is determined by the second-
order statistics {Q.} and {R,} describing the variability of the process
and the measurements, respectively. Thus, if these quantities are
known in advance, the gain sequence {K.} can be precomputed.

Third, to start the recursion, an initial state estimate with known
error covariance is necessary. The problem of obtaining such an
estimate is considered below.
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4.2 Initialization

In many Kalman filter applications, it is important to have an initial
estimate of the model state vector as soon as the observations
y1, ¥2, - -+ begin. Since this estimate, X, o, is made prior to observing
the series { y}, either a judicious guess must be made or information
from an external source must be provided. In addition, the accuracy of
this estimate must be quantified via the covariance matrix P .

For complex models, the specification of good initialization param-
eters can be difficult. Also, improper specification can result in poor
initial performance, because of improper weighting of the first obser-
vations. Both of these problems can be avoided completely if we can
afford to wait until sufficient observations have been made that an
initial state-vector estimate can be based on the data alone.

Since the short-term forecasting application considered in this paper
is for use as a supplement to the yearly busy-season trunk forecast, it
is neither necessary nor desirable to consider the use of the short-term
forecast until sufficient data is available to make accurate predictions.
For this reason, we recommend that the series { y;} be observed over
an initialization period, say from ¢ = 1 to £ = T, so that the initial state
estimate can be based on the data alone. The method by which this is
accomplished is described below.

4.2.1 Linear model
Consider the linear dynamic system described by the equations

X = ¢Xt + W, (37)
and
Ye = HX{ + €. (38)

We assume that the matrices H and ¢ do not vary with time,* and

that the latter is invertible.

We will show that each observation yr—, within the initialization
period can be expressed as a linear function of the state vector Xr at
the end of the period, of future disturbances Wr-x.+;, and of er—, the
observation error at time ¢t = T — k.

We first note that, from eq. (37)

Xt—l = ¢71(Xt - W:—l), (39)
so that

* This assumption is not necessary for the results of this section; however, it allows
sufficient generality for the model considered and will simplify notation.
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yr=HX, + er
yr-1 = H[o7'Xr — ¢ "Wr] + €7
yr-2 = H[¢ X7 — ¢ "Wr_1 — ¢ 'Wrs] + €7
In general, for 1=k < T,

k
yr-xr = Ho*Xr— H [ = ¢_k+i_lWTi] + €7—p. (40)
=1
In matrix notation,
Yr=(yn -+, y1) = ®Xr + Or, (41)
where
H
Dr= H(b_l , (42)
H¢_T+I

Or=lr, ---,0), andfor 1=k<T,

k
Or—pr=— Z Hd)_“'._lW?L.' + er_p. (43)
=1
Equation (41) expresses the first T' observations as a linear function
of Xr, plus an additive vector Or of zero-mean, correlated noise terms.
Correlation between the components of Or is given by the covariance
matrix

V = (uz) = E[6r07].

Under the set of assumptions (26) the covariances v, for j < k, are
given by

Ui = Cov(lr—j+1, Orfr+1)
j-1

=2z E[Ho "Wy J[Ho " "Wr_]
+ E (e7—j+1€T—k+1) (44)
- ’g Ho'7Qr-(Ho™™®) + 8RRy (45)
4.2.2 Minimum variance initialization estimate

Using the linear model (41) relating the first T observations to the
value Xr of the state vector at the end of the initialization period, we
can estimate Xr by weighted least-squares. That is, if the matrix ®r
defined in eq. (42) has rank n,* the minimum variance, unbiased linear

* For the linear growth, seasonal demand model defined in Section 3.3, the matrix
(42) has rank n if T > n, the dimension of the state vector. That is, the matrices ¢ and
H define an observable linear system.’
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estimate of Xr is given'’ by

RXrr = [(@7V'®7) 'O7V Y1 (46)
The error covariance matrix, Prr, is given by
Prr= [@‘TV_I(I’T]_I. (47)

Using egs. (34) and (35), we can extrapolate these quantities to time
t= T+ 1. That is,

Rrnr=¢Xzr (48)
and
Priir=¢Prr¢’ + Qr (49)

Using eq. (48) as the prior state-vector estimate at time 7"+ 1, we can
process subsequent observations yrii, ¥r+2, -+ sequentially, as de-
scribed in Section 4.1.1.

To summarize, we have shown that an initial state-vector estimate,
satisfying the conditions of Section 4.1.1, can be obtained from the
linear model (41) using weighted least-squares. This estimate can then
be used to start the recursive algorithm summarized in Section 4.1.3.

We will now discuss some general considerations regarding the
application of these procedures to time-series forecasting.

4.3 Implementation considerations

So far in this section, we have shown how the weighted least-squares
method can be used to obtain an initial state-vector estimate at time
T, which is sequentially updated by the Kalman filter algorithm as
new data becomes available. The application of each of these proce-
dures is predicated on the knowledge of the second moments {Q.} and
{R:}, which describe the variability of the state-vector process and the
observations, respectively. In practice, however, these quantities are
rarely known. Therefore, before we can apply these methods to an
observed time series, the problem of determining appropriate values
for these parameters must be considered.

4.3.1 Specification of Q; and R,

Various procedures have been proposed for the on-line identification
of the parameters {Q.} and {R,}. (For example, see Ref. 11.) However,
such an approach would add considerable complexity to the estimation
procedures described in Sections 4.2 and 4.3 and, for the relatively
short time series associated with the application considered in this
paper, would probably yield little improvement in performance com-
pared to the much simpler alternative, discussed below.

Instead of trying to estimate the parameters {R,} and {Q:} describ-
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ing the stochastic structure of each individual series, it may be possible
to determine a single set of parameters, say [R?] and [Qf]t, which
adequately approximates the true stochastic nature of the ensemble of
time series being considered. That is, if within the domain of applica-
tion, the performance of the procedures described in this section is
relatively insensitive to deviations for the assumed values [Qf] and
[R?!), then the use of a single set of parameters can be justified. Also,
using this approach, a single gain sequence {K,} and initialization
matrix (46) can be precomputed and applied to all series. Thus,
implementation is greatly simplified.

4.3.2 Truncated gain sequence

Another simplifying approximation is available for implementing
the Kalman filter algorithm, in which the optimal gain sequence {K.}
is replaced by a simpler sequence, {K¥}. For example, the truncated
gain sequence, defined as

KT-H' if t=r
Kb = (r=1) (50)
KT+r if t=r

can often be used with good results. Two advantages of the truncated
sequence over the full, optimal sequence are discussed below.

First, if 7 is relatively small, only a few gain vectors {Kz4y, -,
Kr..} need to be computed and stored.

Second, and more important, is the use of the truncated gain
sequence to avoid poor filter performance resulting from inaccurate
specification of the parameters {Q,}. This is demonstrated in Fig. 2,
which shows the theoretical performance of three seasonal trunk group
algorithms based on the model described in Section 3.3.

In this example, the gain sequence has been computed under the
false assumption that Q. = 0%, when in fact, Q > 0. Under this
assumption, the full gain sequence {K;} converges to zero. Thus, new
observations y. are given insufficient weight in eq. (28) to allow the
filter to track the randomly varying process.

Also shown in Fig. 2 is the theoretical performance of the truncated
gain sequence (7 = 1), again computed under the false assumption that
Q: = 0. In this case, however, the gain is held at a constant, nonzero

t Actually, it is sufficient to determine appropriate values for {Q.}, since the gain K,
and initialization matrix (46) depend only on the relative magnitude of Q; compared to
the scalar R.. For this reason, we will hereafter assume that R, = 1.

 The assumption that Q. = 0 implies that the process {X/) evolves in a deterministic
manner relative to a constant set of parameters, say Xo. In this case, the minimum-
variance estimates coincide with the usual (fixed-parameter) least-squares estimates.
Thus, Fig. 2 illustrates the pitfalls of using such methods, when in fact, the underlying
process is changing with time.
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Fig. 2—Theoretical algorithm performance.

value, and the filter is able to track the series in a nearly optimal
manner.

The main point being illustrated here is that, while correct specifi-
cation of the parameters {Q.} in the gain computation gives the filter
sufficient responsiveness to track the process in an optimal manner,
approximately the same effect can be achieved by truncating the gain
sequence at some nonzero value. Thus, the truncated gain sequence is
a useful implementation technique when a statistical description of the
variability of the process is unavailable.

4.4 Summary

This section described the use of minimum variance, linear estima-
tion procedures to estimate the parameters of a linear dynamic time-
series model. By observing the process over a sufficiently long initial-
ization period, an initial state-vector estimate can be obtained by the
weighted least-squares method. Using the Kalman filter algorithm,
this initial estimate can then be updated in an efficient, recursive
manner as new observations become available.

In addition, we discussed the problem of obtaining good, suboptimal
estimates when the exact statistical structure of each individual series
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is unknown. The application of these techniques will be illustrated in
the next section, where we examine the performance of the proposed
algorithm on actual trunk group data.

V. ALGORITHM PERFORMANCE-EMPIRICAL RESULTS

In Section III, we proposed a seasonal time-series model for trunk
group load histories. We then described, in Section IV, a general
procedure for estimating the parameters of such a model and for
predicting future values of the time series. The performance of the
resulting forecasting procedure on actual trunk group data is studied
in this section.

We begin this section by describing the objectives that motivated us
to undertake the empirical study described herein.

5.1 Study objectives

We wanted to use Boc trunk group data to determine the effective-
ness of the proposed forecasting procedure in the three areas discussed
below.

5.1.1 Forecast accuracy

The primary goal of the short-term trunk forecast is to obtain an
accurate view of the approaching busy-season based on observed pre-
busy-season traffic levels. In contrast, the yearly busy-season forecast
(e.g., sPA) considers only the quantities of direct interest, namely, the
time-series of yearly busy-season (peak) loads. While the short-term
forecast has the advantage of operating with a shorter lead time and
uses more frequent observations, the potential improvement, if any, in
forecast accuracy over the busy-season forecast should be quantified.

5.1.2 Predictability

In addition to forecast accuracy, we would also like to investigate
the degree with which service problems reveal themselves prior to the
busy season. That is, how effective is a short-term forecast in predicting
such events?

5.1.3 Error characterization

The intended application of the short-term forecast is to provide
information regarding the adequacy of the planned trunk level for
each trunk group. As measurements are collected and short-term
forecasts are generated, the servicer may decide to

(i) take no action,

(ii) augment the group immeditately (“demand servicing”), or

(iti) augment the group in the near future (“anticipative demand
servicing”).
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The removal of excess trunks is the responsibility of the yearly
planned-servicing activity recommended by the yearly trunk forecast.
No action should be taken unless the current or anticipated level of
demand exceeds the in-service capacity.

The effective solution of the “anticipative demand servicing” deci-
sion problem requires that the uncertainty regarding the short-term
forecast be understood and quantified. That is, servicing action should
be taken only when, with a fair degree of certainty, action is required.

5.2 Methodology

In principal, the quantities of interest defined above can be deter-
mined (either analytically or by simulation) from the statistical struc-
ture of the time series being considered. In practice, however, the true
underlying structure and dynamics are unknown. Therefore, to obtain
meaningful answers to the questions posed above, we must test the
performance of our forecasting procedures on real data.

5.2.1 The data

Historical trunk group data is retained in computer accessible form
by most Bocs in the extended administrative history files of the Trunk
Servicing System (Tss). Unfortunately, the longest histories available
today consist of only about four and one-half years of data, and are
available in those companies that made early use of this feature.

In the Tss system, trunk group traffic measurements are averaged
and reported over “study periods” consisting of up to 20 business days.
Roughly speaking, each such study period represents a rolling average
of the four most recent weeks of valid data. For grade-of-service trunk
groups, the busy-season corresponds to the study period (within the
year) that has the highest offered load. This is the quantity that we
wish to forecast.

Although we could attempt to model, track, and predict the complete
time series of study period loads, this level of detail is neither necessary
nor desirable. Instead, we can partition the year into some number L
of “forecast periods,” select the largest study period load within each
forecast period, and work with the resulting time series of forecast
period loads. Since the study period load series and the forecast period
load series have the same maximum value in each year, it is sufficient
to predict the latter.

The choice of the parameter L, the number of forecast periods per
year, determines a trade-off between model complexity and response
time. For large values of L, the seasonal pattern and time-series model
required to accurately represent it are complex; also, data must be
collected frequently. However, since the observations occur more
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frequently, it is possible to react more quickly to significant changes in
the series {y:}.

For the intended application, it was decided that by partitioning the
year into eight short-term forecast periods, a reasonable balance
between system complexity and response time would be achieved.

5.2.2 Selection of groups

To test the performance of the proposed algorithm in a controlled
operating environment, it was necessary to select from the Boc data a
subset of those trunk groups having reasonably “clean” data. That is,
we omitted all groups whose histories exhibited one or more of the
following characteristics.

() No discernible pattern: The load histories of certain trunk
groups appear to have neither a within-the-year pattern nor a general
growth trend. (This frequency occurs on groups serving very small
volumes of traffic.) For these groups, our model is inappropriate;
trending the yearly peaks (as in spA) appears to be the most reasonable
approach.

(if) Very short histories: Because new groups begin and old groups
leave service, the amount of available data varies among groups. We
considered only those groups having at least four years of valid data.

(iif) Missing data: A group was not considered if, within any of the
32 forecast periods comprising the first four years, no valid study
period load measurement was available.

(iv) Deterministic changes in the series: For certain groups, it was
apparent that a major, deterministic change (e.g., a main station
transfer) had drastically affected the load history. In principal, such
changes can be accommodated by the model (3); however, information
concerning such occurrences was not available in our data base, so
these groups were not considered. (As we mentioned in Section 2.2,
the ability to react appropriately to such occurrences is highly desirable
for the intended application and will be considered in future work.)

A sample of approximately 300 trunk groups whose load histories
satisfied conditions (i) to (iv) was selected for use in our study.

5.2.3 The forecasts

For each trunk group, the seasonal algorithm was initialized using
the procedure developed in Section 4.2 and the first two years of data
(16 data points). As we mentioned earlier, the application of both the
minimum variance initialization and the Kalman filter algorithm re-
quires specification of the matrix Q, describing the variability of the
state-vector process. This quantity was left as an adjustable parameter
in the study.

The error covariance matrix Pr., r of the prior estimate X was
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computed from eq. (49), using the error covariance matrix (47) of the
initialization estimate X77. Then, eq. (29) was used to compute the
gain sequence {Kr.1, Krss, - - - }. Since we decided to use a single value
of {Q,} for all trunk groups, the same gain sequence and initialization
matrix could be computed once and applied to each time series.

Although the seasonal algorithm was designed to track the entire
time series of forecast period loads, the principal quantity of interest
for grade-of-service trunk groups is the yearly peak (busy season) load.
To determine the accuracy with which the seasonal algorithm predicts
this quantity based on data available k-periods prior to the busy
season, we compared the busy-season load with the maximum value of
the series predicted by our algorithm.

To compare the performance of the seasonal forecasting algorithm
with sPa, both algorithms were run in parallel on the same set of data.
However, since the information to be used in initializing the spa
(aggregate growth rate estimates for the offices on which the trunk
group terminates®) was not available in our data, an alternate proce-
dure had to be used.

To simulate the sPA initial estimates based on aggregate growth rate
information, the busy-season loads were summed over all groups in
each of the first two years of data. The ratio of the second-year sum to
the first-year sum was used as the aggregate growth ratio R, with
R = 1.0325 for the ensemble of trunk groups considered in the study.
For each group, the busy-season load in the first year was used as its
initial level estimate, £§”, and the initial growth increment estimate
was

i = (R -1z
5.3 Examples

Before discussing the selection of algorithm parameters and the
corresponding aggregate accuracy statistics, let us observe the perform-
ance of the two forecasting procedures on a few of the trunk groups
considered in this study. Along with the aggregate statistics, which
quantify the average improvement in accuracy provided by seasonal
forecasting, these examples identify a number of general cases in which
seasonal forecasting offers dramatic improvements over the yearly
trending method of spPa.

Let us again consider the two example trunk group load histories
discussed in Section 2.1. Figure 3 shows the load history of trunk group
AA001444, except that now the results of the seasonal forecast are also
shown. Recall that the first two years of data are used to obtain the
initial state-vector estimate by a weighted least-squares procedure.
The initialization is illustrated by the trajectory of circles, which
represents an extrapolation backward in time of the state estimate at
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Fig. 3—Trunk group AA001444—seasonal forecast.

the end of the initialization period. Close examination reveals that the
trajectory more closely fits the data at the end of the period than at
the beginning; this is consistent with the fact that we are trying to
estimate the current state.

The sequence of triangles beginning where the circles leave off is
the sequence of one-step ahead seasonal forecasts obtained using the
seasonal Kalman filter. It is evident that the seasonal algorithm is
closely tracking the seasonal variation and underlying linear trend of
this group and that spa is predicting well the busy-season peaks. In
fact, both procedures appear to perform equally well, on average, in
predicting the yearly peak load.

A more interesting example is given in Fig. 4, which shows the
performance of both algorithms on trunk group AA024225. As we
mentioned earlier, the underlying growth pattern for this group ex-
hibits a significant change in trend, which causes both algorithms to
overforecast the peak load in the third year. However, by observing
subsequent off-busy-season data points, the seasonal algorithm is able
to detect this change, quickly home-in on the “signal,” and give a
reasonably good forecast of the busy-season load in the fourth year. In
contrast, the yearly spa forecast continues to be far off, since at the
time the year-four forecast is made, only a single data point (the year-
three busy-season load) off the previous trend line has been observed.

SHORT-TERM FORECASTING 89



5000
O TRUNK GROUP OFFERED LOAD
A 1-STEP SEASONAL FORECAST
® 1-YEAR SPA FORECAST
O INITIALIZATION
4500 —
7]
o
2
a]
3
- 4000
o
w
o«
w
w
w
o
3500 —
3000 1

1975 1976 1977 1978 1979 1980

Fig. ——Trunk group AA024225—seasonal forecast.

This example dramatically illustrates the potential value of the inter-
busy-season information exploited by the seasonal algorithm.

A third interesting example, more in line with the intended antici-
pative demand servicing application discussed in Section 1.1, is given
in Fig. 5. In this example, it appears that the trunk group load has
undergone a moderate change in level and trend in the third year. The
change occurs suddenly,* causing both algorithms to forecast signif-
icantly low in the third year. However, after processing subsequent
data, the seasonal algorithm is able to forecast the next busy season
with remarkable accuracy. In contrast, the spa forecast again falls
significantly low.

Finally, consider the trunk group shown in Fig. 6. In the second year,
the busy-season load lies significantly above the trend for the other
three years. This “outlier,” which falls within the interval used by the
spa algorithm to screen for outliers, is accepted as a valid data point
and processed accordingly. This causes sPA to “overshoot” the busy
seasons in the next two years. In contrast, the seasonal algorithm, by
processing the inter-busy-season data, recovers quickly and provides
accurate forecasts in the next two years.

* Such a change, if known in advance, can be input by the forecaster, and the forecast
can be changed accordingly. However, such “deterministic events” may be overlooked
by the trunk forecaster, who typically has responsibility for a large number of groups.
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Fig. 5—Trunk group AA017330—seasonal forecast.

The significance of this fourth example lies in the additional protec-
tion against outliers provided by the seasonal forecast. If, in this
example, the second spa data point had been unusually low, it is likely
that the spa algorithm would have forecast significantly low in the
next two years, possibly resulting in demand servicing activity. In such
a case, the seasonal algorithm could be used to predict the service
problem prior to its realization, or to estimate the additional capacity
needed to relieve the problem when it occurred.

These four examples, while not constituting a meaningful statistical
sample, dramatically illustrate a number of situations likely to occur
in practice, where seasonal forecasting offers significant advantages
over the yearly forecast of busy-season demand.

Before comparing the average accuracy results obtained for the spa
and seasonal forecasts, we will discuss the selection of the specific
algorithm parameters used in the study.

5.4 Parameter selection

Recall from Section 4.3 that the ability of the algorithm to track
random variations in the components of the state vector can be
enhanced by either

(i) including a nonzero matrix Q. that explicitly describes the
variability of the parameters (Section 4.3.1),
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Fig. 6—Trunk group AA043161—seasonal forecast.

(it) the use of certain heuristics, such as the truncated gain se-
quence (Section 4.3.2), or

(iii) some combination of (i) and (ii).

The effectiveness of these techniques was determined through ex-
perimentation. Specifically, for each version of the algorithm that we
tested, the steady-state forecast error variance was estimated for each
group and summed over all groups tested. With Q; = 0, good results
were obtained using the truncated gain sequence (50) with r = 1 (i.e.,
the first term Kr., of the Kalman gain sequence was used to process
each data point after initialization). Consistent with the hypothesis
that some allowance must be made for random variation in the model
parameters, this constant gain-vector sequence out-performed the full
gain sequence computed under the assumption that Q; = 0. Since the
constant gain sequence also offers certain simplifications in algorithm
implementation, this approach seemed very attractive.

By considering the behavior of various trunk group time series (as
we discussed in Section 5.3.1), it also became clear that the seasonal
forecasting algorithm should be able to follow variations in the under-
lying linear trend (see Fig. 2b). In addition to the responsiveness
obtained through the use of the truncated gain sequence, additional
responsiveness in the trend parameter is obtained by including a
positive entry go: in the matrix Q:; = (gi;}. The optimal value of this
parameter was determined empirically.
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Using the average forecast error statistics, we then compared the
performance of the resulting seasonal algorithm with that of spa. The
results are discussed below.

5.5 Accuracy

To quantitatively measure the performance of both the seasonal and
the spa forecasting procedures, both algorithms were used to forecast
the busy-season loads on each of the trunk groups considered in the
study. The results were compared using the relative error statistic,
defined below.

Let a, be the measured busy-season trunk group load in a given
year, and d, a forecast (obtained by either method) of this quantity.
Then the relative forecast error is defined to be the quantity
Gy — ag

a;

ey =
To compare the approximately steady-state performance of the algo-
rithms, this statistic was computed for each busy-season forecast in
the fourth year. The results are shown in Fig. 7, which shows the
distributions of the spA and seasonal forecast errors, and in Table I
The latter compares the accuracy statistics of the seasonal forecasts,
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Fig. 7—Year 4 forecast error distributions.
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Table |I—Year 4 busy-season forecast results

Percent
Average ab-

Forecast Bias solute Error rms Error
1-Year SPA 3.5 10.3 13.5
1-Step seasonal -0.7 5.1 75
2-Step seasonal -0.8 6.1 8.5
3-Step seasonal -0.5 6.5 9.0
4-Step seasonal 0.1 7.0 9.4
5-Step seasonal 0.2 7.6 104
6-Step seasonal 04 7.9 10.9
7-Step seasonal 0.5 8.0 10.8
8-Step seasonal 1.8 8.4 11.6

made one forecast period prior to the busy-season, with those of the
SPA one-year-ahead forecast. The results show a significant improve-
ment in accuracy, using either the average absolute relative error or
the rms relative error. In either case, the observed error in the seasonal
forecast is approximately half as large as that of the spa forecast. Also,
recall that these statistics, obtained by comparing the forecast with
the measured load, also reflect load measurement error. Thus, on
average, the seasonal forecast is off by less than 5 percent.

Part of this improvement must be attributed to the fact that the
short-term busy-season forecast is made approximately 1% months
prior to the busy season, compared with one year for spa. Additional
improvement can be attributed to the exploitation of the additional
structure of the seasonal time series. The relative importance of these
two factors is illustrated in Fig. 8, which shows the relationship
between short-term busy-season forecast error and lead time. Begin-
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Fig. 8—Busy-season forecast error.
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ning at 5.1 percent for the one-step forecast, the average absolute error
statistic is a concave function of lead time, increasing to 8.4 percent
for the one-year-ahead seasonal forecast. This suggests that most of
the improvement in forecast accuracy can be attributed to the seasonal
algorithm’s ability to utilize recent data.

5.6 Summary

In this section, we described an empirical investigation of the per-
formance of the seasonal trunk forecasting algorithm developed in
Section IV. We showed that, on average, a short-term (one forecast
period ahead) forecast of the approaching busy season is approximately
twice as accurate as the yearly spa forecast. This improvement in
accuracy deteriorates with forecast lead time, being only 20 percent
more accurate than spA when projecting a full year ahead.

More important, we were able to identify a number of situations,
likely to occur in practice, where the seasonal forecast significantly
outperforms spA. These situations tend to occur where unusual data,
such as outliers or sudden, unanticipated changes in the growth pattern
occur. By using the information provided by the inter-busy-season
traffic levels, the seasonal algorithm is able to recover rapidly from
such disturbances, and provide accurate forecasts in subsequent years.
In contrast, the spA algorithm, which processes a single data point
each year, takes considerably more time to recover.

VI. SUMMARY AND CONCLUSIONS

This paper has described a comprehensive study of the use of
seasonal forecasting algorithms in the trunk servicing process.

We began by discussing the basic requirements of a short-term trunk
forecasting system and then described a general class of time-series
models well suited for such applications. After developing a model for
linear growth and seasonal demand, we considered various minimum
variance procedures for estimating the parameters of such a model
from a given time series. By observing the series over a two-year
initialization period, an initial estimate of the model parameters is
obtained by weighted least-squares. Subsequent observations are proc-
essed by an efficient recursive procedure known as the Kalman filter.
Because of the optimality of these algorithms, a minimum amount of
data is required before accurate forecasts can be made.

To verify the appropriateness of these procedures on actual trunk
group data, an empirical investigation of the performance of the
proposed algorithm was undertaken. The main conclusions of the
study are discussed below:

6.1 Accuracy
On the average, the one-step (=1% months) ahead seasonal forecast
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of the busy-season load is approximately twice as accurate as the year-
to-year forecast provided by the spa. Most of this improvement can be
attributed to the ability of the seasonal algorithm to utilize effectively
recent observations. The one-year ahead, seasonal forecast error is
only 20 percent less than that of sPa.

6.2 Anticipative demand servicing

The seasonal algorithm demonstrates the ability to respond quickly
and accurately to various situations that tend to result in inaccurate
spA forecasts. Thus, the seasonal algorithm represents a potentially
valuable tool for trunk network administration. In many cases, it can
accurately predict that the currently planned trunk level is inadequate
for the approaching busy-season demand level, and the appropriate
trunk group augment. Conversely, it can also be used to identify
potentially useful reserve capacity.

6.3 Relation to SPA

Since current trunk provisioning methods generally require that
planned-servicing decisions be made nearly a year in advance, these
results lead us to the conclusion that the greater simplicity and
generality of the linear trending method of spA makes that algorithm
the appropriate choice for the annual busy-season trunk forecast. In
the future, however, new technologies may make it both possible and
economical to maintain the network in a near-optimal configuration
through more-frequent planned-servicing adjustments. In that case, an
accurate, seasonal forecast may be a better alternative for planned
servicing.
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