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This paper presents the theory for a rapidly converging adaptive
linear digital filter. The filter weights are updated for every new
input sample. This way the filter is optimal (in the minimum mean
square error sense) for all past data up to the present, at all instants
of time. This adaptive filter has thus the fastest possible rate of
convergence. Such an adaptive filter, which is highly desirable for
use in dynamical systems, e.g., digital equalizers, used to require on
the order of N* multiplications for an N-tap filter at each instant of
time. Recent “fast” algorithms have reduced this number to like 10
N. One of these algorithms has the lattice form, and is shown here to
have some interesting properties: It decorrelates the input data to a
new set of orthogonal components using an adaptive, Gram-Schmidt
like, transformation. Unlike other fast algorithms of the Kalman
form, the filter length can be changed at any time with no need to
restart or modify previous results. It is conjectured that these prop-
erties will make it less sensitive to digital quantization errors in
finite word-length implementation.

I. INTRODUCTION

Gradient algorithms are widely used in adaptive tapped delay-line
filters, such as equalizers, to derive a set of tap coefficients that gives
the desired output with a minimum mean square error (mmse). It is
widely recognized' that when the input samples presented to the
adaptive system are highly correlated, convergence to the optimum
filter coefficients is slow. An important contribution to solving this
problem of slow convergence was made by Godard® who obtained an
adaptive algorithm that minimizes the total mse at all instants of time.
Consequently, the Godard algorithm has the fastest possible rate of
convergence in an mmse sense, and is usually referred to as the optimal
mean-square adaptive estimator. This algorithm has the structure of
a Kalman filter, and its complexity is on the order of N? multiplications
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and additions per iteration, where N is the number of filter coefficients
being adjusted. Fast convergence results when successive corrections
to the coefficients’ vector are adaptively decorrelated. Based on this
observation, other practical, less complex, schemes of orthogonalizing
the corrections were proposed, see for example Ref. 1. Recently, an
efficient (or “fast”) computing procedure, called the fast Kalman
algorithm, was obtained which provides a fast-converging estimator
identical to that of Godard, but which requires only on the order of 10
N multiplications.***

Another approach to accelerated convergence is to transform the
input data to obtain uncorrelated inputs to the estimator.” When the
characteristics of the channel are fixed and known, the transformation
can be found from the data autocorrelation matrix. When this matrix
is unknown, the transformation has to be adaptive. Since the lattice
structure, whose computational complexity grows only like N, is known
to generate “white” uncorrelated outputs by a process called inverse
filtering that keeps removing correlated components from the input
signal, ™' it has been proposed for this application. However, the
outputs of the lattice structure are uncorrelated only after it has
converged to its steady state; therefore, it may not converge as fast as
the Godard algorithm. Recently, Morf was able to formulate the lattice
algorithm in a special form such that its outputs are uncorrelated in
the mean square sense for all instants of time."'* Our purpose is to
extend Morf’s works to compute an adaptive estimator which is
equivalent in performance to Godard’s. Moreover, we will demonstrate
that the computational complexity of the adaptive lattice algorithm
compares well with the fast Kalman algorithm of Falconer and Ljung.’
The advantage of the lattice structure is the ease of changing the
number of coefficients. It is also conjectured that the lattice algorithm
will be less sensitive than the Kalman algorithm to finite-precision
digital implementation. Recently, this was observed in Ref. 14. 1t is
also discussed in Ref. 15, where the development of an equalizer based
on the adaptive lattice algorithm is presented in a form similar to the
one given here. One case to illustrate this property of the lattice will
be given at the end of this paper.

In the next section, the optimal least mean square estimator and
predictor are precisely defined, and the minimal error that results is
given. In Section III, several properties of the optimal predictor are
explored and are related to the estimation problem. In Section IV, an
efficient (in the sense of small number of computations) lattice form is
derived, using the relations developed in Section III, that maintains
the optimal convergence. In Section V, the properties of this lattice
form are compared to the steady-state lattice structure. Suggestions
for further work are also included.
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Il. OPTIMAL MEAN SQUARE ESTIMATION
2.1 Notation and definitions

Given a discrete time input data sequence {y;} i =0, 1, -.., it is
desired to find the set of weights for a transversal tapped delay-line
filter such that the output of this filter be a good estimate of another
sequence {d;}. An adaptive equalizer, for example, has the received
signal as its input, while its output should provide an estimate of the
transmitted data. In a transversal filter, a vector of filter coefficients,
of length p + 1, operates on vectors of data that are shifted versions of
the input data for time 0 < ¢ < T defined by

y;J.T = (yTs yT—ls Tty _yT—P)s (1)

with y* being the transpose of y and it is assumed that y; = 0 for < 0.
As we are concerned with an adaptive, i.e., time varying filter, its
weight vector of order p + 1 will be denoted

wpr = [wpr(0), wpr(1), --- , wpr(p)]. (2)

Using these definitions, the output of the p + 1 long linear estimator
at time T is dp,r given by

A

dp.T = w;a.Typ,T- (3)

Now suppose that w,, r is the best predictor for time T, then the total,
or accumulated, mean square estimation error up to time 7, when
using this predictor, is given by

T
E(wpr) = _):0 (di — whr ¥pi)> 4)
The sequence of weight vectors that minimizes eq. (4) at every instant
of time T, is the most rapidly converging sequence, and is called the
optimal adaptive filter.
Making use of the following time-domain definitions of the cross
correlation vector and the autocorrelation matrix,
T

2 diYpi = 8T (5)
i=0
T
;0 Ypi¥pi = Bpm, (6)
one obtains

T
E(wpr) = ¥ d} — 2wy r8p1 + wprRy1wp 7. (7

i=0

2.2 The optimal estimator

Equating the gradient of eq. (7) with respect to wp,r to zero gives
Rp,Twp.T = gp,T- (8)
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It is seen that solving for the optimal estimator is equivalent to
inverting a matrix at every new sample point:

Wp,r = R;,]Tgp.T- 9

Godard showed that w,7 can be updated with on the order of p®
calculations,’? which is an improvement over the simple matrix inver-
sion, requiring on the order of p?® calculations. Algorithms that require
only on the order of 10p operations for obtaining the optimal estimator
appeared®* subsequently, and are called “fast” algorithms.

The essence of this paper is to derive the fast algorithm in a special
form, called the lattice form. This form was proposed to speed the
convergence of the weight vector of an adaptive predictor to its optimal
value (see Refs. 7 to 11). As will be seen in the next paragraph, the
estimator problem is closely related to the prediction problem.

From eqs. (7) and (8) it is seen that the minimal total mse that
results using the optimal estimator is simply

T

Eopwpr) = ¥ d? — ghrRyrgnr. (10)
i=0

This is in constrast to the adaptive gradient algorithm whose perform-
ance is more difficult to analyze.

2.3 Optimal prediction

The problem of prediction is more basic, but similar to the problem
of estimation. Solving this problem will be shown to simplify the
solution of the estimation problem. For linear prediction, a set of
weights is used to linearly estimate the present input point from past
values of the input data. Let the set of p weights at time T be

{(—apr(1), —ap7(2), +++ , —apr(p)}, so that the error when predicting
the input point y; is given by
€pi = ApTYpi, (11)
with
Apr=1[1, apr(1), - -+, apr(p)]. (12)

The error generated in predicting the input is that part of the input
which is uncorrelated to past values of the input. This is a desired
feature for fast convergence of adaptive filters.

The total square error up to time 7 is, thus, given by

T
Y eni=AprRyrApr. (13)
=0

Taking derivatives with respect to a, (1) to a,r(p), it is found that
the predictor weight vector that will minimize the total mse up to time
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T is the solution of the last p equations of the expression

RP,TAP,T = (OPP‘T) y (14)
with Ry r yet unknown and 07 = (0, --- , 0)* vector of order p. Using
this optimal predictor in eq. (13) gives

T

Re
Z ef,,s = A:LTRP,TAP,T = :;,T (OPP'T) = ;,T- (15)
=0

Therefore, R}, 7 is the minimal total mse that will result.

As before, obtaining the optimal predictor A, r for all T'is equivalent
to inverting the matrix R, r for all T. An efficient algorithm for doing
this will be described. It should be noted, from comparing eqs. (8) and
(14), that the latter is a simpler “homogenous” set of equations, except
for the end term R r; therefore, its solutions can serve as a basis for
the solution of eq. (8).

lll. DERIVATION OF THE ORDER AND TIME UPDATE RELATIONS
3.1 Time shift properties of R, r

The vectors y, r for successive values of T are shifts of each other.
As these vectors build up the matrix R, » in eq. (6), it is expected that
shifted versions of the solutions to the predictor and estimator equa-
tions will serve in updating these solutions. For doing this, the shift
properties of R, r are explored. For the (i, j)} term in eq. (6), we have

T
Rpr(i, j) = Y Yes1-i¥e1—j = Rp_17(i, J)
k=0

forallp—-1=1ij=1 (16)
T -1
Ror(G+ 1L, 7+1)= 3 yeoiVei = % Yet1-iYht1—
k=0 k

=1
-1

= E Yer1-iYh41-j = va-].T—l(iy J)
k=0

forallp—1=i =1, (17

where the fact that y; = 0 for i < 0 was used. Using Morf’s notation,
these relations can conveniently be written as

_(Rpar X\ _ (X X
RP,T_ (X .X) - (X Rp—l.T—l), (18}

with X being any other term in the matrix. It is clear from eq. (18) that
R, r is symmetric, but not Toeplitz, if steady state is not reached.
Therefore, the properties of Toeplitz matrices cannot be used, as is
done for example in claiming fast convergence in Ref. 7.
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3.2 Order update relations

It will be useful to define, similar to eq. (12), a backward prediction
vector

B;J,T = (bp,T(p)l bp.T(P - 1)9 Tty bP.T(l)) 1)9 (19)
with the backward error given by
1 = BprYp1, (20)

i.e., it is the error in predicting yr—, from y7 to y7—p+1. To minimize the
total mean square backward prediction error up to time T, B, r should
be the solution of

0®
R, rB,r = R; T) . (21)

It is seen that this is another set of homogenous equations, except
for the lower one. Again, the optimal error r,r will be orthogonal to

YT—p+1, *** , YT

A recursive procedure will be derived in the Appendix for generating
solutions to eqs. (14) and (21) for increasing order p.

It is shown to be

A - 0
Apr= (0 P-T) — kprRpT (B r 1) (22)
T~

for k,r as defined in the Appendix, and the higher order total error is
Rpr=Rpr— kirRp71 = Ri {1 — k2 rRp5RpT-1). (23)

As increasing the predictor order would not increase, and typically will
decrease the error, it should be that

1=kirR,5R;7-1 = 0. (24)
Similarly,
0 — A,
Bpar= ( BP,T_I) — kprRp5 (0“") (25)
and
Rpar=Rpr1— kprRy%. (26)

Similar relations hold for the prediction error, when multiplying egs.
(22) and (25) by yp+1,7

ep+1,7= €p1 — RpTRpT-1rp 11 (27)

Ipr,r = I'pr-1 = kprRpTe€p,T. (28)
The following auxiliary quantities are needed

Cor= R;}F.)’p,T (29)
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Yor = Cp1¥pr = YorRpx Y. (30)
The order update of these quantities will also be derived in the
Appendix. It is shown to be

C —r
Cp+1,T = (OP‘T) + r_p+1,TRp+l.TBp+l.T

() o= (£,).

Hp+1,T
with pp41,7 defined by
Pp+1,7 = rp+1,TR;1,T (32)

and, as seen, is the last term of Cpy11.

3.3 Time update relations
To obtain the time update of A, 7, use is made of the following:
Rore1= Rpr + Yor1¥p.T41 (33)

This relation is shown to give
0
Aprin=Apr — €pi1 ( Cp—l.T) . (34)

Here, the definition
epr+1 = AbrYo (35)

is used for the tentative prediction error before updating the prediction
coefficients. As for the minimal total mse, it is updated according to
Rpra

R;.T-i-l = A;J,T (Op ) = A_::,TRp,TﬂAp,TH

= AL 7(Rpr + Yorn1Ybrs1)Aprir = Ry + epraieprer.  (36)

It should be mentioned here that only in the stationary case ey 741 =
el r+1 and, thus, Rj 7.1 = Rjr + e} As for updating B,,r, two dif-
ferent possibilities are derived in the Appendix:

C,_
By1+1=Bpr —rpTa (0"' 1'T“) (37
or
0 1
Bpr+1 = (Bpr — ro7a1Cp141) X —m—F—. (38)
1- I'p, T+1kp, T+1
From eq. (37), a relation like eq. (36) can be obtained
Ry = Roqr + rprailprer. (39)
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Again, rjr.; is the tentative backward prediction error. The time
update of C,,r is also obtained in the Appendix.
From these results, a simple update for &, 7 is found to be

kpre1 = kpr + €9 ri1TpT. (40)
or alternatively, from eqgs. (79) and (83)
kpri1 = kpr + €0 raror(l — Yp-10) = kp1 + €prarpr. (41)

All these relations are derived in the Appendix. They form the basis
for the lattice network which update these quantities both in order
and time.

IV. EFFICIENT CALCULATION OF THE OPTIMAL ESTIMATOR
4.1 Tapped delay line estimator

The optimal estimator for any order p and for each time T is given
in eq. (9). Using egs. (5) and (6), we get

Rprwp i1 = 8p1+1 = gor+ dr1¥T41
= NprWpT + dT+1yT+1

= Lp1r+1Wp,T + (dT+l - w;:.Typ.T+1)yp,T+1- (42)
Therefore,

Wp,r+1 = Wp,r +(d741 — wj;,Typ,T+1)R;.lT+1yp.T+1
= wp,r + (dr+1 — dp1+1)Co1i1. (43)

Note that updating w,r involves the tentative estimate ag,n. =
Wy, rYpr+1 using the new data and present estimator weights. This
makes it possible to implement this scheme in decision-directed equal-
igers, where the decision on which dr.; was transmitted is based on
dp.r+1. Also note that the correction to w, r is in the direction of Cp 741
= R,r+1¥pr+ rather than y, 7., as in the gradient algorithm. These
vectors are parallel only if R, 7. is a unit matrix times a scalar; thus,
all its eigenvalues are equal. When this is not the case, and yp 741
contains eigenvectors corresponding to different eigenvalues, R,
equalizes the gains for these vectors. Also note the similarity in the
updating equations (34), (37), and (43) which is to be expected, since
prediction is a special case of estimation.
The fast Kalman algorithm is an efficient recursive procedure to

obtain Cj,, ¢+1. This is given in Ref. 4 as follows:

1. Assume that all vectors are available up to and including
time T.

2. Use eq. (35) to obtain ep 7.1 = AL 7y,141.

3. Use eq. (34) to calculate A, 7.1 = Apr — €)141 0 .
Cp—l.T
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. Use eq. (11) to calculate e, 741 = A 1+1Yp.1+1.

. Use eq. (36) to calculate R57+1 = Ri7 + e ri1€p141.
. Calculate e, r+1Rp7+1.

. Use eq. (89) to calculate

0 _
Cori1= (C . T) + epr+1RpT1Ap T
P—1,

=1

8. From eq. (31), pp,r+1 is found.
9. Find I‘g,T+1 = B;J.Typ.T+l-
10. Use eq. (38) to calculate

1
0
By = (Bpr — rpr11Cprs)) ——5——.
1 = rp7s1pip,141

11. Use eq. (73) to calculate

Cp
( » (1)‘7'“) = Cp,1+1 — Mp,r+1Bp141.
12. Calculate the tentative estimate &'2,“1 = WhHTYpT+1.
13. Use eq. (43) to update the estimator weights

Wp,r+1 = Wp,r + (dr+1 — dg"+l)cp,7'+1-

The initial conditions, when there is not enough input data so that
R, in eq. (6) does not have an inverse, are discussed in Ref. 4. There
are 10p + 5 multiplications, 9p + 4 additions, and 2 divisions for one
complete updating cycle. Note that there are no matrix operations,
only additions and products of scalars and vectors is involved. By
comparison, the simple fixed-step gradient algorithm requires 2p + 1
multiplications and 2p + 1 additions per cycle.

4.2 Lattice structure

Here an equivalent algorithm that also gives the optimal estimator
with about the same number of computations is derived. It is assumed
that the input data are transformed by the lower triangular transfor-

mation matrix
B B
e (B B »

From eq. (20), the transformed data are
Lp,'ryp,'r = (rozryr *** rp.T)t - Fp,T- (45)

Note that as the dimension p increases, new terms are included in 7,
but the previous ones are unchanged. This is an important property of
the lattice algorithm that enables us to change the estimation order
without the need to recalculate all previous values, as for example in
the fast Kalman algorithm. As before, we let the tentative transformed
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vector be

For+s1 = Lpr¥p1+1. (46)
Define a new vector of weights -
Hpr= (hothir « - hpr), (47)
that now operates on 7, 7 to give the estimate
dpr = Hpripr = HprLp 1Yo (48)

It is seen that for this estimate to be equivalent to the optimal
estimator, w, 7 is the transform of H,, r, and from eq. (8)

Lp,Tgp,T = Lp.TRp.Twp,T = Lp,TRp,TLi),THp,T- (49)
Using eq. (21), it can be shown that
Rir O 0?
RyrLyr = Rir , (50)
X X T

which is a lower triangular matrix. The product L, rR,rLj 7 is, thus,
a symmetric product of two lower triangular matrices; therefore, it
should be symmetric, lower triangular, and diagonal, i.e.,

Lp,TRp.TL;,T = Dp_T. (51)
The diagonal terms are easily found using eq. (50)
Oi
D,r(i, i) = [Bir(0F7)] ( ET) =Rir (52)
X

and, again, they are independent of p.

At this point, a closer inspection of L, is of interest. It is a lower
triangular matrix with 1 on the main diagonal. Therefore, L} has the
same structure. Therefore, eq. (45) can be rewritten as

I'p,T = Yp.T — (L;}f - L)rpr. (53)

This can be looked upon as a Gram-Schmidt procedure to calculate
new orthogonal components of 7, r from the components of y,, r, minus
their projections on the previous 7, components. Thus, eq. (51)
represents the fact that the autocorrelation matrix of the transformed
data is indeed diagonal.

Using eqs. (49) and (51), Hyr can be found from the transformed

&pr by
Hp,T = D;}I'Lp,Tgp.T- (54)

It should be noted that only scalar divisions rather than matrix
tnversion is needed hrre and increasing the order of the lattice
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estimator does not change previously calculated values of H. This is
why double indices are used in eq. (47) as compared to triple indices
in eq. (2). Equation (54) can be broken to p scalar equations

hpr = RpTrBprgpr. (55)
To see how the right-hand side develops in time, define

ppT = Bprgp.r. (56)
Then from egs. (37), (5), (29), (9), and (3) in that order
Pp,T+1 = B:J.T+lgp.7'+1
= [Bpr — rp1r+1(Cp-1,7+10)( gp. 1 + drs1YpT+1)
= ppr + (drs1 = dp-r, 7)o 741 = pp1r + Vorrrarore, (57
where V), r is the estimation error after the pth order estimator. For
p=0
po,r+1 = gor+1 = por + dre1¥YT4+), (58)
ie., d_y741=0. Obviously,
Vor = dr— dpr = dp — Hyrfpr = Vprr— Bparpr.  (59)
The recursive solution to eq. (55) that corresponds to eq. (43) is:
hpre1 = Ryralppr + Voorpardri)
= Ry7ral(Rpre1 — roraarere)hpr + Vor,rairori]
= hpr + Rp7+1(Vo-1.741 = Rp1Ppr40)T0 741 (60)

This is equivalent to the first tap of the conventional tapped delay line
equalizer for p = 0 only. The tentative estimate as in eq. (43) is now
&0

= it — It —_ Iyt _=0.
pre1 = WpTYpT+1 = p.7LprYpr+1= HprFp141. (61)

The minimal total squared error is from eq. (51)
T T
Epr=Y di—girRyrgpr= Y di — (Lprgr)'Dpir(Lyrgpr). (62)
i=0 i=0
From the structure of D and L it follows that
Epnr=E,r— (Bprr8.7)’Rofir= Epr — pparrRp%r.  (63)

Using eq. (57), the residual error can be found for all instants of time.
It is then simple to decide whether p should be increased, decreased,
or unchanged to meet the desired performance. As mentioned before,
when adding or deleting sections no recalculation of the coefficients is
needed.

The procedure for recursively obtaining the estimator H,r and the
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estimate d 11 is as follows:
1. Assume that all quantities are known up to and including

time T.
2. Start with e, 741 = €741 = I'p7+1 = Fpr+1 = Y741 for p = 0.
3. Use egs. (22) and (25) to compute
eS7r+1 = edrs1 — (RorRoT--)rir
iz =ror — (korRo%)ed 141
4. Use eq. (26) to compute kor+1 = ko + €dr+170,7.
5. Use eqs. (36) and (39) to compute
Rir+1=Rér+ 90.T+1€8,T+1
Rire = Ror + rors1rre.
6. Compute the gain terms ko r+1R07 Bor+1Ro%+ to obtain from
egs. (27) and (28)
e1,r+1 = eor+1 — (Ror+1RoT)ror
rir+1 = ror — (kors1R0%+1) €041,

These gain terms can be saved for the next recursion.
7. Repeat steps 3to6forp=1,2, ...
8. Use eq. (61) to compute the tentative estimate
8,‘3,T+1 = H:,,TFg,Tﬂ.

9. To update H, r start with V_; 74+, = dr; from eqs. (58) and (59)
and use eq. (60) to compute

hors1 = hor + RoT+1(V_1141 — RorTors)T0 141
10. Use eq. (59) to compute
VD,T+1 = V—I,T+1 - ho.T+11"0.T+1-

11. Repeat steps 9and 10forp=1,2, ---.

12. Use eq. (48) to compute d,.r+1 = Hpr+1Fpr+1.
Steps 3, 6, 8, and 10 can be drawn in a block diagram like in Fig. 1. The
variable gain terms are k,rR;7 1, kp 7Ry, and A, 7, and they are
updated in steps 4, 6, and 9. When the system reaches a steady state,
it can be illustrated in a simpler form as shown in Fig. 2.

4.2.1 Starting the algorithm

The problem of finding the optimal predictor/estimator of order p
is not well defined if there are less than p input points. Therefore,
when starting the algorithm, p should be 0 in the first recursion, 1 in
the second, and p should grow linearly in time until it reaches the
desired number of sections of the lattice. This is in contrast with the
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Fig. 1—The basic form of the lattice estimator.

fast Kalman algorithm, where a small diagonal matrix is assumed for
Rp,g.

4.2.2 Number of operations

The number of operations required for the three algorithms, the
simple gradient, the fast Kalman, and the lattice, are given below
where p is the number of adaptive parameters:

Algorithm Mutlit(l,;:‘léca- Additions Divisions
Gradient 2p 2p —
Fast Kalman 10p 9p 2
Lattice 12p 11p 3p
V. DISCUSSION

It was shown in eq. (9) that the optimal linear estimator that yields
the least total mse is obtained by matrix inversion. A recursive algo-
rithm to update the optimal estimator also involves an inversion of
the correlation matrix of the data as in eq. (43). If the input data are
uncorrelated (i.e., low signal embedded in flat noise, or data signal with
Nyquist spectral shape), then multiplying by R, is equivalent to
scalar division, which is the simple gradient algorithm. However, if the
data are highly correlated and R, r has its eigenvalues spread out
(Amax/Amin => 1), then the optimal recursive algorithm for the fastest
convergence of the estimator is more complex: The estimator can still
have the form of a tapped delay line, but now the shift properties of
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Fig. 2—The basic form of the steady state lattice estimator.

R, 7 are used to update w,r in 0(p) multiplications. A different
approach demonstrated in this paper is to transform the input data
using the lattice network to get uncorrelated inputs to the estimator.
The estimator weights are now different but related to the original set
through the same transformation eq. (48). This is similar to Ref. 6,
except that the transformation matrix is time variant. The performance
of the nonstationary lattice and the fast Kalman are the same—both
give the minimal error—and in Ref. 2 it is demonstrated that conver-
gence time can be reduced by a factor of 15, compared to the simple
gradient algorithm.

The differences between the lattice and the fast Kalman algorithms
in practical, finite precision digital implementation should be fully
discussed elsewhere. However, an example can be given here. Exam-
ining step 5 for the Kalman algorithm, eq. (36) may occasionally render
R; 7+, which is nonpositive because of the accumulation of arithmetic
errors. The algorithm is useless from that time on, and has to be
restarted. On the other hand, for the lattice algorithm, step 5, if either
R} 741 or R} 141 become nonpositive, force them to be some small but
positive number, and make all k; . equal zero for i = p. The updating
algorithm then falls back to the gradient algorithm from tap p and on,
or the filter length can be shortened to length p, as desired.

Future work should try and make use of the above recurrence update
relations for the exponentially weighted errors, the “fading memory”
case under time-varying situations. Also simpler, suboptimal algo-
rithms can be derived and should be compared to the exact algorithm
in terms of performance and complexity.
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VI. CONCLUSIONS

(i) The lattice algorithm gives identical results to the fast Kalman
algorithm for adapting filter coefficients when both have the same
number of coefficients.

(i) The number of multiplications for the two algorithms is about
the same, but the lattice requires more divisions for normalization by
the residual error energy at each stage.

(iii) Changing the number of taps is easier under the lattice algo-
rithm.

(iv) In limited-precision implementation under severe amplitude
distorting channels, the last property of the lattice algorithm may be
valuable in providing better performance.

APPENDIX

A.1 Derivation of the order update of A, r
From egs. (14), (18), and (20), it is found that

R;r
wol5)- (% 9(5)-(¥) e

and similarly
0 k;J,T
= P
Rp+1,T (Bp,T—l) 0 (65)

r
p,T-1

for some k,,1,k),r. From the fact that A, 7(0) = B, r—1(p) = 1it can be
shown that

t ‘;T t Ap,T
kp.T = (0 Bp.T—l) 0 =(0 Bp,T*l)Rp+l,T 0

ko
= (k5 r(0°)'R}r-1) (AO”’T) =kpr. (66)

Combining egs. (64) and (65) in a proper way, it is found that

A _ o
Rp+1.T [( S'T) - kp,TR p.rT—l (BpoTkl)] = (‘li)‘;)+lfr)s (67)

Ryr=(Rpr)7 (68)

Apnr= (AS'T) — kp R o1 ( 0 ) (69)

Bpr

with

Therefore,
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A.2 The order update of C, r
For the order update of C, r, note that

By (Cg-’") - (”;T) (70)

0p+1
Rpi1rBpiyr = ( T) . (71)

r
p+1,

and

From this it can be seen that Cp.1,r is a linear combination Of(CS'T)

and B_,,+1_T.
From the relation

((Opﬂ)t ;»+1.T)Cp+1,T = BL+1,TRP+1,TC;:+1,T
= Bor1.r¥p+1,7 = Ip+LT (72)

it then must be that

Cor _
Cori7 = ( 2T + rpsrR p+1,rBpirr

0
= (COP'T) + pp+1,7Bpir = (upi,T)’ (73)
with the definition
Pp+1,T = Tprr,rR 25T, (74)
i.e., tp+1,r is the last term of Cpi1 7.
Therefore,
Yprrr = Corr1¥p+17 = Y0 + o1, rR 24T, (75)
and, thus,
Yor = i rirRir. (76)

i=0

A.3 The time update relations
From eq. (33) the time update of A,,r is obtained as follows:
Rp.T+lApIT = (RP‘T + yp,T+1yia,T+1)Ap,T
- ( OI;T) + yp,T+1e%,T+1
R}, 0
= ( SZH) + Rpri1 (Cp—l,T) eop.T+1 (77)
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for some R 7.1, with the definition (35) for ep ... From eq. (77), it can
be seen that

0
Ap,T+1 = ApT— eo,p,T+l (C L T) ) (78)
'p—1,

and multiplying both sides by y, r+1 gives the relation
epr+1 = epri1(l — yp17) for p=1,2, ... (79)
As for p = 0, we get from the definition that

0 =
eor+1 = €o7+1 O Y17 = 0.

The time update of B, r is obtained similarly:

Op
Rpra1Bpr = (Rpr + Yp11Ypr41)Bpr = (R,’, T) + Yp 141791

= ( 2;,) + Rora (C"‘g“‘) rors. (80)
Therefore,
Bprn = Bpr — rhprn (CP_(;'TH) . (81)
As in egs. (36), (78), and (79),
Rpra1=Ryr+ rprarpra (82)
and
rprar=rprs(l = yp1741) for p=1,2, ... (83)
and

ror+1 = rg.T+1 = Yt+1.
The time update of B, can also be obtained as follows:
Rore1Bpr= (Rpr+ Ypr+1¥p1+1)Bpr

0” (1
= (R_S.T) +yp,r+1r§’,.r+1 = (R;,T) + Rp.T+le,T+1rg.T+l- (84)

Thus,
1

O E]
1- rp.T+1‘-‘-p,T+1

(85)

B, 7141 = (Bpr — rg.T+1Cp.T+1) X

where the denominator is chosen to make b,7.1(0) = 1 using the
definition (32). The time update of C, r is obtained as in egs. (70) to

(73).
RP.T+I ( CPOI‘T) = (y:(l‘r) (86}
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and

Rp,T+1Ap.T+1 = (RB:-'-I) (87)

Therefore, Cp,7+1 is a linear combination of
0
Cp—l,T
and A, 74+1. From

[R;,T+1(Op}t]cp,7'+l = A;:.T+1RP.T+ICP.T+1 = A:),T+lyp,7‘+1 = €p,T+1 (88)
it is found that

Cors1= (C‘El T) + ep,T+lR;.¢T+1Ap,T+1- (89)
Multiplying by y,7+1 gives
Yo.T+1 = Yp-1T + €§,T+1R;,er+1 (90)
and
P
Yor+1 = Y €ir+i1pRiT+is1p. (91)

i=0

For the time update of K}, r, use the definitions (64) and (65):

Epr+1 = [Rp.1+1(07)'Rp.7] (A(:;.T)

A
= (0 Bor) (Rper,r + Yprr, 141 Y pr1,741) ( S.T)

».T
=(0Bir)| 0° |+ roreprir=kpr+ epriatpr  (92)
kp,r
Using eqgs. (79) and (83) an alternative form is
kpri1 = ko + eprarpr(l — Yp-17) = kpr + ep,T+1r0p.T- (93)
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