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This paper presents the architecture of a special-purpose computer
for logic simulation using distributed processing. The architecture is
based on the utilization of inexpensive microprocessors intercon-
nected by a communication structure. The communication structure
is cross-point based for simple evaluations and time-shared parallel
bus based for functional evaluations. Analysis is carried out to show
that the performance of the proposed simulator is better by over two
orders of magnitude than traditional logic simulation carried out on
a general-purpose computer. Also, the power of the simulator is
proportional to the number of slave processors over a certain range.

I. INTRODUCTION

The logic circuit simulator is an important component of a CAD
system. It is used to predict logic circuit operation and performance
under normal and faulty conditions. The application of the logic circuit
simulator can be divided into two major areas: verification of new logic
hardware designs and fault analysis of these designs.

As an evaluation tool, it can be used to verify the logical correctness
of new hardware designs. Other information that can be obtained using
a logic simulator include timing and signal propagation characteristics,
and race and oscillatory circuit conditions. If the results of simulation
indicate an unsatisfactory design, i.e., the circuit does not perform as
expected, then changes can be made to the design. The design can be
reevaluated using the simulator. After a number of iterations, a satis-
factory design ready for committing to hardware should result. A logic
circuit simulator used as above is known as a true value simulator.

* This paper is based on material to be submitted by S. H. Patel in partial fulfillment
of the requirements for the Ph.D. in Electrical Engineering at the Illinois Institute of
Technology.
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Note that the results of true value simulation can be used for diagnos-
ing faulty equipment using the guided probe technique.'

Most logic circuit simulators also have fault-simulation capability.
This capability can be used to determine fault coverage by a proposed
test sequence, production of a fault dictionary, evaluation of test-point
effectiveness, and evaluation of self-checking circuitry. The behavior
of a circuit under fault conditions can also be investigated. Fault
analysis can be used to investigate initialization and fault-induced
races, and to perform timing analysis under specific fault conditions.
For fail-safe circuitry, selected faults can be inserted in the circuit and
the effect of these observed on the outputs by simulation. If a forbidden
output is obtained under some fault, then the circuit design must be
changed.

Figure 1 shows the general environment of a logic circuit simulator.
The circuit to be analyzed is modeled using a circuit-description
language. This language describes the connectivity and behavior of the
circuit. The modeling information typically includes element type
(gate or functional), associated delays, and interconnection data. Once
the data structure of the model is set up in the logic circuit simulator,
simulated inputs are applied either dynamically (at prescribed times)
or statically (after the circuit is stabilized). Fault simulation is per-
formed using one of several methods: one fault at a time, parallel,
concurrent, or deductive.” The simulated output is recorded either in
a plot form (true value) or tabular form (true value and fault simula-
tion).

Currently, most digital circuits are simulated on large general-pur-
pose computers. This method of simulation is complex and expensive
to operate and maintain.” There is a need for more sophisticated and
cost-effective simulators as we get into the VLSI era. Very large
simulation time and costs will result when dealing with circuits of
VLSI complexity (more than 100,000 gates on a single chip).
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Fig. 1—Operating environment of a logic circuit simulator.
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Il. SPECIAL-PURPOSE SIMULATION HARDWARE

Existing logic circuit simulators are implemented in software that is
executed on a general-purpose computer. To date, a large amount of
work has been invested in optimizing this software. For further im-
provements in the performance of the logic circuit simulator, the
hardware on which the simulation software executes must be opti-
mized. With the advent of low-cost microcomputers, the development
of special-purpose logic simulation hardware becomes attractive. Pos-
sible benefits are higher speeds, lower costs, and greater flexibility (for
example, better integration in a test station).

Recently there has been some interest in developing special-purpose
logic simulators. Barto and Szygenda have developed special-purpose
simulation hardware based on distributed processing.” More recently,
Abramovici et al. have presented a special-purpose architecture based
on pipelining and concurrency.® Both approaches use dedicated proc-
essors for performing specific tasks. A special-purpose logic simulation
machine using parallel processing (the Yorktown Simulation Engine)
has been built by IBM.”™*

Concurrency allows simultaneous processing of several parallel
events leading to a reduction in overall processing time. There are at
least two types of concurrencies present in the simulation of logic
circuits. One type of concurrency occurs in the simulation algorithm
and the other in the actual simulated hardware.

The first type of concurrency can be called algorithm concurrency.
In logic circuit simulation a number of operations have to be performed
during a simulated time interval. Simulated time consists of discrete
points in time (approximated to the nearest integer) at which changes
in logic values on signal lines can occur. A simulated time interval is
the time between two such consecutive discrete points. A simulated
time interval is also sometimes referred to as a time frame. A simula-
tion cycle time is the time required to carry out the processing during
a simulated time interval. Typical operations carried out during a
simulation cycle include determining current events, updating values
at source, determining fanout, updating values at fanout, evaluating
elements, and scheduling resulting events. An event is a change in logic
value on a signal line. Scheduling an event is marking it to occur at
some time in the future. Consider several elements being evaluated
and several resulting events being scheduled during a simulation cycle.
In traditional simulation, the elements are evaluated and the resulting
events scheduled sequentially. No two operations are performed si-
multaneously. One can take advantage of the inherent concurrency by
noting that after an element has been evaluated and while the resulting
event is being scheduled, the evaluation of another element can be
concurrently started. An average number of 80 such concurrent events
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were observed per simulated time interval during the simulation of a
4000-gate circuit.” This concurrency appears in the simulation algo-
rithm. The architecture proposed by Abramovici et al. takes advantage
of this concurrency to some extent. The main ingredient of this solution
is functional partitioning of the tasks to several microprocessors.

The concurrency can also be viewed from the point of view of the
logic circuit. Concurrent events occur during a simulation cycle because
of the way electrical signals propagate in the logic circuit. Several
elements may be activated at the same time because signal propagation
occurs simultaneously along several paths in the actual hardware. If
the elements that become active at the same time are processed by
different processors simultaneously, then the overall simulation time
will be reduced. This type of concurrency can be called logic circuit
concurrency. Its main ingredient is distributed processing among
several processors, all of which are executing the same algorithm.

This paper describes the architecture of a special-purpose logic
simulation machine designed to take advantage of the parallelism
caused by concurrent activity of signals in a circuit. The system is
essentially a processing network based on an interconnection of low-
cost microcomputers. The circuit to be simulated is partitioned into
subcircuits and each subcircuit is simulated in a separate microcom-
puter. Thus, several microcomputers can be simultaneously simulating
several elements activated by parallel signals. This simulator is differ-
ent from those proposed in the literature (see Refs. 5 and 6) in that the
multiple processors do not perform dedicated tasks. Also, the modu-
larity of the simulator proposed in this paper allows easy increase of
computational power.

Ill. MULTIPROCESSOR OPERATION ENVIRONMENT

The operation environment of the multiprocessor digital logic sim-
ulator is shown in Fig. 2. The general-purpose computer acts as a
preprocessor at the beginning of simulation and as a postprocessor at
the end of simulation.

At the beginning of simulation, the circuit to be simulated is modeled
on the general-purpose computer. The data structure is then loaded
into the multiprocessor simulator. The loading problem is not dis-
cussed in this paper. After setting up the environment for the multi-
processor simulator, the general-purpose computer requests the sim-
ulator to start.

The simulation is carried out in the multiprocessor simulator. The
simulator can be programmed to output intermediate results automat-
ically to the general-purpose computer. The simulator can also be
interrupted by the general-purpose computer for intermediate results.
The user can ask for information about a simulation run while it is in
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Fig. 2—Preprocessing and postprocessing for the multiprocessor-based special-pur-
pose logic simulator.

progress (e.g., the status of a variable) and make certain run-time
decisions such as continue simulation, apply extra input vectors, or
stop. At the end of circuit simulation, the final simulation results and
any other user-requested information is sent to the general-purpose
computer. User-requested information typically includes output values
of elements (monitored points) at specific simulated times or under
some other specified conditions. The general-purpose computer for-
mats this information for suitable presentation to the user.

IV. ARCHITECTURE DESCRIPTION

The multiprocessor simulator consists of processors p, through p,.
The circuit to be simulated is partitioned into blocks a, through a,.
The signal connections between two blocks a; and a; are designated as
bi;. Each block a, is then mapped into processor p, as a subcircuit c,.
Figure 3 shows two blocks a; and a; mapped to processors p; and p;,
respectively, as subcircuits ¢; and c;. The blocks are not necessarily
clusters. That is, elements in a block can be from disjoint portions of
the circuit. The signal connections b;; between blocks a; and a; are
mapped in a data path d;; between processors p; and p;.

During simulation the subcircuits ¢; and ¢; are simulated independ-
ently. Different subcircuits become active as signal values proceed
from the primary inputs to primary outputs. As simulation progresses,
data will have to be carried between subcircuits ¢; and c; as the logic
values on the signal connections between the two subcircuits change.
This data is transported across the data path d;;. Typical data sent
across the data path consists of changed logic values.

The architecture of the multiprocessor simulator proposed in this
paper is shown in Fig. 4. The simulator consists of a communication
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Fig. 3—Mapping of partitions a; and a; to processors p; and p;.

structure (communication medium and its associated control) con-
nected to a master, several simple evaluators for simulating gate level
blocks, and several functional evaluators for simulating functional
blocks. A cross-point matrix is used to interconnect the master and
the simple evaluators. The functional evaluators are connected to the
cross-point matrix through a bus interface unit and a parallel bus. It is
shown in Section VI that the speed of a cross-point matrix is required
for transferring data between the simple evaluators. A parallel bus
provides sufficient speed for functional evaluators. Note that if only
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Fig. 4—Architecture of proposed multiprocessor simulator.
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simple evaluations are to be carried out, then the bus interface unit,
the parallel bus, and the functional evaluators can be removed. If only
functional evaluations are to be performed, then the bus interface unit,
the cross-point matrix, and the simple evaluators can be removed.

V. MULTIPROCESSOR IMPLEMENTATION

The configuration of the multiprocessor-based digital logic simulator
is shown in Fig. 5. The simulator consists of one master and a
multiplicity of slaves interconnected by a communication structure
(communication medium and its associated control). The implemen-
tation of the simulator allows the use of either a shared or a dedicated
communication structure. The master has local memory for its use.
Each slave consists of a processing unit (PU) with its associated
memory. The master and the slaves also each have two FIFO buffers
and two data sequencers for interfacing to the communication struc-
ture (see Sections 5.1 and 5.2).

The processors p; and p; shown in Fig. 3 correspond to the slaves s;
and s; in the multiprocessor simulator. The subcircuits ¢; and ¢; reside
in the memories of the slaves s; and s;. The interconnections b;; between
blocks a; and a; are mapped into the data path d;; that constitutes part
of the communication structure.

At the beginning of each simulation cycle the master sends primary
input values (if any) to the appropriate slaves using the communication
structure. The master then issues a start signal to the slaves. This
signal informs the slaves to start processing for the next simulation
cycle. During the processing of a simulation cycle a slave unit may
generate data for the other slaves or the master. The data is sent to
the destination slave or the master using the communication structure.
Data transferred between the slaves consists of scheduled events for
the next time frame. A scheduled event is a change in logic value on a
signal line scheduled to occur at some time in the future. Only data for
the subsequent time interval is transferred between the slaves in order
to reduce the amount of information sent over the communication
structure, and thus the communication overhead. The scheduled time
does not have to be sent. Data transferred from the slaves to the
master consist of primary output values and user-requested informa-

tion.
Each slave informs the master when it has finished processing and

transferring data for the current simulation cycle. When all slaves have
informed the master about their completion of processing for the
current simulated time interval, and also the master has finished
transferring any primary input values scheduled for the next simulated
time interval to the slaves, the master issues a start signal to the slaves
for the next simulation cycle.
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Fig. 5—Implementation of a multiprocessor-based digital logic simulator.

The different sections of the multiprocessor are discussed in greater
detail below.

5.1 Slave unit

The slave unit configuration is shown in Fig. 6. The PU is a general-
purpose 16-bit microprocessor. The input and output data sequencers
can be either specially designed logic circuits or commercially available
single-chip microcomputers. The FIFO buffers are commercially avail-
able devices.

The slave unit PUs perform the actual element/function evaluation
and event scheduling. As noted previously, the partitioning of the logic
circuit to be simulated is done on a general-purpose computer. Each
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Fig. 6—Slave unit configuration.

PU contains a block of the logic circuit to be simulated. The simulation
algorithm resides in the PU memory; all slaves contain identical
algorithms.

Each slave uses an Output Data Sequencer (ODS) to transfer data
out and an Input Data Sequencer (IDS) to receive data from the cther
slaves or the master via the communication structure. In a slave unit,
the PU and the data sequencers are isolated from each other by means
of FIFO buffers. Thus, the slaves can send and receive data independ-
ently of whether the PU is active or not.

The PU stores any data it has for other PUs or the master in the
Output FIFO Buffer (OFB). The ODS makes a request for the com-
munication structure if there is any data to transfer from the OFB.
The ODS of the slave, if granted the use of the communication
structure, takes data (scheduled values for slaves and primary output
values and user-requested information for the master) from the OFB
and sends it over the communication structure to other slaves or the
master. The data is received by the IDS of the destination slave or the
master (described in Section 5.2). Any data received by an IDS is put
in its Input FIFO Buffer (IFB). End of Data (EOD) flags are used to
separate data streams since a PU can be writing new data to the OFB
before its ODS has finished transferring current data and similarly, an
IDS can be receiving new data in the IFB before its PU has finished
reading current data.

There are two signal lines between a slave unit and the master. The
master signals the slaves using a START signal and the slaves signal
the master using the DONE line. The DONE line will become active
when all the slaves have finished processing.
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The START line from the master initiates the processing for the
next PU processing cycle. This signal causes the IDS to load an EOD
flag in the IFB of all slaves. At the beginning of each simulation cycle,
the PU monitors the IFB for data from other slaves and the master for
the current simulation cycle. The EOD flag marks the end of data
from other slaves and the master for the current simulation cycle.
When the PU reads this flag, it starts evaluation for the current
simulation cycle. The START signal from the master also informs the
slave ODS to start sending out any data to be used during the next
simulated time cycle from the OFB.

At end of the simulation cycle the PU loads an EOD flag in the
OFB and starts preprocessing for the next simulation cycle. When the
0ODS encounters the EOD flag in the OFB, it has finished transferring
data for the current simulation cycle. The ODS informs the master
using the DONE line.

5.1.1 PU operation

The following data tables are used by each PU for its operation (see
also Fig. 7):

(i) Circuit Description Table. This table contains interconnection
data for the subcircuit. For each element it contains the value, type,
delay, input status word pointer and corresponding status fields, inter-
nal fanout list pointer and corresponding fanout lists, and external
fanout list pointer and corresponding fanout lists. The input status
word pointer and the corresponding status fields give the signal values
on the fanin lines. The internal fanout list pointer and corresponding
fanout lists give the fanout which remain in the subcircuit. The
external fanout list pointer and corresponding fanout lists give fanout
which go to subcircuits located in other slaves. An element may have
only internal fanout, only external fanout, or both internal and external
fanout. Note that storing the external fanout takes up more space than
storing an internal fanout since both the destination processor address
and element index have to be stored for the external fanout.

(ii) Activity List. This list is used to keep track of active elements

during a simulation time interval. These elements are to be evaluated.

(i1i) Timing Wheel. This data area contains the events that are
scheduled in the future. A large amount of work has been done in this
a]:.ei__"ulﬂ,ll

The PU operation can be described in terms of two essentially
concurrent processes, namely the simulation cycle (execution of sim-
ulation algorithm) and the communication cycle (communication of
events). During one simulation cycle the following operations occur in
the given order:

1. Update line values from current list L of timing wheel.
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Fig. 7—Data tables for PU operation.

2. Find fanout and put active elements in activity list.

3. From next list L.,, of timing wheel, for each entry that is an
external fanout node, store scheduled event in OFB. Remove entry
from timing wheel if it does not have any internal fanout also.

4. Update line values from IFB until EOD flag is received. The
EOD flag signifies end of data present in the IFB for the current
simulation cycle. (The EOD flag is loaded by the IDS when it receives
a START signal from the master.)

Note: Any user requests received are stored for later processing.

5. Find fanout and put active elements in activity list.

6. Evaluate elements in activity list.

7. For active elements whose output changes, if delay of element is
one and it is an external output node, schedule change in OFB.

8. If test in step 7 fails, schedule change on timing wheel.
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9. Gather any user-requested information and store it in OFB.

10. Store EOD flag in OFB.

11. Increment current list pointer of timing wheel to the list of next
time.

From steps 7 and 8 it can be seen that events on an external fanout
are scheduled on the timing wheel of the processor in which the event
occurred except in the case where the external fanout is going to be
active in the next time interval. In this way the scheduled time does
not have to be transmitted with the scheduled event, thus saving
communication overhead.

A communication cycle is the period in between two START com-
mands issued from the master. This cycle is phased with respect to the
simulation cycle, as shown in Fig. 8. Note that the end of a communi-
cation cycle is an appropriate point for the multiprocessor simulator
to stop for processing any interrupt requests from the general-purpose
computer or sending out intermediate results. The master can issue
the start for the next simulation cycle by sending a START command
to the slave data sequencers after it satisfies all requests.

All the slave unit PUs contain the same software. Note that this
algorithm is similar to the one used in traditional logic simulators
except that the operations are sequenced differently.

5.1.2 Operation of slave data sequencers

The function of the data sequencers (IDS and ODS) is to transfer
data from the OFB to the communication structure and from the
communication structure to the IFB.

COMMUNICATION CYCLE Ty

-~ -
®@|@®/'

UPDATE LINE | FROM NEXT | UPDATE LINE | EVALUATE PROCESS
VALUES FROM LIST OF VALUES FROM ACTIVE USER-
TIMING WHEEL TIMING IFB AND ELEMENTS | REQUESTED
AND PUT WHEEL PUT ACTIVE AND DATA
ACTIVE SCHEDULE | ELEMENTS ON | SCHEDULE @ @ @ ®
ELEMENTS ON | EXTERNAL ACTIVITY CHANGES
ACTIVITY LIST EVENTS LIST

ON OFB
EQD FROM EOD TO EOD FROM
IF8 OFB IFB

L——— — — — — —ONE SIMULATION CYCLE, Tp— —— ——— ——I

NOTE: DATA GENERATED DURING SLOTS (B), (D) AND
OF T IS TRANSMITTED DURING TB © ®

Fig. 8—Relationship between a simulation cycle and the communications cycle.
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The IDS and the ODS have some local memory. The IDS uses this
memory to store any data it receives from the outside in case the IFB
overflows. The ODS requires this memory only in certain circum-
stances. A case for its use is given Section 5.3.2.

The communication protocol between the data sequencers and the
communication structure depends on the type of communication struc-
ture. This is discussed in detail in Section 5.3.

5.2 Master processor

The master processor is the interface between the general-purpose
computer and the simulator. Its main functions are to keep track of
simulated time, keep the slaves in synchronism, supply the slaves with
primary input values, and gather the primary output values from the
slaves. It also stores any user-requested monitored point values sent
to it by the slaves.

The configuration of the master is similar to that of a slave unit and
is shown in Fig. 9. It consists of a central processing unit (CPU) with
some local memory, an input FIFO buffer (IFB), an output FIFO
buffer (OFB), an input data sequencer (IDS), and an output data
sequencer (ODS). The master is connected to the slave units through
the communication structure. The master initiates processing for the
next simulation cycle by issuing a START command on its signal line.
When the slaves finish processing for the current simulated time
interval, they inform the master through the DONE signal.

TO GENERAL-PURPOSE
COMPUTER

DONE
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DATA TO
7 QUTPUT QUTPUT [ CONTROL AND
2 FIFO DATA DATA FLOW> COMMUNI -
START BUFFER SEQUENCER 77777 CATION
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FIFO
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DONE

T0
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Fig. 9—Master configuration.
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The master sends and receives data to and from the slaves using the
communication structure. The interface between the master and the
communication structure is similar to that between the slaves and the
communication structure. The master stores any data (primary input
values or user requests for monitored point values) it has for the slaves
for the next simulation cycle in its OFB. The START signal which goes
to the slaves also informs the ODS of the master to start transferring
out data. The ODS encounters an EOD flag in the OFB when it has
transferred all the data from the OFB. The ODS informs the master
that it has finished sending out data by setting the DONE line. The
IDS receives data from the slaves and puts it in the IFB.

Figure 10 shows the master, slave unit PU, slave unit ODS, and
slave unit IDS operations during a simulation cycle.

5.3 Communication structure

The communication structure is used as a medium for transferring
data between the slaves and between the slaves and the master. Either
a shared or a dedicated structure can be used for the multiprocessor
simulator. Two types of communication structures will be considered
here, namely the time-shared parallel bus and the cross-point matrix.
Each case is treated separately below. The criteria for selecting the
type of communication structure are given in Sections VI and VII.
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Fig. 10—Master and slave unit operations during a simulated time interval.
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5.3.1 Time-shared parallel bus

The interface between the data sequencers and a time-shared par-
allel bus based communication structure is shown Fig. 11. When the
ODS has some data to send, it sets the Request To Send (RTS) line
high. The bus control grants it the use of the communication medium
by sending a pulse on the Bus Grant line. The ODS sends out all the
data present in its OFB. The data received by the IDS of the desti-
nation unit is put in its IFB. The ODS then sets the RTS line low.
This releases the bus, which is then granted by the bus control to
another requesting slave or the master. All units have equal priority.
The ODS will set the RTS line high again if it gets more data to
transfer in the OFB.

The data sent out to a slave unit from another slave unit or the
master consists of a scheduled event for the next simulation cycle. The
data sent to the master consists of the address of the sending slave,
element number (primary output or monitored point) and element
value. A separate line Request to Send to Master (RTSM) is used to
address the master. When the destination is the master, the address
lines from the ODS contain the sending slave unit address. This
address together with the element number and element value is stored
in the master IFB by the master IDS.

5.3.2 Cross-point matrix

The interface between the data sequencers and a communication
structure based on a cross-point matrix is shown in Fig. 12. When the
ODS has some data to send, it puts the address of the destination unit
on the address bus and makes a request to transfer data by sending a
pulse on the RTS line. If the destination is not busy, the control for

REQUEST TO SEND

(RTS)
BUS GRANT

OUTPUT RTS FOR MASTER

DATA
SEQUENCER

(RTSM)

e //////@ COMMUNICATION
ADDRESS STRUCTURE:

7777777227777

DATA

TIME-SHARED
PARALLEL BUS

DATA READY

INPUT

encen Q777222227777
SEQUENCER

DATA

Fig. 11—Interface between the data sequencers and a time-shared parallel bus.
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Fig. 12—Interface between the data sequencers and a cross-point matrix.

the matrix grants the transfer request. The ODS sends out data serially
over the data line. The data received by the IDS of the destination
unit is put in its IFB. The Data Ready line connected to the IDS is
used to show the presence of data. It might happen that the destination
is busy when an ODS makes an RTS to the cross-point matrix. In this
case, the ODS gets a busy signal from the control of the cross-point
matrix. In response to the busy signal, the ODS stores away the data
that was to be transferred in its local memory and makes an RTS for
the next set of data to be transferred from the IFB. A retry to send the
blocked data is made later.

As indicated in Section 5.3.1, the master requires the address of the
sending slave unit. A slave unit ODS will recognize a request to transfer
data to the master and it will transmit its slave unit address together
with element number and value.

The interface discussed above will apply for a nonblocking switching
network also. However, this network will not be discussed here.

Vl. ARCHITECTURE EVALUATION

In this section, various performance functions are derived for the
multiprocessor architecture and compared with those for the tradi-
tional logic simulator implemented on a general-purpose computer.
The requirements for a circuit-partitioning algorithm are considered
first. Based on these requirements, expressions and values for process-
ing and communication times are derived next. Comparisons in terms
of evaluations per second are then made between the multiprocessor
simulator and the traditional logic simulator implemented on a general-

purpose computer.
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Fig. 13—A logic circuit.

6.1 Logic circuit partitioning

The logic circuit to be simulated is partitioned into a number of
subcircuits. Each subcircuit can essentially be regarded as an inde-
pendent circuit. During simulation, data is passed between different
subcircuits as signal values propagate from the primary inputs to the
circuit outputs. The subcircuits will be stored in the appropriate
memories of the slave unit PUs. (The element numbers in the original
circuit are translated to a slave address and an index number.) Parti-
tioning is a key to the operation and performance of the multiprocessor
digital logic simulator. Partitioning must maximize multiprocessing
while limiting communication.

A partitioning algorithm is required to partition a logic circuit into
subcircuits. The partitioning algorithm must produce subcircuits such
that during logic circuit simulation, the number of simultaneously
active subcircuits (processors) is maximum and the number of simul-
taneously active elements in each subcircuit (processor) is minimum,
while keeping the communication from being a bottleneck. Obviously,
minimization of interprocessor communication and the proper choice
of communication structure are necessary to avoid this bottleneck (see
Sections VII and VIII). The fact that signals may propagate in parallel
indicates that partitioning should be done along the depth of the
circuit rather than the breadth of the circuit since this will tend to
place concurrent activities in different blocks. One approach is to start
with a primary input and trace a path towards a primary output
forming an element string. An element string is a single fanout path.
For example, elements (1, 6, 9, 11) and (5, 8, 10) in Fig. 13 constitute
two element strings. Since two elements in a string will not be normally
active simultaneously, the whole string can be put in one subcircuit.
Each subcircuit corresponds to a block described in Section IV. Note
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Fig. 14—Multiprocessor simulator architecture.

that if there is a fanout from any element to a zero delay element, then
the two elements must be in the same block. For a multiprocessor
system with n processors, a logic circuit must be partitioned into at
most n blocks. A partitioning algorithm based on this approach is
given in Appendix A.

6.2 Processing and communication

Consider the architecture of a multiprocessor simulator shown in
Fig. 14. Processors p: through p. are connected by a communication
structure. The logic circuit to be simulated is partitioned into n blocks
using the partitioning algorithm described in Appendix A. Each block
is then assigned to a processor. During simulation, the communication
structure will be used to transfer data between the processors as the
interconnections between different blocks become active.

During a simulation cycle each of the processors will be evaluating
active elements and scheduling events. Concurrently, data will be
flowing across the communication structure as events in one processor
activate elements in another processor. We define t, as the average
processing time per processor during a simulation cycle. Time tp
represents the processing of all active elements and scheduling of
resulting events in one processor during a simulation cycle. Define t.
as the total communication time during one simulation cycle. This
value represents the amount of time the communication structure is
busy (i.e., the time taken to service all requests to transfer data from
all processors) during a simulation cycle. Since the operations during
t, and t. occur concurrently, the length of the simulation cycle and,
hence, the number of evaluations per second will be determined by
the greater of t, and t..

Expressions and estimates for t, and t. for an optimum architecture
will be derived in the next two sections. The value of t. will be derived
for two cases, namely, a communication structure based on a time-
shared parallel bus and a cross-point matrix.

6.3 Processing time i,

Let N be the average number of active elements per simulation cycle
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and n be the number of processors in the multiprocessor simulator.
Then N/n will be the average number of active elements per processor
during a simulation cycle for the ideal case. There will be some extra
active elements in a processor during a simulation cycle due to non-
ideal partitioning. If k is the average unbalance factor, then the number
of active elements is kN/n. Let a be the time required to process one
active element, then:

tpb=(N/n)ka,l<n<N;k=1forn=1.

This expression gives the average processing time per processor during
one simulation cycle.

The value of the processing time a is estimated next. Traditional
logic simulators can perform about 30,000 simple evaluations per
second (e.g., IBM 370/168). This represents 33 us per element evalua-
tion. The simulation algorithms for the multiprocessor simulator and
the traditional logic simulator are somewhat similar. The element
evaluation time for the multiprocessor simulator can be written as
a = 33u; ps. The factor u, represents a slowdown factor due to the
difference in speed between a microprocessor and a general-purpose
computer. For an Intel* 8086 16-bit microprocessor the slowdown is
about 5.5 over an IBM 370/168."* The element evaluation time for an
Intel 8086 becomes 181.5 us. The operation of the microprocessor can
be speeded up by using a microprogrammable processor and micropro-
gramming the simulation algorithm. For an Am29116 16-bit micropro-
grammable microprocessor, a speed-up factor of 5 to 10 can be obtained
over the Intel 8086. Assuming an Am29116 and taking a speed-up
value of 7, the average time required to process a simple element will
be a = 26 ps. The value of a for functional elements will be 30 to 50
times larger.

Until now it has been assumed that all the processors have the same
number of active elements. Assume that the unbalance due to nonideal
partitioning introduces 10 percent more active elements in a processor
(k = 1.1) and a is 40 times larger for functional evaluations than for
simple evaluations [a.) = 26 us for simple evaluations and a«, = 1040
s for functional evaluations]. The processing time for simple evalua-
tions becomes t,s) = 28.6(N/n) us. The processing time for functional
evaluations becomes tyr) = 1144(N/n) ps.

The processing time per active element (t,/N) as a function of the
number of processors (n) in the multiprocessor simulator is plotted for
simple and functional evaluations in Fig. 15. If there is only one
processor, then the processing time per active element for one simu-

* Trademark of Intel Corporation.
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Fig. 15—Processing time as a function of number of processors for functional and
simple evaluations.

lation cycle is ti(se)/N = 26 ps for simple evaluations and tye)/N = 1040
ps for functional evaluations. Note that the unbalance factor k does
not apply when there is only one processor.

The above analysis is done for n << N. For n < N and n = N there
will be one active element per processor in the best case and the
processing time per active element will remain constant at t, = (a/N)
for all values of n greater than N (see Fig. 15). Also if n = N and there
is unbalance, then the value of k will be much larger.

6.4 Communication time t.

The value of t. will depend on the type of communication structure.
Two types of communication structures will be considered here, a
time-shared parallel bus and a cross-point matrix.

To estimate t. for each case, first consider an element string yielded
by the partitioning algorithm discussed previously (see Fig. 16). If f is
the average fanout, one fanout line remains in the processor and f — 1
fanout lines go out to elements in other processors except the end of
the string, where all fanout lines go to elements in other processors.
Let ¢ be the average number of elements in one string. Normally, one
element per string is active during a simulation cycle. Define two
adjacent element strings as two strings with common interconnections.
Assume that all adjacent strings are in separate processors. This will
give the situation that requires most communication and therefore the
fastest communication structure. The average number of communi-
cation events generated by one active element during a simulation
cycle that have to be sent over the communication structure is:

e=[f+ (c—1)(f-1))/c.
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Fig. 16—An element string.

The typical value of f can be taken as 2 and for large circuits c is
expected to be greater than 10. For f = 2 and ¢ = 10, e will be equal to
1.1.

6.4.1 Time-shared parallel bus

Since the parallel bus is time-shared, the total communication time
will be given by the time required to transmit one event multiplied by
the number of communication events in a simulation cycle, i.e., Ne.
The time required to transmit one event will be the sum of bus request
and grant time (tu.), address and data setup time (tqs), data acknowl-
edge time (tgs), and bus release time (t»,). An expression for the total
communication time is:

tetbus) = (tbrg + tgs + taa + thr) (N)(e}-

The address and data-setup time (tqs) is composed of propagation
delay without capacitance (tpq) and capacitance delay (t.q). These two
parameters are functions of the bus length, which in turn will depend
on the number of processors. If d is the distance between two proces-
sors then the average distance an event has to be sent is (nd)/2.
Typical signal delay without capacitance is 1 ns/foot and if d is
assumed to be 0.5 foot, then t,q = 0.25n ns. Capacitance will cause an
extra delay of about 3 ns/foot giving t.q = 0.75n ns. The expression for
te(bus) bECOMES:

tctbus) = [l'l + (tbrg + taa + tbr)](N)(e) ns.

Taking some typical values ty; = 100 ns, ts, = 50 ns, tu = 50 ns, and
e = 1.1. The communication time per active element becomes:

tewus/N = (1.1n + 220) ns.

This expression as a function of the number of processors in the
multiprocessor simulator is plotted in Fig. 17a together with the
expression for evaluation time per active element for simple evalua-
tions and functional evaluations. Let t, be the length of the simulation
cycle for a single-processor simulator and t, be the length of the
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Fig. 17—Processing time and bus communication time considerations.

simulation cycle for a multiprocessor simulator. The performance of
the multiprocessor simulator is defined as the ratio of single-processor
time to multiprocessor time: t,/tm. The ratio of t; to tm is plotted in
Fig. 17b for simple evaluations and in Fig. 17c for functional evalua-

tions.
From Fig. 17b it can be seen that for simple evaluations the ratio t;
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to tm is maximum for tyee) = tewus. For this condition, the multipro-
cessor simulator gives best speed performance over the single-proces-
sor simulator. The value for n is about 90 for this condition. Adding
more processors will not speed up the simulator because the commu-
nication time will be a bottleneck.

Note also from Fig. 17b that for t. < t, the processing time is a
bottleneck and processors can be added (as long as n << N) to speed
up the simulation time. For t. > t,, the communication time is a
bottleneck, and a faster communication structure has to be added to
speed up the simulation time. For best case t. = t, and for further
speed improvements, both faster processors (or more processors if n
<« N) and a faster communication structure must be added.

It is worthwhile noticing that the communication activity will be
slightly lower than the predicted activity for smaller values of n than
for larger values, since the probability that two adjacent element
strings will be in the same processor is higher for smaller values of n.
An element string is as defined in the section on circuit partitioning
(Section 6.1), and two adjacent element strings are two strings with
common interconnections. This is not expected to have any significant
impact on the above analysis.

Figure 17c shows that for functional evaluations the processing time
will be a bottleneck and the time-shared parallel bus provides the
required communication speed as long as n <« N.

A problem that may be encountered in the parallel bus structure is
data skewing. The greater the number of lines on the communication
bus, the greater the effect of data skew. Line conditioning in the form
of bus extenders might be required for proper operation. Also, for large
n, a hierarchical bus structure will be required for suitable operation.

6.4.2 Cross-point matrix

In a cross-point based communication structure, several processors
can simultaneously send data to other processors. The total commu-
nication time will be governed by the processor having the maximum
data to be sent over the communication structure, i.e. (N/n)(k)(e)
communication events. The time required to transmit one event will
be the sum of the channel request and grant time (t.;), delay incurred
in transmission of message through matrix (tsm), and channel release
time (to). Also when the processor asks to use the matrix, the desti-
nation processor might be busy. This requires selecting another event
for transmission and trying to resend the blocked event at a later time.
Let j be the number of events for which the channel is found busy and
t:, be the time wasted in processing a blocked request. An expression
for the total communication time is:

tctmnlrix) = [tcrg + t'clrn + t(r](N/n)(k)(e) + (trh){j)-

LOGIC SIMULATION 2895



Taking some typical values teg = 50 ns, tam = 100 ns, ter = 50 ns, k =
1.1, t, = 50 ns, e = 1.1 and j = 0.1(N/n) (the channel is found busy for
10 percent of the transfer requests). The communication time per
active element becomes:

temauin/N = 247/n ns.

Comparing this value with tyee/N = 28.6/n us and tye)/n = 1144/n
pis, it can be seen that the matrix will never cause a bottleneck in the
multiprocessor simulator.

It is interesting to note that since the matrix provides a high-speed
communication structure, some inefficiency in the partitioning algo-
rithm can be tolerated. For ¢ = 1 (smallest possible average chain) and
a worst-case average fanout of 5, e will be equal to 5 and teqmatrixg/ N =
1.105/n ps. This value is still much less than the processing time for
simple evaluations.

Figure 18 shows the various processing and communication times.
Once again, the above analysis has been done for n << N. For n < N
and n = N the matrix communication time will remain constant.

6.5 Comparisons

Estimated values for t. and t, will now be derived. For realistic
situations 1 << n << N. For a circuit with 100,000 elements, assuming
2-percent activity per time frame, N will be 2,000.

For simple evaluations and a parallel bus, the maximum value of n
is 90. For n greater than 90, the performance goes down since the bus
becomes a bottleneck. For n = 90 the length of the simulation cycle is
towe/N = 28.6/n = 0.32 ps. The number of evaluations per second
becomes 3,125,000. This represents an increase by a factor of 100 over
a traditional logic simulator (30,000 evaluations per second). The
growth of the multiprocessor with parallel bus is restricted in the sense
that this is the optimum performance and increasing the processors
will not yield any further improvements. For modularity and greater
performance, a matrix based communication structure is required for
simple evaluations. With a cross-point matrix, the performance can be
increased by increasing n as long as n remains much less than the
activity N. With n = 256 and a cross-point matrix, the number of
simple evaluations per second becomes 9,000,000. This represents an
increase by a factor of 300 over the traditional logic simulator. For n
= 512 and a cross-point matrix, the number of simple evaluations per
second becomes 18,000,000. This represents an increase by a factor of
600 over a traditional logic simulator.

The speedup for functional evaluations with a time-shared parallel
bus is of the same order. The maximum value of n in this case is 925.
For n = 90, the speedup factor is 100 and for n = 256 the speedup
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Fig. 18—Comparison of various communication times and processing times.

factor is 300. However, smaller values of n will be used in practice since
the activity will be much lower for functional evaluations.

If slightly lower performance can be tolerated, then a nonmicropro-
grammable microprocessor can be used. For the Intel 8086, the ele-
ment-evaluation time becomes a = 181.5 us. For a parallel bus, the
value of n for optimum performance is 320. The number of simple
evaluations per second becomes 1,600,000, an increase in performance

LOGIC SIMULATION 2897



of 53 over a traditional logic simulator. Once again, however, this is
the best performance that can be obtained using the parallel bus.
Using a cross-point matrix with n = 512, the speed up over the
traditional logic simulator is 90.

VIl. ARCHITECTURE CHOICE

It is seen from the previous section that a cross-point matrix is
preferable for simulating a circuit containing simple elements. A time-
shared parallel bus can be used for simple evaluations, but a speed
penalty will be incurred and modularity will be lost. A time-shared
parallel bus is sufficient for functional evaluations. A combination of
the cross-point matrix and parallel bus can be used to simulate circuits
containing both simple and functional elements.

For both simple evaluations and functional evaluations, a commu-
nication structure consisting of both a cross-point matrix and a time-
shared parallel bus will prove cost effective. For transferring data
between the cross-point matrix and the parallel bus a Bus Interface
Unit (BIU) is required. The configuration of the BIU is shown in Fig.
19.

Data sequencer 1 transfers data from functional evaluators con-
nected to the parallel bus to the simple evaluators and the master
connected to the cross-point matrix. The data sequencer receives
signal information and data from the parallel bus and transforms it for

BUS INTERFACE UNIT

T T DpataFLow
D W _]

DATA READY REQUEST TO SEND
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Fig. 19—Interface between parallel bus and cross-point matrix.
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suitable transmission over the cross-point matrix. The parallel data
received from the bus is transferred serially over the matrix.

Data sequencer 2 sends data from the cross-point matrix to the
parallel bus. The serial data received from the cross-point matrix is
transferred to parallel data for suitable transmission over the parallel
bus.

Vill. PERFORMANCE ANALYSIS

The effect of varying various parameters on the performance of the
multiprocessor is considered in this section. The analysis so far has
been done using average values. The performance of the multiproces-
sor will be affected to some extent by variations in various parameters.
The processing times ty) and ty are functions of N, n, k and a. The
communication time for bus temus is a function of N, n, f, c. The
communication time for matrix tcmauio is a function of N, n, k, f, c.
The effect of variations in some of these parameters on performance
of the logic simulator will be investigated.

8.1 Effect of changes in circuit activity N
8.1.1 Bus architecture

8.1.1.1 Simple evaluations. As seen from Fig. 20a, if activity N
increases then tpee) and temus increase proportionately. The operating
point shifts from (1) to (2) for increasing values of N. This means that
the length of the simulation cycle for the proposed simulator will
increase by the same percentage that N increases. In the case of a
single processor simulator, the simulation cycle will also increase by
the same percentage. The performance index of the multiprocessor
simulator (in terms of single processor time to multiprocessor time
ratio) is not affected by the circuit activity, N (Fig. 20b).

8.1.1.2 Functional evaluations. The processing time of the multipro-
cessor simulator [t,)] is proportional to the processing time for simple
evaluations [ty ] by a slow-down factor of between 30 and 50. The
analysis for simple evaluations done above, therefore, also applies for
functional evaluations (i.e., the performance index of the multiproces-
sor simulator is not affected by circuit activity).

8.1.2 Matrix architecture (simple evaluations)

Since the processing time [t,] and matrix communication time
[te(matriny] are both proportional to N, they will increase by equal
proportions. The length of the simulation cycle is governed by tpe
and the performance index (single processor to multiprocessor time) is
given by ti/tm = (Na)/[(N/n)ka] = n/k. Once again this value is
independent of N and the performance index of a multiprocessor
simulator with matrix architecture is not affected by circuit activity.
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Fig. 20—Effect of changes in circuit activity. (a) Processing time (simple evaluations)
and bus communication time for different values of N. (b) Performance variation for (a).

8.2 Effect of partitioning: variations in k
8.2.1 Bus architecture

8.2.1.1 Simple evaluations. The factor k represents the increase in
activity in a processor, over the average N/n, due to non-ideal parti-
tioning. An increase or decrease in k changes tpue In proportion but
does not affect temus. As seen from Fig. 21a for k = 1.1, the operating
point is at (1) with n = 90. If k increases then the operating point
moves to (2). The length of the simulation cycle increases in proportion
to the increase in k. Since the length of the simulation cycle for the
single-processor simulator is not affected by k, the multiprocessor
performance index goes down. For n = 90, the performance index of
the multiprocessor goes down from 82 to 64 as k increases from 1.1 to
1.4.

If the multiprocessor simulator is designed for a higher value of k,
then the number of processors required for maximizing the perform-
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ance index is greater than 90 and the maximum performance index
decreases as k increases. This is shown by points (1) and (3) in Fig.
21b. For a multiprocessor simulator designed for k = 1.1, the maximum
performance index is 82 for n = 90. If the multiprocessor is designed
for k = 1.4, the maximum performance index is 77.

8.2.1.2 Functional evaluations. For functional evaluations, the curves
for tpe) and tewus meet for a large value of n (= 925). The length of the
simulation cycle will be governed by the processing time. Figure 21c
shows that for n = 100, the operating point will move from (1) towards

LOGIC SIMULATION 2901



(2) as k increases from 1.1 to 1.4. Thus, the length of the simulation
cycle will increase. The increase will not affect the single-processor
simulator since its simulation cycle is not affected by k. Thus, the
overall performance index will decrease as the activity increases. The
performance index decreases from 91 to 71 as k increases from 1.1 to
1.4 for n = 100 (see Fig. 21d).

If the multiprocessor is designed for a higher value of k, then the
number of processors required to maintain the performance index
constant goes up. For example, for k = 1.1 and n = 100 the performance
index is 91. If the simulator is to be designed for k = 1.4, then 127
processors are required to maintain the performance index at 91.

8.2.2 Matrix architecture (simple evaluations)

Once again, the processing time [tpse] and matrix communication
time [tegmairin ] are proportional to k. The processing time will determine
the length of the simulation cycle regardless of the value of k. This
case is similar to that in the previous section for functional evaluations
and a parallel bus (Section 8.2.1). The overall performance index will
go down as the activity increases. Also if the multiprocessor is designed
for a higher value of k then the number of processors required to
maintain the performance index constant goes up.

8.3 Effect of partitioning: variations in ¢
8.3.1 Bus architecture

8.3.1.1 Simple evaluations. Variations in ¢, the average number of
elements per element string, will affect the bus communication time
tewus- A decrease in ¢ will increase the bus communication time. Figure
922a shows that the operating point moves from (1) to (2) as the value
of ¢ decreases from 10 to 1. For a constant number of processors and
a decreasing c, the communication time may become a bottleneck. The
length of the simulation cycle will increase and the performance index
will go down.

If the simulator is designed for smaller values of ¢, the number of
processors required will be smaller but the maximum performance
goes down [operating point (3) in Fig. 22b].

8.3.1.2 Functional evaluations. For functional evaluations, the proc-
essing time is a bottleneck. The worst-case value of c is one (i.e., chains
of length one). Even for this case the curves for tpe) and tewus) meet for
a large value of n (= 663). Thus, the simulator for functional evalua-
tions is not affected by c (typical value of n is 100).

8.3.2 Matrix architecture (simple evaluations)
As noted at end of Section 6.4.2, the processing time ty.) will still be
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affected by changes in c for (a).

a bottleneck for worst-case value of ¢ = 1. Thus, the performance of
the simulator with a matrix is not affected by variations in c.

8.4 Effect of variations in fanout, f

8.4.1 Bus architecture

8.4.1.1 Simple evaluations. An increase in f will increase the bus
communication time t.uus). The processing time will not be affected by

changes in f. Figure 23a shows that the operating point moves from (1)
to (2) as fanout increases. Running circuits with larger fanout on a
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Fig. 23—Effect of variations in fanout. (a) Processing time (simple _eva.luations) and

bus-communication time for different values of f. (b} Performance variation as affected
by changes in f for (a). (c) Processing time (functional evaluations) and bus-communi-
cation time for different values of f. (d) Performance variation as affected by changes in
f for (c).

simulator designed to operate with an average fanout of 2 will cause
the communication time to become a bottleneck. Since the processing
time does not change, the performance index of the simulator will
decrease. Similarly, if a simulator is designed for larger fanout its
maximum performance index would be less than that of a simulator
designed for a smaller number of fanout. (See Fig. 23b.)
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8.4.1.2 Functional evaluations. The simulator for functional evalua-
tions is sensitive to changes in f. As seen from Fig. 23c, for n = 100 and
f > 39 the communication time becomes a bottleneck and the perform-
ance index of the simulator goes down. The maximum performance
index of the simulator is also lower for higher fanout. For large fanout,
the communication time becomes a bottleneck for functional evalua-
tions and a matrix may have to be used.

8.4.2 Matrix architecture

8.4.2.1 Simple evaluations. For an average fanout of 2, the processing
time is a bottleneck. As the fanout increases, the curves for t,s) and
te(matriy approach each other. The communication time becomes a
bottleneck for f > 128. This is an unrealistically large value and will
not occur in practice.

8.4.2.2 Functional evaluations. The effect on functional evaluations
is the same as discussed above, but f > 5,100.

IX. SUMMARY

The architecture of a multiprocessor simulator has been presented.
The speed/performance ratio of the simulator is expected to be greater
than two orders of magnitude compared to traditional simulation
methods implemented on general-purpose computers. The power of
the simulator can be increased over a certain range by increasing the
number of slaves. Also the cost of the CPU time should be much lower
than that obtained from general-purpose computers.

The architecture presented in this paper is expected to be faster
than those of Barto and Szygenda, and Abramovici et al. The York-
town Simulation Engine (YSE) built by IBM is reported to be faster
than the architecture presented here, but the cost of the machine
would be substantially higher since it uses special-purpose hardware.
The architecture presented here and the YSE both try to take advan-
tage of logic circuit concurrency to improve simulation performance.
Unlike the YSE, our architecture implements event-driven simulation
and is applicable to simulation with arbitrary delays at both gate and
functional levels. Further work to be done includes detailed comparison
of the various architectures in terms of performance and cost.

The application of the multiprocessor simulator to fault simulation
is being investigated at the present time.
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APPENDIX A
Partitioning Algorithm

A way to partition the logic circuit is to first generate and assign
element strings to blocks, where an element string is as defined in
Section 6.1. The next step is to balance the load (number of elements)
in the blocks such that all blocks have approximately the same number
of elements. Note that the elements have to be ordered according to
levels prior to partitioning of the logic circuit. The partitioning algo-
rithm is detailed below:

A.1

1.

(=

Generate and assign strings

i=0

[Note: a; is the block to which assignments are currently being
made. ]

. Select an unmarked element whose fanins have all been assigned

previously to blocks other than a;. Call the selected element e,. If
there is no such element and there are still some unmarked
elements, go to step 6. If all elements are marked, go to algorithm
A2 (Load Balancing).

[Note: Primary inputs can be treated as elements whose fanin has
been previously assigned to blocks other than a;.]

. Assign the selected element e, to block a; and mark e,.
. If any fanout ey of e is in a;, go to 6.

[Note: If a fanout element has been previously assigned to the
current block a;, then assigning another fanout element to the
current block will require sequential processing of two ele-
ments.]

. If there is an unmarked fanout ey of e, such that no fanin (ey)

(except e;) is in a;,

then: (a) s =k
(b) Go to step 3.

[Note: If all of the fanout elements have been assigned to some
other blocks, then the string cannot be extended. Note that
primary outputs can be treated as being assigned to a null
block.]

(i) 1= (i + 1)(modulo n)

(ii) Go to step 2.

Balance load

. Total the number of elements in each block.
. 8max = block with most elements

amin, = block with fewest elements
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Fig. 24—Partitioning example. (a) Logic circuit to be partitioned. (b) String assign-
ments before load balancing. (c) String assignments after load balancing.

emnx = number of elements in amax
emin = number of elements in amin

3. If (emax — €min) < [(total number of elements)/n]0.1, stop.
[Note: If the maximum unbalance is less than 10%, stop.]

4. Select string s; in amax such that length (si) < €max — €min.

5. Move string s; to block amin.

6. If (€max — €min) < [(total number of elements)/n]0.1, go to step 4.

Else: Go to step 2.

As an example, consider the circuit in Fig. 24 to be partitioned into
three blocks. The blocks and strings are then assigned as shown while
looping through steps 2 through 6 in Section A.1. Note that element 4
is not assigned to block A since the fanout element 5 is already in block
A (step 4 in Section A.1.). At end of load balancing element 4 will be
assigned to block C.

Note that zero delay elements are not considered in the algorithm.
Any zero delay element and all of its fanouts must be in the same block
of the partition.
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APPENDIX B
Glossary

BIU—Bus Interface Unit.
CPU—Central Processing Unit (part of the master unit).
EOD—End of Data (flag).
IDS—Input Data Sequencer.
IFB—Input FIFO Buffer.
L.—Current list of timing wheel.
N—Average number of active elements per simulation cycle.
ODS—Output Data Sequencer.
OFB—OQutput FIFO Buffer.
RTS—Request to Send line.
RTSM—Request to Send to Master.
PU—Processing Unit. (Part of a slave unit)
a—Time required to process one active element.
a;—A block of a partitioned circuit.
bij—Signal connections between blocks a; and a;.
c—Average number of elements in an element string.
ci—Subcircuit located in processor p;.
dij—Data path between processors p; and p;.
f—Average fanout of an element.
k—Imbalance factor owing to non-ideal partitioning.
n—Number of processors in the multiprocessor simulator.
pi—Processor in multiprocessor simulator.

ti—Length of simulation cycle for a single processor simulator.
t1qe—Processing time during one simulation cycle with single

processor (functional evaluations).

t1se)—Processing time during one simulation cycle with single

processor (simple evaluations).
ty—DBus release time for a parallel bus structure.
torg—Bus request and grant time for a parallel bus structure.
t—Total communication time during one simulation cycle.

teusy— Total communication time during one simulation cycle for a

parallel bus structure.

tematri— Total communication time during one simulation cycle for a

matrix structure.

t.q—Capacitance delay portion of address and data setup time,

tas.
tee—Channel release time for a matrix structure.
teg—Channel request and grant time for a matrix structure.
tsa—Data acknowledge time for a parallel bus structure.
tam—Delay incurred in transmission of message through matrix.
tas—Address and data setup time for a parallel bus structure.
tm—Length of simulation cycle for a multiprocessor simulator.
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t,—Average processing time per processor during a simulation
cycle, where average processing time consists of the time
required to process all active elements and schedule resulting
events.
tper—Average processing time per processor during one simulation
cycle for functional evaluations.
tpse)—Average processing time per processor during one simulation
cycle for simple evaluations.
tpa—Propagation delay portion (without capacitance) of tq..
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