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It has long been known that one of the key factors in determining
the accuracy of isolated word recognition systems is the size and/or
complexity of the vocabulary. Although most practical isolated word
recognizers use small vocabularies (on the order of 10 to 50 words),
there are many applications that require medium- to large-size vo-
cabularies (e.g., airlines reservation and information, data retrieval,
etc). This paper discusses the problems associated with speaker-
trained recognition of a large vocabulary (1109 words) of words. It is
shown that the practicability of using large vocabularies for isolated
word vocabularies is doubtful, both because of the problems in train-
ing the system, and because of the difficulty the user has in learning
and remembering the vocabulary words for any significant size
vocabulary. The importance of studying large word vocabularies for
recognition lies in the flexibility it provides for understanding the
effects of vocabulary size and complexity on recognition accuracy for
both small- and medium-size vocabularies. By constructing subsets
of the total vocabulary for recognition, we show that a judicious
choice of words can lead to significantly better recognition accuracy
than a poor choice of the words in the subset. We show that for each
doubling of the size of the vocabulary, the recognition accuracy tends
to decrease by a fixed amount, which is different for each talker.

. INTRODUCTION

In the field of automatic speech recognition, the only type of system
to date that has proven useful and practical is the isolated word
recognizer. Isolated word recognizers have been in use commercially
for a number of years,'™” and have been extensively studied in several

* Work performed on BLESP summer assignment at Bell Laboratories.
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major research laboratories throughout the world.*'* For the most
part, applications of isolated word recognizers have limited themselves
to vocabulary sizes ranging from small (10 to 30 words) to moderate
(30 to 200 words). There are several reasons why there are no com-
mercially available systems that can recognize words from large vo-
cabularies (greater than 200 words). These include:

(i) The difficulty of training the system on large vocabularies

(ii) The storage required for word templates for large vocabularies

(iii) The processing required to recognize words from large vo-
cabularies

(iv) The difficulty of accurately recognizing word vocabularies that

would be useful in a variety of applications.
The computational problems associated with reasons ii and iii above
(ie., large storage and large amounts of computation) are rapidly
becoming less important as memory and processing costs decrease,
and should continue to do so for the forseeable future. The problems
in training are very real ones, and will be discussed further in this
paper. The problems associated with choice of vocabulary words and
accuracy of word recognition are the main topics of this paper.*

Although the practicability of large vocabularies for isolated word
recognition is doubtful, the experimental use of large vocabularies
provides the opportunity to examine significant issues in automatic
word recognition that cannot be examined with small vocabularies. If
the vocabulary is sufficiently general, in some sense, it is possible to
choose several smaller partitions from the vocabulary, of a given size
or complexity, and thereby better understand the effects of vocabulary
size, or complexity, on word recognition accuracies.

At the present time it is not even known how currently available
isolated word recognizers would perform on large vocabularies—i.e.,
what factors would most influence accuracy. For small- and medium-
size vocabularies there is a wide body of experimental data that
indicates that vocabulary complexity (not size) is the key indicator of
accuracy.®'*" Furthermore, most experimental studies have shown
that speaker-independent word recognizers can (and do) perform as
well as speaker-trained recognizers; however, they require an order of
magnitude more computation.'

A brief summary of recent experimental results on isolated word
recognition is given in Table L. The results given in this table illustrate
the complex relationship between accuracy and vocabulary size and
complexity. In Section II of this paper we give a simple model that
helps to explain this relationship in terms of the relationships between

* For any practical system, using a large vocabulary of isolated words, syntactic
constraints of the recognition task would effectively reduce the vocabulary size and
speed up the processing most of the time.
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Table |—Accuracies of isolated word
recognizers on several vocabularies

Speaker
Speaker Inde-
Trained pendent

Vocabulary (%) (%)

10 digits [1, 12] 99 98
26 letters of alphabet [16, 17] 80 70
39 alphadigits [8, 12] 87 80
54 computer terms [18, 19] 99 96
91 North American States [14] 99 —_
129 Airline terms [20, 21] 88 91
561 Words and Phrases [18] 92 —

words in the vocabulary. In Section III we describe an experiment
designed to measure word recognition accuracy for an 1109-word
vocabulary. The recognizer was run in a speaker-trained mode on six
talkers (three male, three female), in which each talker used a robust
training procedure to give individual word templates. In Section IV we
discuss results on recognition of subsets of the 1109-word vocabulary.
These results illustrate the degree to which choice of vocabulary words
can influence word accuracy for given vocabulary sizes. Finally, in
Section V we summarize our findings and discuss their implications
for practical systems.

Il. MODEL FOR ISOLATED WORD RECOGNITION ACCURACY AND
COMPLEXITY

Assume we have a specified vocabulary, V, of @ words, i.e.,
V= {U11 Uz, ==~ !UQ]' (1)

We define a word similarity index as D(v;, v;), which measures the
distance (in whatever units are desirable) between pairs of vocabulary
words, v; and v;. The distance can be an acoustic one (e.g., the average
distance of the time-aligned words) or a phonetic one [e.g., the average
number of phonemes (syllables, demisyllables) that are different in the
words]. We next define a word overlap index, g;, for the ith vocabulary
word as

gi = C{j:s.t. D(v;, v;) = T}, (2)

where C is the cardinality of the set of indices j such that the pairwise

word distance score, D(v;, v;)* falls below a threshold T. Basically, q:

is a count of the number of words in the vocabulary similar to word v;.
We can now define an average probability of error as

* For simplicity we assume that work distances, D, are symmetric, i.e., D(vi, vj) =
D(v;, vi). In practice, for nonsymmetric distances we use the average pairwise word
distance, i.e., [D(v;, v;) + D(v;, v))]/2.
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Q
P(Eq) = 2] P(v)P(E|vy), (3)

where P(v;) is the a priori probability word v; is spoken, P(E|v;) is the
probability of error given word v; is spoken. Since we assume all words
are equiprobable, we have
1
P(v) =—. (4)
Q

We now make the simplistic assumption that the probability of error
given word v; is spoken can be written as

P(E|v) =1-+, 5)
qi
i.e., we assume a random choice is made among the ¢; similar versions
of word v;. Clearly the resulting error rate based on this assumption is
an overbound on the true probability of error. Combining egs. (2)
through (5) we get

19
Hﬂﬂ:@é(l_%) (6)

To illustrate the interpretation of eq. (6) consider calculating the
average value of g; as

1 Q
'=—§m- (7

The quantity §, which we call the average vocabulary complexity, is a
measure of the average number of candidates in the vocabulary similar
to any word. Since g; satisfies the constraint

l=qg:= (8a)
then g satisfies the constraint
1=¢g=0Q. (8b)

Consider now a @ = 10 word vocabulary. We can define various
possible sets of ¢; and compute P(Eg) and g for each set. For example,
if we have

{ql} = {3: 3: 3: 3: 3! 3) 2! 2, 2! 2} (93)
then ¢ = 2.6 and P(Eg) = 0.6. Similarly, if
{qf} = {7: 71 7) 7: 7) 7’ 7) 1: 1) 1} (gb)

‘Techr_\ically, eq. (3) should contain a small residual error term that accounts for
errors owing to improper recordings, mispronunciations, etc. We will omit this term for
simplicity.
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Fig. 1—Plot of average word error rate as a function of average word complexity for
all possible combinations of a 10-word vocabulary. The smooth curve is a hand-drawn
curve, which approximates the average behavior of the data.

then ¢ = 5.2 and P(Eg) = 0.6. The vocabulary of eq. (9a) consists of
four subsets, two of which have three confusable words, and two of
which have two confusable words. The vocabulary of eq. (9b) consists
of one subset with seven confusable words, and three distinct words.
Both vocabularies, however, yield identical error probabilities using
the simple model given above.

If we consider all possible subsets of the 10-word vocabulary, and
plot the values of P(Eg) versus ¢ for each such subset, the resulting
plot would be as shown in Fig. 1. This figure shows that for a given
probability of error a wide range of vocabulary complexities can often
be found. It also shows that as the probability of error goes to the
residual value, the choice of vocabularies becomes sparse—i.e., only
well-designed vocabularies will achieve the lowest error rates.

This simple word recognition model could also be described in
information theoretic terms based on channel models.? From such
models one could derive plots equivalent to the one of Fig. 1.

Consider applying the word recognition model to some of the vo-
cabularies of Table I. For the 10 digits we get (using g; = 1, all i)
P(E0) = 0, ¢ = 1. For the 26 letters of the alphabet (ordered alpha-
betically), using*

{g) ={1,5,2,5,5,2,5,1,2,2,2,1,2,2,1,2,1,1,2,2,1,5,1, 1,2, 2}
we get § = 2.2, P(Ey) = 0.385. For the 39-word alphadigit vocabulary'®

* The values of g; for the alphabet were obtained from the letter confusion matrix in
Ref. 16.
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we get ¢ = 2 and P(Ey) = 0.28. For the 54-word computer terms
vocabulary'®"® we get § = 1.1 and P(Es;) = 0.04. For the 129-word
airline terms vocabulary®*' we get § = 1.1 and P(E) = 0.08. By
comparing the error probabilities from the model with those given in
Table I it can be seen that a reasonable match to all vocabularies can
be obtained using this simple recognition model.

The major purpose of this section has been to illustrate the range of
variability in error rate associated with a vocabulary of fixed-size @
words, and to roughly explain the source of variation. The key point is
to keep in mind that judicious choice of vocabulary items can lead to
considerably higher word recognition accuracies than can a poor choice
of vocabulary items. We will illustrate this key point further in later
sections of this paper.

ll. WORD RECOGNITION ON AN 1109-WORD VOCABULARY

To evaluate the performance of an isolated word recognizer on large
vocabularies, the linear predictive coefficient (LPC) based recognizer
developed at Bell Laboratories was tested on a vocabulary of 1109
words from the Basic English vocabulary of Ogden.”” The recognizer
was tested in a speaker-trained mode with six talkers (three male,
three female) each training the recognizer.

Before presenting results of the evaluation tests, we briefly review
the techniques used for recognition and training.

3.1 The LPC-based word recognizer

Figure 2 shows a block diagram of the LPC-based word recognizer.
The input speech signal, s(n), recorded off a standard dialed-up tele-
phone line, is bandpass-filtered between 100 and 3200 Hz, and digitized
at a 6.67-kHz rate. The first step in the processing is the preprocessing
and blocking step, which consists of a simple first-order preemphasis
network. The preemphasized signal is blocked into frames of 45 ms
(N = 300) with each consecutive frame spaced 15 ms apart (L = 100).
An 8-pole LPC analysis (autocorrelation method) is performed on each
frame of the word (which has presumably been located by an endpoint

LPC-BASED
REFERENCE
N , PATTERNS
REFERENCE
PATTERN
! TEST
s(m) | PREPROCESSING {PATTEHN] DTW RECOGNIZED
AND LPC ALIGNMENT|___| DECISION
*| BLOCKING INTO [~ ANALYSIS AND [ ] RULE —
FRAMES DISTANCE

Fig. 2—Block diagram of isolated word recognizer.
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detector), creating the test pattern T. This test pattern is compared
with each reference pattern using a dynamic time warping (DTW)
alignment algorithm, which simultaneously provides a distance score
associated with the alignment. The distance scores for all the reference
patterns are sent to a decision rule, which provides an estimate as to
the spoken word, and possibly an ordered (by distance) set of the best
n candidates.

3.2 The robust training procedure

The procedure used to obtain speaker-dependent reference patterns
is the robust training procedure of Rabiner and Wilpon.** For this
method each talker speaks each vocabulary word repetitively (up to
six times) until a pair of word tokens are deemed sufficiently similar
(based on a DTW distance score). The word reference pattern is
created by averaging the two time-aligned versions of the word (the
autocorrelation coefficients of each frame are averaged). This proce-
dure yields robust reference patterns since a tight similarity threshold
is used to guarantee that the two tokens of the word are free of artifacts
by either the talker (e.g., lip smacks, pops, heavy breathing), or from
the transmission environment. In this manner it is essentially guar-
anteed that each of the two tokens being averaged represents a valid
pronunciation of the word.

There are two points worth noting about the robust training proce-
dure. The first is that each word is not spoken repetitively until the
robust reference pattern can be created. To maximally separate in
time the repetitions of each vocabulary word, the talker training the
system speaks the entire vocabulary in a random sequence once each
pass through the training. The disadvantage of such a procedure is
that a considerable amount of storage is required to save the multiple
versions of each word that may be required before a robust reference
pattern can be obtained. The big advantage of this method is that each
word token tends to be an independent pronunciation of the word;
hence, word variability is easily and readily measured.

The second point about the robust training concerns the validity of
the reference pattern that is obtained. For words with stop releases at
the end, e.g., act, back, stop, etc.,, a speaker will often vary the
pronunciation (almost at random). Thus, on some occurrences of these
words the speaker will release the stop consonant (leading to a burst
at the end of the word) and on other occasions will not release the stop
consonant. For such words it should be clear that the robust training
procedure cannot adequately represent this dichotomous method of
speaking the word and will instead lock onto one of the two variations.
For such words a high probability of error is introduced, not by
alternate competing words in the vocabulary, as discussed in Section
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I1, but instead by alternate competing word pronunciations. We see no
simple or obvious way of handling this problem.

The robust training procedure trades training time (on the part of
the talker) for the ability to obtain robust reference patterns for each
word in the vocabulary. For a large vocabulary, notably the 1109-word
vocabulary, the average time to train all 1109 words was 5-1/2 hours
for each talker! It became imminently clear to the authors that, in
practice, one could never consider training speech recognizers for large
vocabularies in such a manner. If the need ever arose for word
recognition for large vocabularies, an automatic template generation
procedure would be required in lieu of the robust training that was
used here. Such automatic-template-generation techniques have been
used by Mermelstein® and by Rosenberg et al.** for equivalent size
vocabularies using syllable and demisyllable representations of words.

3.3 Isolated word recognition experiments

To evaluate the isolated word recognizer on various size vocabular-
ies, a series of word recognition experiments were run. For each of the
six talkers, four complete test sets, each consisting of one token each
of the entire 1109-word vocabulary, were recorded. The recording took
place over four weeks in time, and required about eight hours of
recording time for each talker.

The entire data base was used in the first experiment, which con-
sisted of measuring the error rate, Eyos, as a function of talker (1),
replication (), and candidate position (n). This experiment provides
the absolute performance measure of the word recognizer on the
largest vocabulary tested to date.

The next series of experiments basically considered subsets of the
1109-word vocabulary for both training and testing. The @-word subset
of the vocabulary was chosen in several ways to study the influence of
means of vocabulary choice on the error rate. The ways in which
vocabulary entries were chosen for the @-word vocabulary included:

(i) Random without replacement—i.e., each of the @ vocabulary
words was chosen at random from the 1109-word vocabulary. For each
replication of this experiment, the @ words were chosen from the
candidates not selected on previous trials. Clearly, a maximum number
of trials, MT = 1109/, is possible with this selection procedure. Since
we considered values of @ of 100, 200, 400, and 800, values of MT of 11,
5, 2, and 1 were used, respectively, for the different values of .

(ii) Random with replacement—i.e., each of the @ vocabulary
words was chosen at random from the 1109-word vocabulary. On
subsequent replications a new set of @ words was chosen at random,
again from the complete set of 1109 words. For this method of word
selection, the same vocabulary word could appear in several replica-
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tions of the vocabulary. To compare the results of this experiment
with those of the one above, the same values of @ and MT were used.

(z17) Vocabulary chosen based on best training tokens—i.e., the @
words of the vocabulary, for each talker, were chosen as the @ words
(of the 1109) that required the fewest training tokens before the robust
reference pattern was obtained. Such words represent the “easiest
words to train on,” and were expected to be least affected by inherent
variability in word pronunciations. Values of @ of 100, 200, 400, and
800 were used.

(iv) Vocabulary chosen based on worst training tokens—i.e., the @
words of the vocabulary, for each talker, were chosen as the § words
that required the most training tokens before the robust reference
pattern was obtained. Such words represent the “hardest words to
train on,” and were expected to be most affected by inherent variability
in word pronunciations. Values of @ of 100, 200, 400, and 800 were
used.

(v) Vocabulary with proportional training statistics—i.e., the @
words of the vocabulary, for each talker, were chosen on an equal
proportion with their statistics on training. Thus, if a talker had P,
training words requiring two replications, P training words requiring
three replications, etc., then in the test set a total of (P;/1109) - @ words
were chosen at random from the set of words requiring j training
replications. In this manner a vocabulary with statistics representative
of the training difficulty was obtained. Values of @ of 100, 200, 400,
and 800 were used.

(vi) Vocabulary with all monosyllabic words. A separate score was
obtained using only the @ = 605 monosyllabic words in the 1109-word
vocabulary.

(vit) Vocabulary with all polysyllabic words. A separate score was
obtained using only the @ = 504 polysyllabic words in the 1109-word
vocabulary.

The results of these word recognition experiments are given in the
next section.

3.4 Recognition test results

The results of the first experiment, using all 1109 words in the
vocabulary, are given in Table II and shown graphically in Figs. 3 and
4. Table II shows values of Ey10s(i, j, n) for valuesof i (1 = 1,2, ..., 6),
J(=1234),and n (n = 1, 2, 3, 4, 5). Figure 3 shows plots of
Evos(i, j, n) versus n for each talker, i, and each replication, j. Figure
4a shows plots of E1109(i, n) versus n, where

. 12 ..
Enwli, n) = Z 2‘ Enos(i, J, n), (10a)
=1
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Table Il—Word error rates as a function of talker
(i), replication (k), and word position (n)

n
Talker 1 2 3 4 5 k
i=1 12.3 6.3 4.2 3.7 29 1
18.8 9.8 7.2 5.0 4.2 2
15.6 9.4 6.0 44 3.8 3
12.1 6.4 4.1 2.4 21 4
1=2 6.1 2.5 1.4 1.0 0.8 1
5.7 24 1.5 1.4 1.2 2
6.0 2.1 1.3 1.0 0.9 3
6.4 3.1 1.9 14 13 4
1=3 18.4 12.2 10.2 9.2 8.6 1
19.9 13.1 10.9 9.2 8.7 2
23.0 15.7 12.3 10.6 10.0 3
17.8 12.9 10.1 8.9 84 4
i=4 40.2 31.2 27.1 24.3 23.4 1
38.0 299 26.1 24.1 22.4 2
46.7 36.9 32.2 29.8 27.5 3
48.3 39.9 35.2 32.3 30.1 4
i=5 17.7 10.9 8.7 7.2 6.3 1
24.8 16.5 12.9 11.0 9.8 2
20.9 23.5 9.9 7.6 6.9 3
27.3 17.9 14.2 13.0 11.6 4
t=6 17.0 12.0 9.7 8.3 7.3 1
17.3 12.4 9.9 8.6 7.7 2
21.1 15.0 11.8 10.3 9.6 3
18.6 12.4 9.9 8.8 7.8 4

where E1100(i, n) is the error rate averaged over replications; Fig. 4b
shows the grand average plot E1100(n) versus n, where

1 _

Enw(n) = g Z Enos(i, n) (10b)
1 6 4

= ﬂ E} ng Enools, 7, n). (10c)

Two points in the results are worth noting. It can clearly be seen
that within the four replications of a single talker, the error rate scores
for a given value of n do not vary a great deal (relative to the absolute
error rates). However, across talkers a large amount of variation in
error scores is seen for all values of n (see Fig. 4a). Thus, talker 4 has
an average error rate of 43.3 percent for n = 1, whereas talker 2 has an
average error rate of 6.0 percent, a range of over 7 to 1 in error rates.

The grand average (over talkers and replications) error rate curve
shows an average error rate of 20.8 percent of the top candidate, and
the error rate falls to 9.3 percent for the top five candidates. Although
these absolute scores are highly biased by the talker with the high
error rate (talker 4), the curves of Fig. 4 show that the error rate for all
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Fig. 3—Word error rate scores for each talker and for each replication as a function
of word candidate positions.

talkers displayed similar trends, and hence the grand average curve is
representative of the overall behavior of the isolated word recognizer
for this vocabulary.

The results of the tests using subsets of the 1109-word vocabulary
are given in Table IIL. For each talker and for each vocabulary partition
size @, this table gives the average error rate (averaged over the four
replications) for the top candidate as a function of the subset condition
(1 to 7 as described previously). An examination of the data in this
table shows the following:

(i) Conditions 1 and 2 (random selection without and with replace-
ment) lead to essentially the same error scores on all subsets of the
vocabulary for all talkers.

(if) For small vocabulary sizes (@ = 100, 200) selection of vocabu-
lary items based on training statistics leads to very different error
rates, depending on the exact set of training statistics used. The error
rate scores for condition (zii) (best training words) were significantly
lower than the error rate scores for condition (iv) (worst training
words). The error rate scores for condition (v) (equal proportions)
were essentially comparable to those of conditions (i) and (i) and
somewhere between those of conditions (zii) and (iv).
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(iii) For the larger vocabulary partitions (@ = 400, 800) the effects
of choosing vocabulary words based on training statistics on the error
rate were small.

(iv) The error rates for monosyllabic words alone [condition (vi)]
were always significantly larger than for any other subset (or even the
whole vocabulary) of the vocabulary; similarly, the error rate scores
for polysyllabic words alone [condition (vii)] were significantly smaller
than for any other subset of the vocabulary.

Figure 5 shows a summary plot of the average error rate for each
talker as a function of the logarithm of the vocabulary size, and a least
squares regression fit to the data points. The data points represent
averages of conditions () and (i) data of Table IL It can be seen that
remarkably good fits to the data are obtained, for all talkers, by the
least squares regression line. It should be noted that the scales for each
talker are different, reflecting the differences in absolute error rates.
Similarly, the slopes of the linear fits are different for each talker. In
particular the slopes for the individual talkers are 3.1, 1.3, 2.9, 5.7, 4.0,
and 3.2, respectively. A slope of a means that for each doubling of
vocabulary size, the predicted error rate increases by a percent.
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Table lll—Average word rates as a function of the partitioning of the
vocabulary for each talker

Q

Condition 100 200 400 800 605 504
Talker1 1 3.9 6.4 9.1 13.1

2 4.2 5.7 9.4 12.3

3 25 7.4 7.7 12.2

4 5.3 8.0 10.6 129

5 2.5 6.2 9.2 12.9

6 20.8

7 6.1
Talker 2 1 1.9 2.6 40 6.1

2 1.5 2.4 3.2 5.6

3 1.5 24 28 4.2

4 3.5 46 4.8 5.7

5 3.0 2.1 3.8 4.6

6 10.0

7 2.0
Talker3 1 10.2 12.9 15.3 18.1

2 9.3 10.8 14.7 17.7

3 9.0 10.9 12.1 15.2

4 25.7 21.6 18.9 189

5 9.0 11.1 12.7 16.1 29.5

6

7 7.4
Talker 4 1 23.2 28.0 33.3 409

2 24.6 29.0 34.6 40.8

3 19.8 25.0 29.8 37.5

4 317 37.2 40.5 43.3

5 23.7 24.6 34.2 38.2

6 53.4

7 28.0
Talker 5 1 89 12.0 15.3 20.3

2 9.2 11.5 15.5 204

3 8.0 9.0 13.0 18.6

4 18.7 19.5 18.2 21.5

5 9.0 11.1 14.2 19.3

6 30.9

7 11.8
Talker 6 1 7.5 10.0 13.5 17.0

2 7.8 10.3 13.4 17.3

3 4.7 74 10.2 14.3

4 15.2 17.1 18.8 18.5

5 7.5 8.2 12.6 14.6

6 28.2

7 6.6

IV. DISCUSSION

The results presented in the previous section demonstrate clearly
the effects of vocabulary complexity on error rate for isolated word
recognizers. They also show the high degree of variability among
talkers in the error rates for almost any size vocabulary.

Perhaps the most startling observation from the data of Fig. 5 is the
fact that, for each talker, a doubling in the vocabulary size leads to a
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Fig. 5—Average word error rate as a function of vocabulary size for each talker. The
straight line is the least squares linear regression fit to the data.

constant (talker-dependent) increase in error rate. This effect has been
noted previously by Smith and Erman® in their work on word hypoth-
esizing for large vocabulary recognizers. The explanation for this effect
is that the error rate is essentially proportional to the density of words
in the pattern space [e.g., the factor (1 — 1/g;) in eq. (6)]. As the
number of words in the vocabulary doubles (by random selection), the
density increases a constant amount, thereby leading to a constant
increase in error rate.

The fact that different talkers have different absolute error rates
and different slopes for the same vocabulary sets can be explained by
the model of Section II as follows. We postulate that the word similar-
ity threshold, T, of eq. (2) is a talker-dependent threshold in that it is
a function of the inherent variability of a talker in repeating a given
vocabulary word. For some talkers (e.g., Talker 2) the threshold is set
very low and hence very few vocabulary words have g; values greater
than 1. For other talkers (e.g., Talker 4) the threshold is set very high
and therefore most vocabulary words have g¢; values greater than 1.
Thus, the absolute error rate [eq. (6)] will be much higher for talkers
with high variability in their word pronunciations than for talkers with
low variability in their word pronunciations. Similarly, the increase in
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error rate for a doubling of vocabulary size is a function (to first order)
of the absolute error rate since the density of words in pattern space
increases more rapidly for talkers with high word variability than for
talkers with low variability.

If the words in the vocabulary are not chosen at random [e.g.,
conditions (iif) to (vii) in Section 3.4] then the above analysis is not
correct. For example, by choosing words with poor training statistics
the average word density is higher than expected, leading to higher
word error rates. Similarly, by choosing words with good training
statistics, the average word density is lower than expected. Since most
words had good training statistics, the effect on the error rate of
choosing good training words is generally much smaller than the effect
of choosing poor training words. For values of @ approaching 1109
(e.g., @ = 800 and @ = 400), both effects are smaller since there are
only a small number of words (for each talker) whose training statistics
were poor.

The average error rates for monosyllables versus polysyllables viv-
idly point out the strong effects of vocabulary complexity. The mono-
syllable vocabulary of 605 words has a much higher complexity than
the total 1109-word vocabulary; hence, it has a much higher error rate
for all talkers. Similarly, the 504-word polysyllable vocabulary has a
much lower complexity than the 1109-word vocabulary and therefore
a much smaller error rate.

V. SUMMARY

In this paper we have presented results of a series of speaker-trained,
isolated word recognition tests on a 1109-word vocabulary, and various
subsets of the vocabulary. We have shown that although a great deal
of variability in error scores was noted across talkers, a fairly good
consistency in error scores across replications by the same talker was
attained. On the total vocabulary an average (over talkers) error rate
of 20.8 percent on the top candidate and 9.3 percent on the top five
candidates was obtained. These scores represent the anticipated av-
erage performance of the recognizer across different talkers. The best
talker achieved a 6.0-percent error rate on the first candidate, whereas
the worst talker achieved a 43.3-percent error rate on the first candi-
date.

By considering various subsets of the 1109-word vocabulary we were
able to show that the method of selection of the words within the
vocabulary had a strong effect on the word error rate achieved.
However, when we used randomly chosen vocabulary subsets all
talkers had error rates that increased by a constant percentage for
each doubling in the vocabulary size. A simple explanation for this
effect was given.
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