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Modern trunking theory recognizes the need to account for day-to-
day load variation when sizing a trunk group for an average blocking
objective. This paper investigates the effects of high levels of load
variation on average blocking, the measure of service used for sizing
final trunk groups in the Public Switched Network. Specifically, we
identify a curious phenomenon in which high day-to-day variation
results in low average blocking and characterize the traffic theoretic
models for which this occurs. By a similar analysis, we also investi-
gate the behavior of an alternate measure of service, the probability
of blocking, measured by the ratio of the number of unsuccessful
attempts to the total number of attempts.

I. INTRODUCTION
1.1 Background

An important class of trunk groups in the Public Switched Network
consists of those groups that provide the last-choice route for a call
trying to reach its destination. The performance of such a “final trunk
group” is defined to be the 20-day average blocking during the chosen
busy hour of the busy season. In the Bell System, the final groups are
sized for an objective of one percent average blocking (B.01) in the
busy season.

Figure 1 shows the history of the measured busy-hour loads offered
to a trunk group over consecutive days. The degree of variability of
the load measurements is not consistent with the hypothesis that the
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Fig. 1—Busy-season load variations.

daily busy-hour load is constant; rather, it varies from day-to-day in a
somewhat random fashion. Modern teletraffic theory has recognized
that this day-to-day variability in the offered load must be considered
when determining the number of trunks required for an objective level
of average blocking. It is generally believed that this variability tends
to increase a group’s average blocking, and therefore, its trunk require-
ment, over that observed during constant load conditions.

1.2 Motivation

Recent analyses of Bell Operating Company traffic data have re-
vealed that levels of day-to-day load variation, much higher than those
considered in current trunk engineering practices, occasionally appear
in the network. To study the effects of such traffic on network service
and trunk requirements, the currently deployed traffic models were
extended into this region of high load variability. The results are
illustrated in Fig. 2, which shows, for Poisson traffic with a fixed mean
offered load, @, and number of trunks, ¢, the average blocking Basa
function of the variance, v, of the daily offered load. This quantity,
called the day-to-day load variation, is usually parameterized by the
variable ¢, with v = 0.13@* [1, 2]. In current engineering practices, ¢ is
assumed to vary between 1.0 and 1.84. The graph shows that B
increases with increasing load variation, as expected, but only up to a
certain point. Beyond that point, B decreases monotonically to zero.
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Fig. 2—Average blocking versus day-to-day variation.

Thus, the model predicts that a call arrival process with a highly
variable daily load will have lower average blocking than one with a
constant daily load.

The purpose of this paper is to analyze and explain this counter-
intuitive phenomenon and to determine its implications on current
service objectives and traffic models.

1.3 Overview

Section II reviews the model of day-to-day load variation currently
deployed in Bell System trunk engineering practices. We then define
the average blocking service criterion used for sizing final trunk groups
and compare it to an alternate measure of service, the probability of
blocking. In Section III, we analyze the behavior of the two measures
of service under conditions of high day-to-day load variability and
compare numerically their properties in different regions of engineer-
ing interest. Section IV summarizes our results and discusses the
implications of our findings on trunk engineering practices and network
service objectives.

Il. TRAFFIC MODELS

This section reviews the model of day-to-day load variation that, in
conjunction with models describing the within-hour call arrival proc-
ess, is used to predict the relationship between trunk group size,
average load, and average blocking.
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2.1 Average blocking

The discovery of the effect of day-to-day load variation on average
blocking is credited to a 1958 study by Wilkinson,” who proposed a
mathematical model* that is now the basis for many of the Bell
System’s trunk engineering practices.

In Wilkinson’s model, the load, a, offered to a group of ¢ trunks
within a time-consistent hour (e.g., 9 am to 10 am) varies from day to
day in a random fashion. Specifically, the daily loads are modeled as
independent random variables with a common gamma distribution
I'(a| @, v) with mean @ and variance v. We assume further that within
each hour, the call arrival process is Poisson and that blocked calls do
not retry. The daily blocking probability for a trunk group with ¢
trunks and offered load a is defined by the Erlang blocking function,
Blc, a); the average daily blocking probability, denoted B, is given by

B=B(c,av = f B(c, a)dT'(a|a, v). (1)

0

2.2 Other considerations

Wilkinson’s model (1) has been used within the Bell System to
account for day-to-day load variation in the sizing of final trunk groups.
Current trunk engineering practices also account for (i) the non-
Poisson or “peaked” nature of overflow traffic,” and (if) the finiteness
of the one-hour measurement interval within which traffic measure-
ments are collected.! However, the consideration of these additional
factors affects only the choice of the daily blocking function in (1) but
not the results of this paper, which hold for any single hour blocking
function of practical interest.

2.3 Probability of blocking

In the next section, we will compare certain properties of the average
blocking service measure, B, with those of another standard service
measure, the probability of blocking, defined below.

Let

e(e, a) = aB(c, a) (2)

denote the overflow from a trunk group with ¢ trunks and offered load
a, and let

o= f aB(c, a)dT'(a|a, v) (3)
0

denote the average overflow. We define the probability of blocking,
Pg, as the ratio of the average overflow to the average offered load:
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Pg =

Qi

Q=

f aB(c, a)dT'(a|a, v). (4)
1]

Thus, Pg is simply the probability that an arriving call is blocked.
Comparing eqgs. (1) and (4), we note that B is an unweighted average
of the daily blockings, whereas Ps is a weighted average in which the
daily blocking is weighted by the daily load.*
Next, we investigate the behavior of both B and Pg under conditions
of high-load variability.

lll. AVERAGE VERSUS PROBABILITY OF BLOCKING

In this section, we develop analytical results that validate and
explain the high-variation, low-blocking phenomenon observed in Sec-
tion 1. We begin by relating the asymptotic behavior of B to the
properties of the assumed daily load distribution.

3.1 Asymptotic behavior of B

First, let us generalize the definition of average blocking given in (1)
to the case in which the daily loads are independent, nonnegative
random variables with a common distribution function F(a). To sim-
plify notation, let B(a) denote the daily blocking probability on a
particular trunk group expressed as a function of its offered load a.
Then, the unweighted average blocking is the quantity

B= f B(a)dF(a). (5)
0

Clearly, (5) coincides with Wilkinson’s model (1) when B(a) is the
Erlang B blocking probability and the daily loads are gamma-distrib-
uted. By defining the average blocking in the more general form, we
can investigate the role of both the blocking function B(a) and the
load distribution F(a) in determining the behavior of B.

Let @ and v denote the mean and variance of the offered load
distribution. Our first goal is to find general conditions on F(a) under
which B — 0 as vv/d, the coefficient of variation of F(a), increases.
Our second goal is to show that, for a very general class of blocking
functions B(a), the commonly assumed gamma distribution satisfies
the required conditions on the load distribution. Thus, by analysis we
will both verify and explain the high-variation, low-blocking behavior
described in Section 1.

To give a precise answer to the first question posed above, we first
define the general class of blocking functions to be considered. A real-
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valued function B(a) will be called a blocking function if it has the
following four properties:

(B1) B(0) =0and B(a) >0ifa > 0;

(B2) B is continuous;

(B3) B is non-decreasing; and

(B4) B is bounded.

Let {F)} be a sequence of probability distribution functions concen-
trated on [0, ) and consider the sequence

Bk:f B(a)dF:(a). (6)
0

In Appendix A, we derive simple, necessary and sufficient conditions
on the distribution sequence {F;} under which B; — 0. Specifically,
this will occur if and only if

y_’m Frla)=1 forall a=>0. )]

The sufficiency of (7) follows from a standard convergence theorem
(See Ref. 6, p. 249). A simple, direct proof of both the necessity and
sufficiency of (7) is given in Appendix A.

Condition (7) says that all quantiles of the load distribution converge
to zero. Equivalently, this means that all of the mass of the distribution
converges toward the origin. Note, however, that (7) does not imply
that the moments of the distributions (e.g., mean, variance) converge
to zero.

Using this result, we can now analyze the effect of high day-to-day
load variation on average blocking in the case of gamma-distributed
daily loads.

Let {Tx(a)} denote a sequence of gamma distribution functions with
mean @ and variance v;. According to our result, the average blocking
B, = J& B(a)dT'x(a) converges to zero if and only if

liln Twla) =1

for all @ > 0. In Appendix B, we show that this occurs when the
coefficient of variation of I'x(a), Vve/@, increases without bound. In
particular, if @ = @ is fixed and vy — o, the average blocking B; — 0
for arbitrary ¢ > 0. Moreover, the number of trunks required to
guarantee one percent blocking, B.01, also tends to zero if @ = @ and
U —> 0,

Thus, the results of this section give theoretical explanation for the
phenomenon observed in Section I.

3.2 Asymptotic behavior of Pg
The results of the previous section can also be used to analyze the
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asymptotic behavior of Pp, the probability of blocking, which we

defined in Section IIL.
Recall that the probability of blocking can be expressed as

pp=2=1 J’ o(@)dF(a), (8)
a 1]

il o

where ¢ (a) is the daily overflow load and F(a) is the distribution of the
daily offered load.
Let u(a) = a — ¢(a) denote the daily carried load. Then

o=a-—u, (9
where & = [ u(a)dF(a) is the average carried load. Thus,

a—u

Pp=——1. (10)
a

We can now analyze the effect of day-to-day load variation on the
probability of blocking by studying the behavior of i. To do this, we
first note that the function u(a) has the following properties:

(1) u(0) =0 and u(a) > 0 for a > 0;

(#2) u(a) is continuous;

(#3) u(a) is non-decreasing; and

(14) u(a) is bounded (by the number of trunks in the group).

Thus, the carried load u(a) has the required properties of the
“blocking function” and our result of Section 3.1 can be applied. That
is, we know that & — 0 if and only if the load distributions converge as
in (7). If &Z — 0 and a is fixed, then

Ps=2"% 1 (11)
a

In particular, if the daily loads are gamma-distributed, the probabil-
ity of blocking converges to 1 as the coefficient of day-to-day variation
increases with the mean held constant.

These results illustrate dramatically a fundamental difference be-
tween the average blocking (B) and probability of blocking (Pjp) service
criteria under conditions of highly volatile network loads. For ex-
tremely high levels of day-to-day load variation, the average blocking
measure takes on low values, indicating good service, even though
most of the traffic is blocked (Ps = 1). Under such conditions, the
unweighted average blocking is a poor indicator of the service experi-
enced by the customer.

3.3 Comparison of B and Ps
In addition to the asymptotic results described above, we can also
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analyze the general relationship between B and Ps. Specifically, we
will show that Pp = B regardless of the load distribution.

To see this, note that our assumption that the blocking B(a) is a
nondecreasing function of the offered load implies that for any load
distribution F(a):

J' (@ — a)B(a)dF(a) = f (a — a)B(a)dF(a)
0

0
= J’ (a — a)B(a)dF(a) = j (a — a)B(a)dF(a). (12)

Equivalently,

00

J' aB(a)dF(a) = &j B(a)dF(a),

0

or

Z=B. (13)
a

Py =

Next, we complement these results v[ith a few numerical examples
that illustrate the differences between B and Ps.

3.4 Numerical examples

Recall that final trunk groups in the public telephone network are
sized for an average blocking objective of one percent. The behavior of
B in this low blocking region is illustrated by the lower curve in Fig. 3,
which shows, as a function of the day-to-day load variation, the actual
average blocking experienced by a trunk group sized under the as-
sumption of no day-to-day variation. As we observed in Section I, B
initially increases to a maximum value much less than 1.0, and then
decreases to zero. In contrast, the probability of a call’s being blocked,
Py, monotonically increases to 1.0. However, within the range of day-
to-day variation normally encountered (1.0 < ¢ < 1.84), the numerical
difference between B and Ps is not great.

Finally, let us examine the behavior of B on a trunk group sized for
a high level of average blocking (e.g., 20 percent), assuming no day-to-
day variation. Fig. 4 illustrates that day-to-day variation exerts an
altogether different influence in this region. Namely, the average
blocking decreases monotonically to zero, although the probability of
a call’s being blocked again increases monotonically to 1.0.

IV. SUMMARY AND CONCLUSIONS
This paper describes an investigation of certain properties of the
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Fig. 3—Blocking versus day-to-day variation.

average blocking service measure (B) used for sizing final trunk groups
in the Public Switched Network. The work was motivated by the
results of a recent data study that suggested that levels of day-to-day
load variation much higher than those considered by Wilkinson* and
current Bell System engineering practices occasionally appear in the
network. The analytical development presented in Section III con-
firmed our numerical result of Section 1.2 that very high levels of load
variation will result in low levels of average blocking. In addition, the
properties of an alternate measure of blocking, Pg, were analyzed and
compared to those of B.

Our findings are summarized below:

(i) For the low, objective level of average blocking (one percent) and
the traffic conditions normally encountered in the Public Switched
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Network, the discrepancy between B and Pj is not great. That is, the
current Bell System practice of sizing final trunk groups for a fixed,
low level of average blocking also yields correspondingly low, though
not uniform, levels of blocking probability.

(ii) In contrast with B, engineering for a fixed level of Ps guarantees,
on average, a fixed fraction of successful calls. However, in the presence
of high day-to-day variation, the number of trunks required for an
objective level of Pjp is substantially greater than that required for the
same level of B. Because, the choice of an engineering objective should
consider both customer satisfaction and cost, we cannot conclude that
Pz is a better objective than B.

(iit) In the range of high blocking, which is typical for private and/or
special services networks, the discrepancy between B and Pj is sub-
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stantial. In that case, our results suggest that consideration should be
given to appropriateness of average blocking as a service measure.
(iv) We showed that, under volatile traffic conditions, the assumption
of a particular daily load distribution is crucial in quantifying the
relationship between load offered to a trunk group and the average
blocking of the trunk group.

APPENDIX A

In Section III, we considered the general class of blocking functions
B (a) having the following four properties:

(B1) B(0)=0and B(a) >0 for a > 0;

(B2) B is continuous;

(B3) B is nondecreasing;

(B4) B is bounded.
We now prove the following theorem:

Theorem 1: Let {F}} be a sequence of probability distribution func-
tions on [0, «) and let B(a) be any blocking function. Then

lim B(a)dFi(a) =0 if and only if
k—o 0
lim Fi(a) =1 for all a > 0.

k—o

Proof: To show sufficiency, let € > 0. Since B(0) = 0 and B is
continuous, a < § implies B (a) < €/2 for sufficiently small 8. Assume
that B is bounded by M. Since

lim Fi(a) = 1,
k—ox

for sufficiently large %, F:(8) = 1 — ¢/2M. For such k,

0 ]
J B(a)dF(a) = J’ B(a)dFi(a) + J' B(a)dFi(a)<€/2 +€/2 =€.

0 0 8

Thus,

lim | B(a)dFi(a) =0.
a—

(1]
To show necessity, suppose that for some ay > 0,
lim F(ap) # 1.
k—owx
Then there exists a subsequence {n:} and a A, > 0 such thatF,, (ao)

=< 1 — Au. Also, (B1) to (B3) imply that B(a) is bounded away from
zero on [ao, ®), say by Az > 0. Then,
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J’ B(a)dF,,(a) ZJ B(a)dF,(a) 2A2J’ dF, (a) = Az:\ >0,
0 ag ay

which contradicts

f B(a)dFi(a) — 0;
0

thus,
lim Fir(a) =1 forall a>0.
koo

QED

APPENDIX B
Theorem 2: Let {I'(a|a, v)} be a family of gamma distributions
with given mean a@ and variance v and suppose that @ = 1 and
Vu/& — . Then,

I'le|a,v)—1 forany a>0.

Proof: By definition, the gamma distribution with fixed mean @ and
variance v is given by

I'e|a,v) = I‘lz;) J t*leP'dt, (14)
0

where I'(a) is the gamma function and the parameters a and f are
determined by

a=ua/B,v=a/B (15)
Integrating (14) by parts we obtain
B e BB (T
TI'(a|a,v) = Ta)a e 7t*|§ +_I‘(a)a i e "tdt. (16)

Let us start by showing that the first term in (16) tends to 1 as the
coefficient of variation tends to infinity. From (15) @ = @*/v and using
the property of the gamma function we obtain

IMNa)a=T(a+1)—1 as a=a’*/v—0. (17)
From (15) we have
- —2 -
ge = '2 = exp | L m 2.
v vov

Using the monotonicity of the exponential and logarithmic functions
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we have

a, a 3’ a a’ a’
exp|—In—| < exp a—1n£1-|£exp lnE- . (18)
v ov v v v

v
Since @ = 1 the ratio @/v — 0 as @%/v — 0. Thus, passing to the limit
in (18) and noting that lim « In(x) = 0, we obtain that

x—+0
B*—1 as a*/v—0. (19)
Thus, from (17) and (19) the first term in (14) tendsto 1 asa — 0 and
B —0.
For the second term in (14) we get
hm—M— e P'todt < lim B IimpB | a*dt=0. (20)
w0 Da)a |, a0 @) aso ™ )
B—0 B—0 B0

Thus, if @ = 1, for any a > 0,
I'a|a,v) > 1 as \/t_J/a—> 0,

The proof is complete.
We would like to remark that under the assumption @ < 1, Theorem
2 can be reformulated as follows:

I'(a|a,v)—>1 as v/ia— >

for arbitrary a > 0.
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