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In this paper we study operator-type models of dynamic nonlinear
physical systems, such as communication channels and control sys-
tems. Attention is focused on the problem of determining conditions
under which there exists a power-series-like expansion, or a polyno-
mial-type approximation, for a system’s outputs in terms of its inputs.
Related problems concerning properties of the expansions are also
considered and nonlocal, as well as local, results are given. In
particular, we show for the first time the existence of a locally
convergent Volterra-series representation for the input-output rela-
tion of an important large class of nonlinear systems containing an
arbitrary finite number of nonlinear elements.

I. INTRODUCTION

In this paper we study operator-type models of dynamic nonlinear
physical systems, such as communication channels and control sys-
tems. Attention is focused on the problem of determining conditions
under which there exists a power-series-like expansion, or a polyno-
mial-type approximation, for a system’s outputs in terms of its inputs.
Related problems concerning properties of the expansions are also
considered and nonlocal, as well as local, results are presented. In
particular, we show for the first time the existence of a locally conver-
gent Volterra-series representation for the input-output relation of an
important large class of nonlinear systems containing an arbitrary
finite number of nonlinear elements.

With regard to background material, functional power series of the
form

* The material given in this paper was described in the writer’s “Conference Course”
at the 1981 European Conference on Circuit Theory and Design, The Hague, August
1981.
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in which ko is a constant, ¢ is a parameter, and « and the &, form =1
are continuous functions, were considered in 1887 by Vito Volterra?
in connection with his studies of functions of functions. (These studies
provided much of the initial motivation to develop the field now known
as functional analysis.) About twenty years later, Fréchet® proved that
a continuous real functional (i.e., a continuous real scalar-valued map)
defined on a compact set of real continuous functions on [a, b] could
be approximated by a sum of a finite number of terms in Volterra’s
series (0), but with (in analogy with the well-known Weierstrass
approximation theorem) the number of terms, as well as the k&n,
dependent on the degree of approximation.

It was Norbert Wiener* who first used a Volterra-series representa-
tion in the analysis of a nonlinear system.* The form of Volterra’s
expansion provided also the basis for Wiener’s later work (see, for
example, Refs. 5 and 6) on nonlinear analysis and synthesis. His
studies, which were concerned mainly with the modeling of systems
when only input-output data (rather than the system’s equations) are
available, stimulated considerable interest concerning Volterra and
other' functional expansions for nonlinear systems. It was appreciated
from the outset that such expansions, when they exist, could provide
important insight of a qualitative nature concerning the input-output
behavior of a system, and that they could be useful in connection with,
for example, the estimation and/or equalization of distortion caused
by nonlinearities.

There is a fairly large literature related directly or indirectly to the
material of the present paper (see, for example, Refs. 1 through 29 and
the references cited there). In most cases the functional expressions
considered are Volterra series (or truncated Volterra series). With
regard to systems for which the governing equations are known, with
relatively few exceptions, questions concerning the existence of an
expansion, its convergence, and/or the nature of the approximation
provided by a truncated series are either not addressed or are left
unanswered. (See, for instance, the remarks in Ref. 6, p. 137, on the
lack of understanding concerning convergence.)

On the other hand, some material regarding the range of validity
and specific properties of functional expansions has appeared, both for
systems governed by ordinary differential equations defined on a finite
time interval [0, 7] (Refs. 15, 16, 20, and 23 are representative refer-

*In Ref. 4 Wiener considers the problem of evaluating the output moments of a
specific type of detector circuit driven by a random input.
' See, for instance, Ref. 7.
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ences), and for polynomic systems, which are modeled by operator
generalizations of ordinary functions of polynomial form.?** The work
on differential equations is concerned mainly with the particular case
of bilinear systems and with “linear-analytic” systems.'®* The main
result obtained asserts that under certain conditions (see, for example,
Ref. 23) there does exist a locally convergent Volterra series for the
solution (but with the size of the region of convergence dependent
on 7).

The studies of polynomic systems, which are operator theoretic in
nature and which draw on the theory of multilinear forms, are more
closely related to the results reported in this paper. The most pertinent
earlier proposition® is one to the effect that if a certain contraction
mapping condition is met, then it is possible to construct in a particular
way a local inverse of a certain generalized power series. While we do
not use previous results in the polynomic systems area, there are some
points of contact with the earlier material, and this is discussed at
appropriate places in Section II.

We now briefly outline the remainder of the paper. Section II begins
with some mathematical preliminaries. In Section 2.1, we introduce
the general setting of concern throughout the rest of Section II. This
involves two maps f and g related by f[ g(z)] = u for u in a certain set
that can be thought of as a set of system inputs such that each u
contained produces an output g(u). The remaining portion of Section
IT describes, proves, and discusses results concerning expansions and
approximations of g(u). The material in Section II is somewhat ab-
stract. Examples which illustrate how the material can be used to
obtain more specific results of general interest are given in Section II1.

Il. APPROXIMATIONS AND EXPANSIONS

Throughout the paper, # and %, denote two Banach spaces, each
with real or complex scalars, and X denotes a nonempty open subset
of . We use the symbol |- || for the norm associated with %, as well
as for the norm associated with %, and @ is used to denote the zero
element of # and of %,.

It will become clear shortly that a central role in our development
is played by first and higher order Fréchet derivatives (see, for instance,
Ref. 30). Before proceeding, we recall a few pertinent facts and defi-
nitions.

Let F map X into 4, and let x, be a point in X. If there is a bounded
linear map L., from %, to & such that || F(xo + h) — F(x) — L:,h| =
o(|h]) as ||kl = O, then F is said to be Fréchet differentiable at x,
with Fréchet derivative L., which we denote by dF (x,). If F is Fréchet
differentiable at every point in X, then we say that F is differentiable
on X. Similarly, if F is Fréchet differentiable on X and dF(-) is
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continuous, then F is said to be continuously differentiable on X.
Higher order Fréchet derivatives of F are defined in the usual inductive
manner.

Note that the second-order Fréchet derivative d*F(xo), when it
exists, is a bounded linear map from %, into the space L( %o, %#) of
bounded linear maps from %, into 4. For h, and h; in %o, d*F (x0) h1 b,
by which we mean [d*F(xo)hi1]hs, is an element of %, and, therefore,
d?F (x) can be regarded as a bilinear map from %o X %, into &, i.e,, it
can be identified in the obvious way with such a map. This bilinear
map satisfies the symmetry condition that [d*F (xo)h1)hz = [d”F (x0) 2]
h. In general,® the mth order Fréchet derivative d™F (xo) form>1is
a bounded linear map from %, into a Banach space of bounded linear
maps with ||d™F(x)|| defined in the usual way in terms of induced
norms, and d™F (x,) can be regarded alternatively as a symmetric m-
linear map from 47 into %. Moreover, for 1 =l <m and A, hs, --+,
h: elements of %, d™F (xo)hi1hs - -+ h; is a bounded linear map from
2, into a Banach space of bounded linear operators.

A result that we shall use is the following essentially standard

inverse function proposition (Ref. 30, p. 273).*
Lemma 1: Let F:X — @ be continuously Fréchet differentiable on X,
and let x, € X. If dF (xo) is an invertible map of %o onto &, there is an
open neighborhood V C X of x, such that F restricted to V is a
homeomorphism of V onto an open neighborhood of F(x,) in &. In
addition, if F is r times continuously differentiable on V, the inverse
mapping G of F(V) onto V is r times continuously differentiable on
F(V).

Also of importance in our work are derivatives of Banach-space-
valued maps defined on an open subset S of the real or complex
numbers. If F maps S into # and s; € S, then F is said to have a
derivative dF (so)/ds at s, if dF (so)/ds is an element of % and we have

lim | ~'[Fs0 + v) = Flsn)] - dF (s)/ds] = 0.

Again, higher order derivatives are defined in the usual inductive way.
Here derivatives are elements of 2.

2.1 fandg

Throughout the paper, f:X — % denotes a map with the property
that there is a nonempty open convex subset U of 4 such that for each
u € U, there is in X a unique x, such that f(x,) = u. (Recall that X is
a nonempty open subset of %o).

* With regard to a difference in a hypothesis of Lemma 1 and the cited proposition
in Ref. 30, we note that if A is a bounded linear invertible map of %, onto # with inverse
A7, then, by a result of Banach, this inverse is a bounded linear map of @ onto 4.
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We shall be concerned primarily with the map g: U — X defined by
flg(u)] = u for every u € U.

2.2 A representation theorem for g(+)

We shall refer to the following two hypotheses:
H.I: For some positive integer p, the mth order F-derivative
(i.e., Fréchet derivative) d™f exists and is continuous on X for m =
1,2, .., (p+1).
H.2: [df(x)]™ exists [i.e., df(x) is an invertible map of %, onto #] for
x€EX.
Theorem 1: Suppose that H.1 and H.2 are met, and let u and u,
be points in U. Form = 1,2, ---, p + 1 and each B € [0, 1], let
&Em(Uo, u — uo, B) be defined as follows:

1.(a) giluo, u — wo, B) = df{ gluo + Blu — uo)1} "(u — uo)
1.(b) gm(uo, u — wo, B) =

—df{gluo + Blu — )]} !Ez @~ - X \
= 1Hko+- o +h=m

-d'f{gluo + B(u — w)]} g, (o, u — uo, B) &, (uo, u — uo, B)

b gk;(uﬂsu_uoiﬁ)* (1)
form=2, ... p+1.
Then gp+1(uo, u — uo, B) depends continuously on B for B € [0, 1],
and we have

g(u) = guo) + giluo, u — wo) + +++ + golto, u — uo)

+(p+1) J’ (1 = B)°gps1(uo, u — uo, B)dp,
0

in which gn(uo, u — o) = gm(tto, U — o, 0) form=1, ..., p.
Moreover,
2.(a) there are positive constants p and o, which do not depend on
u, such that
P

g(u) — gluo) — Y gmluo, u — uo)

m=1

=plu—-w|*" for |u-w|=<o,

2.(b) there are positive constants p,, ps, -+-, pp, Which do not
depend on u, such that || gm(uo, u — w)| < pm|lu — w||™ for m =
1,2, -.-,p, and

*In(1), ¥

ky+hot -tk pm=m

k=0

denotes a sum over all positive k,, - ., k, that add to m.
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92.(c) form=1,2, -+, p we have gn(to, Ua — Uo) = r"&m(to, Up = Uo)
for ua and uy in U such that (u. — uo) = r(us — o) for some real
number r.

Proof: By H.1, H2, and Lemma 1, the mth order F-derivative d"g(w)
exists and is continuous form=1,2, ---, (p+ 1) and w € U.

By a version of Taylor’s theorem for Fréchet differentiable maps

(Ref. 30, pp. 190-1),

£) = glun) + deg(un) (u — o) + 3 8 (a0) (s = o)®
+oeee t i, d”g(uo) (u — uo)”
p.

(1 - By
. J' LB qomglue + i~ wolle - w*"dp, @
T

where (u — uo)™, form=1,2, --+, p + 1, denotes [(u — wo), (1 — wo),
«ov, (u — up)] with m terms.
Since d™g(w) exists for m = 1, 2, -+, p + 1 for w belonging to

the convex set U, d™g[uo + B(u — uo)]/dB™ exists and is equal to
d™gluo + Blu — uo))(u — uo)™ for € [0, 1] and m = 1, 2, .--,p+1
[31, p. 198].*

Let g(B) denote g[uo + B(u — uo)] for all real B such that uo +
B(u — u) € U, and let g™ (B) stand for the mth derivative of g(f)
with respect to 8 at the arbitrary point 8 € [0, 1].

We have f[g(B)] = uo + B(u — uo) when uo + B(u — o) € U.Bya
version of the chain rule (Ref. 31, p. 173) for the derivative of a
composition function,

dflg(B)lgV(B) =u—w, PLE[O,1] (3)
since df[¢(B)] and ¢'”(B) exist for 8 € [0, 1]. Thus,
dgluo + B(u — uo))(u — w) = g”(B)
=df[gluo + Blu— uw))] (u—w), BE[0,1] (4)
Nowlet2<m = (p + 1), and let fo: B — % and go: (—, ®©) — % be
defined by

ply) = 3 @ dla(BLy - ()Y ®)

* More specifically, since with A = (u — u), glue + (B + o)h(] = g(uo + Bh) +
dg(uo + Bh)ah + o(| o)) as 0 — 0 (for B € [0, 1]), 1t is clear that dg(u, + Bh)/dp exists
and is equal to dg(u + Bh)h for B € ho, 1]. Similarly, using d™ 'g[uo + (8 + 0)h] =
d™ g (uo + Bh) + d™g(uo + Bh)ah + o(|oh|) as 6 » 0 for 2<m < (p + 1), We see that
d™g(uo + Bh)/dB™ = d™glue + BR)R™ for 1=m = (p + 1).
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qo(r) = q(B) + :21 @7 - p)'gV(P) (6)

for y € % and r € (—, ), where 8 € [0, 1]. We will use the following
generalization of the classical rule for differentiating a product of two
differentiable functions.
Proposition 1: V'ith S a Banach space and A an open interval in
(=, ®) containing a point ry, let L(r) denote a bounded linear map
from %, into S for each r € A, and let e(-) be a map from A to B. If
dL(ro)/dr and de(ro)/dr exist, then d[L(r)e(r)]/dr exists at r = ro, and
d[L(r)e(r)]/dr = L(r)de(r)/dr + [dL(r)/drle(r) at r = ro.

A proof of Proposition 1 is given in Appendix A. Using Proposition
1 and the observation that d™f[q(8)]/dB™ = @ for B8 € [0, 1] when 2 <
m = (p + 1), we show in Appendix B that d™{ fo[go(r)]}/dr™ |-z = 8
for B € [0, 1].

Since we have

m m 1
folgo(r)] = El (@)'d'flg(B)] (kzl &) — B)kq(k)(ﬁ})

for every r, and each d'f[g(8)] can be regarded as a I-linear operator
on %, it follows that for 8 € [0, 1]:

0 = d™fo[go(r)]/dr™ | =g
=m! E (l!)_l 2 (kilko! -« k;!)_l

[=1 ky+hot o +ky=m
:

-d'fla(B)1a* (B)g™(B) - -- ¢*(B). (7)

Referring now to the gm(uo, u — uo, B) in the statement of the
theorem, notice that g(uo, u — 1o, 8) = ¢ (B) for B € [0, 1], and that,
by (7), gm(uo, u — uo, B) = (m!)~'¢"(B) for 2 = m =< (p + 1) and
B € [0, 1]. Therefore, using (2) and ¢"™(B8) = d™gluo + B (u — uo)]-
(u — uo)™ for B € [0, 1] and each m, we obtain the formula for g(x)
given in the theorem, in which g,1(u0, u — uo, B8), which is equal to

[(p + DA gluo + Blu — uo) (& — uo)™*,

depends continuously on S for 0 < 8 < 1.
Since
&mluo, u — uo) = (m)~'d™g(uo) (u — uo)™
for m =1, 2, ..., p in which d"g(u) is an mth order Fréchet
derivative,* it follows at once that properties 2.(b) and 2.(c) hold.

* In particular, d™g(uo) and d™g(ug)vy « -+ Ui forl=l<m—1landuy, € Bfor1 <
J = m — [ are bounded linear maps on 4.
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Finally, and referring to (2}, since
"V (o) = uo) ™| < g (o) |- = 2ol
property 2.(a) is a consequence of the result (Ref. 30, pp. 190-1) that
for every go > 0 there is a 0 > 0 such that
1

5 48 o) — uo)®

g(u) — dg(uo)(u — wo)

_ 1
(p+ 1!

for |u — wo| = o.

d(p+1)g(uo)(u _ uo)(p+1) < 00"u _ uﬂ"(p+1)

2.3 Corollary to Theorem 1

Corollary 1: Suppose that H.1 is met, and that uo € U is such that
df[ g(u)] is invertible (i.e., is an invertible map of %o onto R).
Then there are positive constants p and o such that for u € U with
lu = u| = o,

llg(w) — g(uo) — &i(uo, u — o) — - - - — gpltto, u — wo) ||

=< pllu — uo| ",
in which g\(uo, u — uo), ++ - , 8p(lio, u — o) are defined in Theorem 1.
In addition 2.(b) and 2.(c) of Theorem 1 hold.
Proof: Since df(-) is continuous on X, and, by a theorem of Banach,”
df(g(ue)]™" is bounded, by a standard type of argument (see, for
example, Ref. 30, pp. 154-5) df(-)™" exists and is continuous* in some
open neighborhood T of g(u) in X. Also, since df[ g(uo)] " exists, T’
contains an open neighborhood Ngw, and U contains an open neigh-
borhood N,, of uo such that f restricted to Ngw, is a homeomorphism
of Ngw, onto N, (see Lemma 1). Let = be a nonempty open convex
subset of N,,. At this point the corollary follows from Theorem 1 with
X= Ng(uo] and U = =.

2.4 Comments

For a fixed uo, the expansion given in Theorem 1 has the properties
that the homogeneity condition 2.(c) is met and the remainder, the
integral, is bounded above by p ||z — uo||'**" for ||z — uo|| < o for some
positive constants p and o. A proof given in Ref. 33, p. 174 can easily
be modified to show that the expansion is unique in the sense that
there is no other similar [i.e., g(u) plus p terms plus remainder]
expansion of g(u) valid for all u € U with these homogeneity and

* The continuity is not used in the present proof. It is used in Section 2.7 and in
Appendix C, where reference is made to this proof.
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remainder properties. Of course, a corresponding uniqueness proposi-
tion holds in the case of the truncated expansion in Corollary 1.

In some cases, d'f[ g(uo)] of Theorem 1 is the zero map whenever [
is even and 2 < [ =< p. Then gn(uo, u — 1) = 0 for m even with 2 <
m =< p. This follows from a simple inductive argument using 1.(b) and
the observation that &, + &, + - - - + k; is an odd number if / is odd and
each %; is positive and odd.

Referring to Corollary 1, we can establish the existence of an
expansion in a more general setting. Specifically, let %, be a third
Banach space and let A (-, -) be a (p + 1)-times Fréchet continuously
differentiable map of S, X S into %;, where S; and S are nonempty
open subsets of %, and %, respectively. Let x, and u be elements of S,
and S, respectively, such that A(xo, uo) = 8, in which here € is used to
denote the zero element of %,. Finally, assume that D;h(xo, 1) the
Fréchet partial derivative of h(x, u) with respect to x, at the point
(x0, Uo), is an invertible map of %, onto %, .

By the implicit function theorem in Ref. 30, p. 270 and a related
proposition in Ref. 30, Result (10.2.3), it follows that there is an open
convex neighborhood N of u in S, and a (p + 1)-times Fréchet
continuously differentiable map w of N into S, such that w(u) = xo
and A[w(u), u] = 0 for u € N.* Therefore (2), with g replaced with w,
is a representation about u, of w valid for u € N (Ref. 30, pp. 190-1).
It can be shown that the terms in the representation can be determined
by successively differentiating h {w[uo + B(u — uo)], uo + Blu — wo)}
with respect to 8 and setting the result equal to #. [Recall that
D h(xo, uo) is assumed to be invertible, and see the proof of Theorem
L]

The proof of Theorem 1 shows that the recursive relation (1) arises
in a natural way. Such formulas concerning the inversion of ordinary
power series and/or the derivatives of composite ordinary functions
are probably well known in some circles. In Ref. 29, similar relations
are given in an abstract setting for the different problem of constructing
a local inverse of a mapping that has a power series expansion.

The expansion of g(u) in Theorem 1, and its associated trunca-
tion in Corollary 1, each contains a constant term g(uo), a term
&i(uo, u — wo) that can be written as L, (z — u) in which L, is a
bounded linear map, and a sum R, (1 — o) of higher order terms such

* Also, N can be chosen so that w is the only continuous map of N into S, such that
w(uy) = xo and hfw(u), u] = 6 foru € N.

t Similar remarks apply also in the case of Theorem 4, below. By applying either
Theorem 2 or Theorem 5, below, to the map H:Sy; X S — B, X B defined by H(x, v) =
[A(x, v), v] for (x, v) € So X S, the writer has obtained an explicit expansion, involving
partial derivatives of k(-, ), for the solution x of A(x, u) = w in terms of u and w, under
certain reasonable assumptions concerning A(-, -) and the sets from which u and w are
drawn. The details will be given in another paper.
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that R, (k) = o(|k|) as || 2|| = 0. The following result shows that the
hypothesis of Theorem 1 that H.2 is met, and of Corollary 1 that
df[ g(uo)] is invertible, are not merely ones of convenience which allow
an explicit expression to be given for the terms.

Proposition 2: Let u, be an element of U such that df{ g(u)] exists
[respectively, such that f is continuously F-differentiable on a neigh-
borhood of g(uo)). Suppose that there is a constant o > 0 such that

g(u) = g(uo) + L(u — wo) + R(u — wo) (8)

for u € U with ||u — uo|| < o, in which L is a bounded linear map from
& into B,, and R(-) is a map of & into Bo with the property that
R(h) = o(|k]) as |h]| = 0. Then df[g(uo)]™" exists [respectively,
df(x)™" exists and is continuous in x for x in some neighborhood of
£(uo)]-

The proposition is proved in Appendix C. It shows, for example, that
H.2 is a consequence of the hypotheses that g(U) is an open set, X =
g(U), f is differentiable on X, and (8) holds for each uo € U. In this
connection, notice that because U is open, g(U) is open under merely
the condition that f is continuous on X.

2.5 Results for complex Banach spaces

Theorem 2: Suppose that # and %, are over the complex field, that
the F-derivative d™f(x) exists at each x € X for all m, and that H.2 is
met. Let uo € U, and let p be a positive constant with the property
that uo + v € U for ||v|| < p. Then for u € U such that |u — w| < p,
we have

g(u) = gluo) + 21 &m(Uo, u — W), (9)
in which
gi(uo, u — uo) = dff g(uo)]™ (1 — wo), (10)
and
Emlto, u — uo) = —df{ gwo)]™* 3 (IN7* ) d'fl g(uo) g,
=2 ky+kyte oo thy=m

< (o, U — Wo) Gr,(Uo, U — o) +++ &r (o, u — ), m=2. (11)

Proof: Here d™g exists on U for each m (see the proof of Theorem 1).
In particular, dg exists throughout U, and therefore we see that

lim 27 g(x + zh) — g(x)]
exists in %, (and equals dg(x)h) for each x € U and h € %, where 2 is
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a complex scalar variable. Thus, by Theorem 3.16.2 of Ref. 34, p. 111
and the development preceding it,

d"gluo + z(u — uo)]/dz™|.=o

exists for each m = 1, and we have
gu) =gu) + ¥ (m)'d"gluo + z(u — wo)]/d2"|.=0
m=1

for |u — w| < p.
Notice that

d"gluo + z(u — uo)]/dz"|.=0 = d™gluo + r(u — uo)]/dr™|,=o
in which r is a real variable. Since (see the proof of Theorem 1)
d"gluo + r(u = w)]/dr™|r=o = m!gn(uo, u — uo),

the proof is complete.

Theorem 3: Let the hypotheses of Theorem 2 hold. Then for each u,
there is a 0 > 0 such that the series on the right side of (9) converges
uniformly for ||u — w| < o.
Proof: The proof of Theorem 2 shows, using the openness of U,
that for each uo there is a p > 0 such that the series converges for
lu — wo|| < p. Since dg exists on U, g is continuous on U. The map g
is, therefore, locally bounded on U in the sense of Ref. 34, Definition
3.17.1, and thus the proof of Theorem 3.17.1 of Ref. 34, p. 112, shows
that, given uo, there is a ¢ > 0 such that the convergence is uniform for
lu = wo <.

The following result is obtained from Theorems 2 and 3 in the same
way that Corollary 1 is proved.
Theorem 4: Assume that # and %, are over the complex field, and
that d™f exists on X for each m. Let uo € U, and suppose that
df[ g(uo)] is an invertible map of %, onto #. Then there isa ¢ > 0
such that the expansion

gu) = glw) + Y gnmluo, u — uo)
m=1

is valid and uniformly convergent for u € U with | u — w|| < o, where
&g1(uo, u — o), g2(uo, u — uo), - -+ are defined by (10) and (11).

2.6 Comments

Under the conditions of Theorem 2 (respectively, Theorem 4) the
infinite sum R(u — wo)of the terms ga(uo, u — wo), ga(uo, u — wo), -+ -
has the property that R(h) = o(| &) as |&| = 0. (This follows from
the fact that dg(u) = df[ g(u0)]™".) Therefore, Proposition 2, as well
as remarks similar to those of Section 2.4, apply here too with regard
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to the necessity of the hypothesis that H.2 is met (respectively,
df[ g(ue)] is invertible).

Following is an interesting corollary of Theorems 2 and 3.
Corollary 2: Suppose that & and %, are complex Banach spaces, and
that f is a C*-diffeomorphism of X onto U (i.e., that f is a homeo-
morphism of X onto U such that f and its inverse g have F-derivatives
of all orders on X and U, respectively). Let uo € U, and let p be
a positive constant with the property that uo + v € U for ||v| < p.
Then the series representation (9), in which the gm(uo, u — ug) are
given by (10) and (11), is valid for | u — w|| < p, and there isaoc>0
such that the series on the right side of (9) converges uniformly for
lu = wl| <o
Proof: Since (df)™ exists on X under the conditions of Corollary 2*,
Corollary 2 follows from Theorems 2 and 3.

2.7 Discussion

Uniqueness propositions similar to the one described in Section 2.4
apply in the cases of Theorems 2 and 4, as well as Corollary 2. Consider,
for example, Theorem 2 and assume that its hypotheses are met. From
(10) and (11) (or from the proofs of Theorems 1 and 2), we see that the
expansion on the right side of (9) has the homogeneity property that
for each m, gm(to, Ua — Uo) = r"gm(to, Us — Uo) for ua, us € U such that
e = tol < p, | s — woll < p, and (ua — uo) = r(us — o) for some real
r. Suppose that g(w) + Ym-1 Am(to, & — wo) is also an expansion of
g(u) about uo valid for ||u — u| < p, and that it has the corresponding
homeogeneity property. Assuming, for the purpose of induction that
B0, u — to) = &mltto, u — o) for |u — wol| < p and 1 = m = n for
some nonnegative integer n, we see' that for any fixed u such that
lu = uoll <p,

Pnsr(to, u — to) — gn+1(tbo, u — Uo)

= Y [gnluo, u— o) — hm(uo, u — ue)Jr™ """ (12)

m=n+2
for 0 < |r| < 1. Since

sup|| gn(uo, u — o) — hm(uo, u — wo) |

* We have f[ g(u)] = u and g[ f(x)] = x for each u € U and each x € X. Thus, by a
version of the chain rule for differentiating a composite function (Ref. 31, pp. 171-2),
df{ g(u)]dg(u) = I and dg[ f(x)]df(x) = I, for each u and x, where I and I, are the
identity maps on # and %, respectively. This shows that df{x) has both a right inverse
and a left inverse for each x € X, and, therefore, that (df)”" exists on X.

* This type of observation is used in Ref. 33, p. 174, to prove the uniqueness result
given there.
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is finite, the right side of (12) approaches zero as r — 0. Thus Ap+1-
(w0, u — uo) = gns1(tto, U — wo), and, therefore, hn(uo, u — o) = gmluo,
u — uo) for all m and all u such that || u — | < p.

The proof of Theorem 2 is based in part on basically well-known
results concerning Banach space valued functions of a complex vari-
able. Such results are used also in, for example, Refs. 20 and 24 for
related but different purposes.

A comparison of Theorems 1 and 4 leads us to ask whether Theorem
1 can be used to prove a result along the lines of Theorem 4 for cases
in which 2 and %, are not necessarily over the complex field, but the
|| d™f(x) | are sufficiently small in some not too restrictive sense for x
near g(uo). In this connection, we have the following.

Theorem 5: Let d™f exist on X for each m, and let u, be a point in U.
Suppose that there are positive constants § and y, and a neighborhood
No of g(uo) in X, such that |d™f(x)|| = m!8y™ for x € Ny and every
m = 2. Assume that df[ g(u)] is an invertible map from %, onto %.
Then the conclusion of Theorem 4 holds.

Proof: By the proof of Corollary 1, it suffices to show that there is a
o > 0 such that

(P + 1) J’ (l - ﬁ)ng+1(u0’ u— U, ﬁ)dﬁ’
0

the remainder in the expansion for g(u) of Theorem 1, approaches 8 as
p — o uniformly for ||u — uo|| < 0. Since 5 (1 —B8)?dB = (p + 1)7, it
is enough to prove that there are constants ¢ > 0, d > 0, and ¢ > 0 such
that for all p, all 8 € [0, 1], and all u € U with |z — w| < o, we have
lgp(uo, u — uo, B) || < ce™. That we do as follows.

By the continuity of g at uo, and the continuity of (df)™" at g(uo)
(see the first part of the proof of Corollary 1), choose ¢ > 0 so that
U contains the open ball of radius o centered at uo, and || df{ g[uo +
Blu — u)]}7'|| = ¢ and ||d'f{gluo + Blu — wo)]}|| = 18" for some
constant ¢, whenever 8 € [0, 1] and |u — wo| < o.

Choose any positive number d. For each m, let A, denote
sup{||e™gm(uo, u — o, B)|:B € [0, 1], | u — uo|| < 0}. From Parts 1.(a)
and 1.(b) of Theorem 1, and our hypotheses, the A, are finite, and we
have

P P m
Z hm = edclo + ¢1é 2 Z Z Tlhklhkg aus hk[
m=1 m=2 =2 ky+ky+-..+ky=m
k>0

for each p > 1. Since

p-1 !
(2 hm) = 3 uhay - By

m=1
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over (ki, ka, -+, k) € (1,2, ---, (p — 1)}, it easily follows that

p m P p-1 :
S yhuhe b= S w( 5 h,,,).
=2

m=2 l=2 kyt+hky+-.-+ky=m m=1

k;=>0
Thus, with
b
$p= 2 hm,
m=1

we have

p

sp<evcio+ 8 Y (ysp-)

=2

forp > 1.

Now let ¢ > 0 be chosen such that

= 1

c10 Z (‘yf.‘)’ =-c,
=2 2

and, if necessary, reduce ¢ so that e’c;o < Y%ec. Since s; < Y%c, and

8(p-1) < ¢ implies that s, < ¢ for p > 1, it is clear that s, = ¢ (and hence

h, = c) for all p, which completes the proof.

2.8 Comments

Since the hypotheses of Theorem 5 can be shown to ensure the local
existence of a Fréchet “power series” expansion (see Ref. 30, p. 190) of
f about g(uo), another way to prove Theorem 5 is to use the result
stated in Ref. 29. The observation concerning the representation of
(8p-1)" as a sum of products used in our proof to obtain the inequality
involving s, and s,—1 (but not the exponential weighting approach) is
used also in Ref. 27 for a case that corresponds here to the one in
which only a finite number of the ||d’f|| do not vanish.

Theorem 1 can also be used to prove nonlocal convergence results
when % and %, are not necessarily complex spaces. For example, let
p be the radius of any finite open ball contained in U and centered at
Uo. Suppose that for every x € X the following is true: d"f(x) exists for
each m, df(x)™" exists, and | df(x)"|| = po for some constant po. Then,
using Theorem 1, it can be shown that if the ||d"f(-)| satisfy certain
smallness conditions on X for m = 2, the expansion described in the
conclusion of Theorem 2 converges uniformly to g(u) for [|u — wo|| < p.
The “smallness conditions” are met if, for example,

sugll d™f(x)]|=0 for m=M forsome M=2,
xE€

and each nonzero
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sup||d"f(x) |

with m > 1 is sufficiently small. The details and a proof will be given
in a later paper.

2.9 Properties 1 and 2

We conclude this section with a proof of a proposition used in
Section III, where attention is directed to cases in which the elements
of # and %, are functions of a time variable ¢. The proposition is used
to show that under certain very reasonable conditions, causality and
time invariance (or periodicity of variation)* are properties which,
when possessed by g, are inherited by the terms gi(uo, u — w), -« -,
&o(uo, u — uo) in Theorem 1, and by the terms gi(wo, u — w),
&2(uo, u — up), + - - in Theorem 2. We first introduce some preliminaries.

Let 2 denote a nonempty set of real numbers. For each w € £, let
T, and Ty, denote linear transformations of # and %o, respectively,
such that || To,w| < ||w] for « € @ and w € %,. Let S be a subset of
2 such that TS C S for w € Q. Let J denote an open interval in the
set R! of real numbers.

We say that a map F:J X S — %, has Property I on S at a point
redJif

To F(r,v) = To F(r, T.v)

for all v € S and w € Q. Finally, we say that F:J X S — % has
Property 2 on S at a point r in J if

ToF(r,v) = F(r, T,v)

forve Sand w € Q.

Proposition 3: Suppose that F:J X S — %, has Property 1 (respec-
tively, Property 2) on S for each r € J, and that for an arbitrary v €
S the derivative dF (r, v)/dr exists at each r € J. Then the map H:J
X S8 — %y, defined by H(r, v) = dF (r, v)/dr for each r and each v, has
Property 1 (respectively, Property 2) on S for each r € .

Proof: Assume initially that F has Property 1. Let arbitrary r € J and
v € S be given and let 8 be a real variable. Using

}ghlgllﬁ"[F(r +B,v) = F(r,v)] — H(r, v)| = 0,

we have

glgllﬂ“[TouF(r + B, v) = To F(r,v)] — To.H(r, v)| =0 (13)

* See Section 3.1 for the pertinent definitions.
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for any w € Q. Since (13) holds also with v replaced with T.v, and
using the hypotheses that F has Property 1 on S at r and at (r + B) for
sufficiently small 8, we find that

EmllA(ﬁ) + To.H(r, v) = To.H(r, T.0)|| =0,
—0

in which A(8) = B [To.F(r + B, v) — TouF(r, v)] — To.H(r, v). By
(13), |A(B)|| = 0 as B — 0. Therefore, we have To.H(r, v) =
TooH(r, T.v) for arbitrary w € Q, as claimed. The Property 2 part of
the proposition can be proved in essentially the same way.

lil. APPLICATIONS AND EXAMPLES

Throughout this section, we consider cases where each element of
2, and also of %o, is a function of a time variable . Specifically, we
now assume that each element of # is a map from a set T of real
numbers into a linear space V with zero element 8y, and, similarly,
that the elements of %, are maps from 7 into a linear space V, with
zero element v.

We shall be concerned mainly with the cases where either # =
Bo=L.(R) or # = % = L«(C), in which by L.(R) [respectively,
L.(C)] we mean the real (respectively, complex) Banach space of
(Lebesgue) measurable* real (respectively complex) column n-vector
valued functions v defined on the interval [0, ) such that the jth
component v; of v satisfies

sup|u,-(t)| <o for .]= 1r 2’ A ()
t=0

and where the norm || || on L=(R) or L«(C) is given by
llvll = max sup|v;(#) .

(As usual, n denotes an arbitrary positive integer.) If, for example,
@B = B = L(R), then T = [0, ) and we can take V and V; to be R".

3.1 Causality and time-invariance

Referring to Proposition 3 and the associated definitions, let € = T,
and initially let T, (respectively, To.) be the “time-truncation” oper-
ator defined on # (respectively, %) by (T,v)(t) = v(¢) for t = w, and
(T.v)(t) = Oy for t > w (respectively, by (To,v)(¢) = v(¢t) for t = w, and
(To,v)(t) = by, for t > w) for each v and each w. Assume that for w €
T, T, and To, map & and %, into themselves, and that || To.v|| < || v||

* See, for example, Ref. 35.
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for w € T and all v. [Notice that these assumptions are satisfied if, for
example, # = %, = L.(R) or Z = %, = L(C).]*

Suppose that the hypotheses of Theorem 1 are met, that U/ is an
open ball centered at uo = 6, that T,,U C U for w € T [which is clearly
satisfied if # = L.(R) or L.(C)] and initially assume that g is causal
on U in the sense that Ty, g(v) = To.g(T,v) forany v € Uand w € T.

Let Gn(u) denote gn(f, u) of Theorem 1 form =1, 2, ---, p and
u € U. We observe that g(Bu) is an element of %, for each 8 € (-1, 1)
and each u € U. By the proof of Theorem 1, d™g(-) exists on U for
m=1,2, ..., p, from which it follows that d"g(Bu)/dB™ exists for
BeE(-1L,1),ue€Uandm=1,2, ---, p[31, p. 198]. By the proof of
Theorem 1, m!Gn(u) = d™g(Bu)/dB™ at 8 = 0 for each m and wu.
Therefore, by the Property 1 part of Proposition 3 [with S = U and
J = (-1, 1)] and an obvious inductive argument, it follows that each
Gm:U — % is causal in the same sense that g is causal.'

Now suppose that T is one of the four sets [0, ), (—oo, ),
{0,1,2,-.-},0r {0, £1, £2, ...}, Again take @ = T. Let T, (respectively,
To.) denote the “time delay operator” defined by (T,v)(t) = 8y for
t<wand (T.v)(¢) = v(t — w) for £ = w when either T' = [0, ®) or T'=
{0,1,2, ...}, and by (T,v)(¢) = v(t — w) when T'= (—», ) or T' =
{0, £1, £2, ...} (respectively, (To.v)(¢) =8y, for t < w and (To.v)(t) =
U(t — w) for t = w if T is either [0, ) or {0, 1, 2, ...}, and (To,v)(¢) =
v(t — w) when T is either (=, ) or {0, £1, £2, ...}). Assume here,
as above, that T, and T, map & and %,, respectively, into themselves,
that || To.v|| = | v| for each v and w, that the hypotheses of Theorem
1 are met, that U is an open ball centered at 6, and that u, = 4.
Consider the case in which g is causal on U, and g maps the zero
element of # into the zero element of %. Assume that g is time
tnvariant on U in the sense that Ty, g(u) = g(T.u) for u€ U and
wET. Let G, be as defined in the preceding paragraph. By the
Property 2 part of Proposition 3, and the observations concerning
d™g(Bu)/dB™ in the preceding paragraph, we see that each G, (m =
1,2, ..., p) is time invariant on U.

The material just described can be modified to address the case in
which g is periodically varying with a given period r. Specifically,
suppose that T'is [0, «), (=, ®), {0,1,2, --.}, or {0, £1, £2, ...}, and
that 7 is a positive element of T. Let T, and Ty, be as defined in the
preceding paragraph, but with © taken to be the single-element set
{7} rather than T. Then, in the setting described in the preceding

[0 * '{‘ltle jniﬁsumptions are not met for # the set of bounded continuous functions from
, ) toR'.

t Our definition is consistent with the one introduced in Ref, 36, p. 888, concerning
causality for operators between abstract spaces. Also, a related result is given in Ref. 37,
p- 40, for polynomial operators.
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paragraph, To.g(u) = g(T,u) for u € U and w € {2 means that g is
periodically varying with period  on U, and we see that if g has this
property, it is inherited by the Gn.

In the case of Theorem 2, each d™g(-) exists on U (because H.2
holds), and gn(8, u) = (m!)~'d™g(Bu)/dB™ at B = 0 for each m =
1,2, --- and ||u| < p. Therefore, results essentially the same as those
developed in the preceding four paragraphs hold also with regard to
the terms in (9).*

3.2 An application of theorem 1

Our first example, as well as the example in Section 3.3, concerns a
nonlinear integral equation that plays an important role in the theory
of feedback systems. To introduce the equation, we need the following
definitions.

Let ao and a; be positive numbers with a0 =< ai, and let Y, Yz, - -,
Y be a collection of (p + 1)-times continuously differentiable functions
from R! onto R such that ¢;(0) = 0 and a0 < dy4(A)/d\ < a; for all i
and all A. Below, for convenience, we shall use U™ to denote the mth
derivative of ;. Let ¢ denote the map from R" into R" defined by
[¥(s)]: = Yi(s:) fori = 1,2, .-+, n and all s € R, in which [¥(s)): and
s; are the ith components of {/(s) and s, respectively.

Let % denote an n X n matrix-valued function defined on [0, ) such
that each k;; is measurable, bounded, and satisfies

j | Bij(T) | dT < o0,
0

In this and the following section, each k;; is assumed to be real
valued.
Consider the equation

t
x(t) + J’ k(t — TW[x(1)]dT = ul(t), t=0, (14)
o0
as well as the related equation

y(t) + j k(t — 1) D(m)y(r)dr = v(¢), t=0, (15)
o

in which u and v are elements of L.(R), and D is a real n X n diagonal-
matrix-valued function defined on [0, «) such that each D;; is measur-
able on [0, ) and satisfies ao < Dii(7) =< a: for each 7. Since ¥ satisfies

* Specifically, the development remains valid if U is taken to be {u € B:||u]l < p),
and if “Theorem 1” and “m =1, 2, - - -, p”, respectively, are replaced with “Theorem 2"
and "1, 2, ee P
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a global Lipschitz condition on R", and & is as indicated, a standard
successive-approximations approach (see, in particular, Ref. 38, Sec-
tion 1.13) can be used to show that for each u and v in L.(R), (14) and
(15) have solutions x and y, respectively, in the space E of functions w
from [0, o) into R" such that

A
j |wi(7) Pdr < o
0

for each A € (0, ) and each i, and that x and y are unique in E.* To
fix ideas, assume (this is often very easy to justify) that the only
solutions of (14) of interest to us are those that are contained in E.

Let A.1 denote the hypothesis that for each z and v in L.(R), L.(R)
contains any solution x of (14) in E, as well as any solution y of (15) in
E. For explicit conditions on &, ao, and a; under which A.1 holds, see
Ref. 36, Theorem 3.

Assume initially that A.1 is met, and notice that then for each pair
of elements u, v € L.(R), the space L..(R) contains exactly one element
x such that (14) is satisfied and exactly one element y such that (15) is
met. In particular, we see that we can take f in Section 2.1 to be the
map of L..(R) into itself defined by

¢
fw)(t) = w(t) + f k(t — Wfw(r)}dr, t=0

0
for each w € L.(R), and can take %, %o, X, and U to be L..(R). In this
example, g is defined on all of £.

To discuss the example in more detail, it is convenient to let K and
¥ denote the maps of L.(R) into L..(R) defined by
(Kw)(t) = f k(t — )w(r)dr, t=0

o
(Fw)(t) = Yw(t)], t=0

for each w € L.(R). Thus, here f = I + K¥ in which I is the identity
map on L.(R). Consider ¥.

Proposition 4: d¥ exists on L.(R), and for w and h in L.(R), we have
[d¥(w)h](£) = Do(t)h(t) for t = 0 in which Do(t) is the diagonal
matrix diag[y{"[w:(2)], Y&"[wa(8)], -+ , Y Twa(t)]}.

* The integral on the left side of (14) can easily be shown to be an element of R" for
each ¢ whenever x € E. Since the value of the integral is unchanged if x is replaced by
any element of E that agrees with x almost everywhere, (14) has a solution if there is an
element of E that satisfies the equation almost everywhere, and, moreover, any solution
f E) E is unique and not merely essentially unique. Similar remarks apply in the case of

15).
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Proof: For w and A in L.(R),
Y(w + h)(t) — ¥(w)(t)

= Do(t)h(t) + f [Dos(t) — Do(t))dB-h(t), t=0, (16)
L]

in which Dos(t) is the diagonal matrix of order n whose ith diagonal
element is Y[B[wi(t) + hi(t)] + (1 — B)wi(t)]. Since each y{" is uni-
formly continuous on compact subsets of R, we see that for any fixed
w, the difference (Dogi — Do) of ith diagonal elements satisfies

sup | Dogi(t) — Doi(t)| = 0 as ||k||— 0.

Thus, with 8§ € L.(R) defined by 8(£) = [y[Doa(t) — Do(t)]dB-h(t) for
t = 0, we see that ||§]| = o(]| 2])), which proves the proposition.

Proposition 4, together with the discussion above concerning (14)
and (15), show that df exists, that (using the linearity of K) df =
I + Kd¥(w) for each w, and that for any w the map df(w) is an
invertible map of L.(R) onto itself.

To make further progress, we need the following result which is
more general than Proposition 4.

Proposition 5: For each m = 1, 2, +-+, (p + 1), d™V¥ exists and is
continuous on L.(R), and, with hi, hz, ++-, hn any m elements of
L.(R), we have

[d™¥(w)h -« hn(t)]: = P [wilt)] H1 hi(t), t=0
. J=

foreachi=1,2, ---,nand any w € L.(R).
Proof: Let w be given. By Proposition 4 and, (with regard to
continuity) the observation that ||d¥(w + v)h — d¥(w)h| =
max; supeo| Y [wi(t) + vi(t)] — ¥ [wi(¢)]| for | ]| = 1, the assertion
for m = 1 is true. Suppose that the assertion is true for m such that
l=m=lwithli<(p+1).

Let O:(w) denote the continuous multilinear mapping of La(R)“*"
into L.(R) defined by

I+1

[@w)(py, P2, - -+, L) (O] = Y wil)] [ pile),  ¢=0

J=1
for each i and for p; € L..(R) for all j. We shall use @:(w) to denote the
usual associate (Ref. 31, p. 318) of @; that belongs to L(L.(R), L(L.(R),
e++, L(Le(R), L(R)) -+ +)) with (I + 1) L’s, in which L(A,, As) stands
for the set of continuous linear operators from the Banach space A,
into the Banach space A;.*

* For example, if I = 2, L(L«(R), L(L=(R), -+, L(L=(R), L=(R))--+)) = L{L=(R),
L(L«(R), L(L=(R), L=(R)))).
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By our induction hypothesis, and with A, as well as A, for j =
1,2, ..., [, elements of L.(R),

|d¥(w + h)hy « -« by — d¥(w)h - -+ hi — Qw)hhy - - A

! !
= max sup U wi(t) + hi(t)] [T hilt) - Yolwi(t)] [T Aji(?)

J=1

! 1
_ ¢$1+"[wf(t)]hi(t) H hj,-(t) = c(h) Hl ”hj",
J=

j=1
where
c(h) = max sup [P [wi(t) + hi(t)] — YOLwi(t)] — W Twi(e) Jhi(e) |

Thus, |d¥(w + h) — d¥(w) — Qw)h| = c(h). By the uniform
continuity on compact sets of the y{"*" (see the proof of Proposition
4), we have c(h) = o(||2||) as |&|| = 0, which shows that d"*"¥(w)
exists and that d"*"¥(w) = Q/(w). Since ||Qw + A)p1 -+ p1s1 —
Qw)pr -+ - pr| =

I+1

max sup [ [wi(t) + hi(#)] — Y [wit)]]- T | oill
i =0 J=1

and the ¢{"*" are continuous, we see that
|@w + h) — @w)|—0 as |k|—0,

showing that d*"¥(w) depends continuously on w. This completes
the proof.

Returning now to our example, by Proposition 5 and the linearity
and boundedness of K, we see that d™f(w) exists and is continuous for
w€L.(R)andm =1,2, --., (p + 1). (Of course, d™f = Kd™¥ for
1<m=(p+1).) Therefore, the hypotheses of Theorem 1 are satisfied.
Now choose uy = § in Theorem 1 and notice that g(6) = 6.

Referring to the standard successive approximations technique (Ref.
38, Section 1.13) that can be used to construct a unique solution x in
E of (14) for each u € L.(R), by the rule by which the iterates are
generated it follows that g is causal and time invariant on L..(R) in the
sense of Section 3.1. Therefore, the material in Section 3.1 shows that
&m(8, ) of Theorem 1 is both causal and time invariant on L.(R) for
eachm=12...,p*

The terms g1(0, u), g2(0, u), - - - , g5(6, u) in the expansion in Theorem
1 can be determined using 1.(a) and 1.(b)." For example, with H

* The same conclusion can be reached by considering the specific form of the
&m(0, u), and using the fact that the operator H introduced below can be shown to be
causal and time invariant. (In this connection, see Lemma 2.)

" The recursive process is straightforward in principle, but the complexity mounts
rapidly with increasing order.
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denoting [I + Kd¥ ()], we have g:(d, u) = Hu, and, using (6, u) =
Hu, we find that when p = 2,

&0, u) = —%HKd*¥(6)(Hu)* 17

gince k; + k2 = 2 with %, and k. positive integers requires that &, =
ks =1, and

gs(0, u) = —%HKd*¥(8)(Hu)®
+ %BHKd™V (6) (Hu)[HKd*¥ (6) (Hu)?]. (18)

[The derivation of (18) uses g1(6, u) = Hu, (17), and the observation
that k, + k; = 3 is met if either 2, = 1 and ks = 2 or k& = 2 and
kz - 1.] .

Proposition 5 provides an important interpretation of the terms in
the expressions for the g.(6, u). For example, by Proposition 5, we see
that d*¥(8)(Hu)®, which appears in the first term on the right side
of (18), is the element s of L.(R) given by si(t) = ¢{*(0)[(Hu)(¢):]’
for ¢t = 0 and each i. Similarly, the ith component of d*¥(0)(Hu)-
[HKd*(6)(Hu)?] in (18) has values y{*(0)[(Hu)(t):]qi(¢), where ¢ =
HKd>¥(6)(Hu)?. Of course, g also has an immediate interpretation.

3.3 An application of corollary 1

Corollary 1 is in many respects a local version of Theorem 1. Here
we give an example of an application of the corollary. As in Section
3.2, let # = %o = L.(R), and let K, ¥, I, and u be as defined there, but
here it is not required that A.1 be met.

Let F:Lo(R) = L.(R) be given by F = I + K¥. As in Section 3.2,
d™F exists and is continuous on L.(R) form=1,2, ..., (p + 1). Of
course, dF(0) = I + Kd¥(0). _

Let z be a complex scalar variable, and let K, the Laplace transform
of &, be given by

K(z) = J k(t)e *dt, Re(z)=0.
0

Assume that
det[1, + K(z)diag{y{"(0), ---, ¥ (0)}] # 0

for Re(z) = 0, in which 1, is the identity matrix of order n. As a
consequence, it can be shown (see Lemma 2 in Section 3.5) that
dF(0): L.(R) = L.(R) is invertible. Thus, by Lemma 1, there are open
subsets S; and S: of L.(R), each containing 8, such that F restricted to
S, is a homeomorphism of S; onto Ss.

Therefore, the hypotheses of Corollary 1 are met if X is chosen to be
S, fis taken to be the restriction of F to X, and U is any open convex
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set contained in S; and containing 6. This establishes the existence of,
and shows how to obtain, a series approximation with error o(|| u ") as
||| — 0 of the locally unique solution x of Fx = u, for u of sufficiently
small norm.

3.4 Physical systems, and an application of theorem 4

In the following, H(C) denotes the linear space of complex column
n-vector-valued functions 4 defined on [0, ®) such that, with 7', the
“time truncation” operator of Section 3.1, we have T,k € L.(C) for
w € [0, ) (i.e., such that any truncation of 4 is bounded and measur-
able). Clearly, unlike L.(C), H(C) can contain unbounded functions.

Consider a physical system with an input v drawn from L..(C) and
an output w contained in H(C). Let the system be composed of linear
elements, as well as nonlinear elements. Suppose that the nonlinear
elements can be viewed as collectively introducing a constraint that
can be written as y = Nx, in which N is a map from one subset of H(C)
into another, and where x and y, respectively, are the H(C) input and
output of the nonlinear part of the system.

With regard to the remainder of the system, which is linear, assume
that there are linear maps A4, B, C, and D of H(C) into itself such that

x=Av+ Cy (19)
w = Dv + By. (20)

Concerning the degree of generality of the model, and the assumption
that the values of v, w, x, and y have the same dimension n, notice
that we have not ruled out the possibility that some components of v,
x, and/or y have no effect on the system, and, similarly, that certain of
the components of w can be ignored. Nonzero initial conditions, if any,
are assumed to be able to be taken into account either in N or as
inputs to the system. A signal-flow-graph representation of the rela-
tions under consideration is given in Fig. 1.*

In this section, we use Theorem 4 to obtain a result concerning the
response w of the system to inputs v having sufficiently small norm.
To state the result, we introduce the following hypotheses and defini-
tion.

B.1: The restrictions of A, B, C, and D to L.(C) are bounded linear
maps of L.(C) into itself,

B.2: There are open neighborhoods S; and S; of # in L.(C) such that
N restricted to S, is an invertible map of S, onto S;. The map N also
satisfies N(6) = 4.

* This type of representation of a system has been used in different but related
settings in Refs. 39, 40, and 41. The maps A, B, C, and D exist for a very large class of

systems, but it is not difficult to give examples in which one or more map does not exist
(see Ref. 40, pp. 244-5, for a very simple linear example along these lines).
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(INPUT) N {OUTPUT)

Fig. 1—Signal flow graph. Fig. 2—Feedback part of the flow graph of Fig. 1.

Definition: When B.2 holds, the inverse of the restriction of Nto S, is
denoted by ®. (Of course, ® maps S: onto Sy, and we have o) =4a.)
B.3: There is an open neighborhood S; of # in L.(C) such that
d™® existson S form=1,2, ---.
B.4: [d®(f) — C.] is an invertible map of L.(C) onto L.(C), where C.
is the restriction of C to L(C).
Theorem 6: When B.1, B.2, B.3, and B.4 are met, there is a positive
number & and a neighborhood S of 8 in L«(C) with the following
properties:
(i) For each v € L..(C) with |v| < 8, there exist unique y, x, and w
of 8, S1, and L(C), respectively, such that (19), (20), and y = Nx hold.
(ii) The function w described in (i) is given by

w=Dv+ E Bg.(Av) (21)

m=1

for | v|| < 8, in which gi(Av) = [d®(f) — Cx]"'Av, and
&m(Av) = —[d®(0) — C.]™

3@ > d'®(0)gr,(Av)gr,(Av) - - - gr(AV)
=2 k kot .. +k=m
k;

for m = 2, and the series on the right side of (21) converges uniformly
for |v| <.
Proof: Using B.4, there are open neighborhoods S and S of @ in L..(C),
with S C S», such that for each p € S; there is in S a unique y with the
property that ®(y) — Cy = p (see Lemma 1). By the boundedness of
the restriction of A to L.(C), 8 > 0 can be chosen so that Av € S;
when v € L.(C) and ||v| < 8, and thus so that for each such v there
is a unique y € S such that ®(y) — C..y = Av. For each such v and its
associate y, let x = ®(y) and w = Dv + By. Observe that for |[v| < &
the corresponding triple (¥, x, w) has the properties indicated in (z).
Now assume, as we may without loss of generality, that Ss in the
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preceding paragraph is convex, and that S, of B.3 satisfies S C S,.
Choose %, %, X, U, and f, respectively, of Section 2.1 to be L.(C),
L.(C), S, Ss, and the map defined by f(s) = ®(s) — C.s for s € S. We
have df = d® — C.on X, d"f=d™® form = 2, 3, ... on X, and, by
B.4, df(#) is an invertible map. Thus, by Theorem 4, there isa o > 0
such that S; contains an open ball centered at 8 of radius o, and the
solution s € S of ®(s) — Cws = p for p € L.(C) with 2|l < o is given
by the uniformly convergent series

2 &n(p),

m=1

in which g:(p) = [d®(#) — C.]'p, and where

&n(p) = —[d®(6) — C.] :)-:z - z d'®(6)gw(p) -+ gx(D)

Rythyt- - - +hy=m
k>0
for m = 2. Therefore, (it) of Theorem 6 holds if for some § € (0, 8;) we
have | Av|| < o whenever ||v|| < 8, and this condition is met because by
B.1 the restriction of A to L.(C) is bounded. [Notice that here, and
with regard to the uniform convergence of the series, we also use the
boundedness of the restriction of B to L.(C).]

3.5 Volterra-series representations

In this, our final section, we first consider the single-input case in
which v in Theorem 6 satisfies [v(¢)]; = 0 for £ = 0 and i > 1. We give
a theorem which provides explicit conditions on A, B, C, D, and N
under which the hypotheses of Theorem 6 are met and the series for
w can be interpreted as a Volterra series in v, the function on [0, )
whose values are [v(¢)],. Towards the end of the section, an n-input
extension of our result is given.

We will use the following definitions and hypotheses.

Definition: For any positive integers / and g, letS{" denote the set of
all functions 4 from the /-dimensional interval [0, «)’ into the set of
complex n X g matrices such that each h;; is measurable and bounded
on [0, )/, and satisfies

J’ |h[j(‘l—1, T2y *+°, 'Tg) I d(T], T2y **, T{) < 0o, (22)
[0,m)!

Definition: If r and s are two complex column n-vectors, then rs
denotes the column n-vector defined by (rs),=ris;fori=1,2, .-- , n.
Definition: WL.(C) denotes L..(C) with n = 1.

C.1: Referring to A, B, C, and D of (19) and (20), there are elements
a, b, ¢, and d of S\ such that for each p € L..(C),
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t

(Ap)(t) = j a(t — 7)p(r)dr
0
t

(Bp)(t) = f b(t — m)p(r)dr
0
t

(Cp)(t) = j e(t — )p(r)dr
0

(Dp)(¢) = f d(t — 7)p(r)dr

0

fort = 0.
C.2: For some y > 0, N of Section 3.4 is defined onI" = {s € L.(C):
sl < v} by

[(Ns)()]; = ni{[s(¢)],}, t=0 (23)

forj=1,2, ---,n, in which each n; maps complex numbers z with
|z] < y into complex numbers such that n;(0) = 0 and such that
dnj(z)/dz exists for | z| < y and is nonzero at z = 0. (Clearly, when C.2
is met, N restricted to I" can be represented by n single-input single-
output memoryless nonlinear operators.)
C.3: det{l, — diag[dni(0)/dz, --- , dn.(0)/dz] [ c(r)e ?dr} # 0 for
Re(z) = 0.*

A result (see Lemma 3, below) concerning elements of S{" that we
shall use is the following:
Proposition 6: If ki € S{" for some I, then the iterated integral

t t
j ces J’ kit — T, t =712 oo, t = m)u(r)p(re) « -+ p(r)dmdre - -+ dm;
0 0

exists for t = 0 and p € " L(C), and V() defined on [0, ) by

¢ ¢
Ve u)(t) = J cen J’ Rt — Ty, t — T, o+, t = 1) p(T) p(72)
o 0

LR p(T:)dTlde L d‘l‘g

for an arbitrary p € "L«(C), is an element of L.(C).

Theorem 7: Suppose that C.1, C.2, and C.3 are met. Then

(i) The hypotheses of Theorem 6 are satisfied.

(ii) For eachl=1,2, ... there is a k; € S{" such that, under the
condition that [v(t)]; = 0 for t = 0 and i > 1, we have

* As in Section 3.3, 1. denotes the identity matrix of order n.
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w= E Vk,(UI) for ”U" < 83
I=1

with the series uniformly convergent for |v| < 8, where v, w, and 8
are described in Theorem 6, and V}, () is as indicated in Proposition
6.

(iii) Each k; can be taken to be continuous* on [0, ©) when a and
d are continuous on [0, x),
Proof of Theorem 7: Hypothesis B.1 is clearly met. Also, with N as
described in C.2, an easy modification of Proposition 4 shows' that
dN:L.(C) — L.(C) exists on I, and that for p €T" and & € L..(C),

[dN(p)R](t) = D()h(t), ¢t=0, (24)

where D (t) = diag{dn\[ p:(t)]/dz, - - - , dn.[ pa(t)]/dz}.

Similarly, an easy modification of Proposition 5 establishes that
d™N (p) exists for p €T and all m. (Observe that, because z is complex,
the existence of dn;(z)/dz for each j and |z| < y means that
the derivatives of each n; of all orders exist for |z| < y.) Since each
dn;j(z)/dz is not zero at z = 0, and hence each is nonzero throughout
a neighborhood of z = 0, it is clear that the |dn;(z)/dz| are bounded
away from zero on some neighborhood of z = 0. It follows from (24)
that dN(p) is invertible for p in a neighborhood of # in L. (C). Thus,
there are open neighborhoods S; and S of # such that N restricted to
S,, which we denote by N, is an invertible map of S: onto S. and
d™(N;') exists throughout S; for each m = 1, 2, ... (see Lemma 1).
Therefore, B.2 and B.3 are satisfied.

Let ¥:S; — S, denote N3, and notice that ¥ satisfies

[((¥s)(®)]; =ni'{[s(©)]);}, t=0

for each j and all s in some neighborhood of 8, where nj', defined in
a neighborhood of the origin of the complex plane, is a local inverse of
n;. Since each dn;(z)/dz exists throughout a neighborhood of the
origin, and does not vanish at the origin, we see that for each j and m,
d™nj'(z)/dz" exists in a neighborhood of the origin. Therefore, by a
direct modification of Proposition 5,

[d™¥(0)hy - -+ hn(t)]i = d™n;'(0)/dz™ [] hjilt) (25)
J=1
for t = 0, each m and i, and any A, hs, -+, hn in L.(C).

We shall use (25) subsequently. At the moment, concerning ¥,

* Of course, by k; “continuous” we mean that each component of %, is continuous.

" Notice that if dn;[2(p;(¢) + hi{t)) + (1 — 2) p,(t)]/dz exists at a point (a, 0), then
dn;[ B(pi(t) + hi(t)) + (1 = B)p;i(t)], with B a real variable, exists at # = a and the values
of the two derivatives are the same.
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note merely that [d¥(#)]" = dN(8). Since [d¥(f) — Cx] =
d¥(6){I — [d¥(0)]'Cx), where I is the identity transformation in
L.(C) and C. is defined in B.4, by C.3 and Lemma 2 below, we see
that the hypotheses of Theorem 6 are satisfied.

In Lemma 2 we refer to the following.
D.1: A € S, A denotes the map of L.(C) into itself defined by

t

(Ap)(t) = J’ Alt — 7)p(r)dr, t=0

0
for p € L.(C), and, with 2 a scalar complex variable, A (z) denotes

J. Alt)e *dt, Re(z) = 0.
0

Lemma 2: Let D.1 hold, and suppose that det{1, — A(z)} # 0 for
Re(z) = 0. Then

(i) (I - A) is an invertible map of L.(C) onto itself,

(ii) thereis ak €Sy such that

14
(I-A)7p@)=p(t) + j k(t—=7)p(r)dr, t=0
(1]
for p € L.(C), and
(iii) if A is continuous for t = 0, then k can be taken to be con-
tinuous on [0, «).*
Lemma 2 is proved in Appendix D.
We also need the following two lemmas which are proved in Ap-
pendices E and F.
Lemma 3: Suppose that h € SY for some 1 =1, that s €S}, and that
u is a bounded measurable function from [0, »)' into the complex
numbers. Then
(i) With R defined on (—», =)' by & = h on [0, @) and il = On (the
zero n X 1 matrix) otherwise, the function k, defined by

klay, az, « -, @) =J s(Dhlaa—17, -++, 00— 7)d7
0

for (au, az, + -+ , 1) € [0, ), belongs to S,
(ii) K h is continuous on [0, »)’, then so is k.
(iii) The iterated integrals

¢ ¢
j ---J’h(t—n,--o,t—‘n)u('rl,---,'rz)dn---d'r;
0 0

* Part (iii) is not used in the proof of Theorem 7, and is included because it is useful
for other purposes.
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and . .
j "'fk(t_fl,"‘,t_'rl)u('rl,"',Tl)d‘r]"'d‘rl
(1] 0

exist, and are invariant with respect to interchanges of orders of
integration, for t = 0; and p defined by

'3 t
P(t)=J’ f hit =1, «oo t=—7dulry, «-+ ,m)dry oo drp, =0
0 0

is an element of L.(C).
(iv) We have

fs(t—f)f f h(r—=m1, ««-, 7= 7)ulry, «++, 7)dr1 - - - dridr
0 0 0

¢ ¢
=J'---fk(t—n,---,t—n)u(n,---,ﬂ)dn---dn, t=0.
0 0

Lemma 4: If h € S{” and k € S\?, then the function s; defined* on
[0, )77 by

s(Tll "ty Tp+7) = h(Tll ety Tp)k(7p+1, ey, Tp+q)
for (11, +++ , Tpsq) € [0, ®)P*7, belongs to S{7*?.

We now return to the proof of Theorem 7.
With v, w, and § as in Part (if) of Theorem 6, we have

w=Dv+ Y Bg.lAv), |v|<$8
m=1

in which the series converges uniformly, g1(Av) = [d¥(f) — C.] 'Av,
and

&m(Av) = —[d¥(6) - Cx]™

T Y d¥0)gn(Av) - gi(Av), m=2.
=2 kythot - +hp=m

Assume now that [v(¢)]; = 0 for £ = 0 and i > 1. By Lemma 3, it
suffices to show that for each m there is a g, € S{™ such that

8m(Av)(t)

t ¢
= f oy I gm(t =71, ++« , t = TR)Ur(T1) + -+ Vi(Tw)dTy -+ dTr (26)
0 0

* See the second definition at the beginning of Section 3.5.
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for t = 0 and ||v|| < &, and that g is continuous on [0, «)™ when a is
continuous on [0, ®). Thus, suppose for the purpose of induction that
(26) holds with g, as indicated form =1, 2, ---, p for some p = 1.
Observe that by Lemma 3 and Part (if) of Lemma 2 the induction
hypothesis is met for p = 1.

We have
gpr1(Av) = —[d¥(0) — Cu]™
(p+1)
- % @ P d"¥(0)gs,(Av) --- gr(Av). (27)
=2 kythyt oo Rh=p+l
Now let I = 2 be fixed, and let %, - -, k be any [ positive integers

such that %, + ks + - -+ + k= p + 1. By Lemma 4, (25), and Lemma
3, r defined by

r(ry, =+, Tps1)
= qkl('rl, e, Tk|)qu(7kl+1, e, Tk1+k2) cee Qk,('?'k,+---+k,_1+1, e, T,IH-])
for (11, « -+ , Tp+1) € [0, ©)”*" belongs to S{”*", and

d"¥(8) gr,(AV) - - - gr(AV)(E)
= DJ s J' r(t—miy -yt — Tpa)i(T1) - -+ U1(Tp+1)dTy + o0 dTpi
o 0

for ¢t = 0, in which D is the diagonal matrix of order n whose Jth
diagonal element is d'n;*(0) /dz'. Observe that r is continuous on
[0, )7*! when each gy, is continuous on [0, ) K,

Therefore, using (27), and by Lemmas 2 and 3, there is a gpr1 €

S{* which is continuous on [0, ®)”*' when a is continuous on
[0, ®), such that (26) holds with m replaced with (p + 1). This
completes the proof of the theorem.
Comments: By Lemma 2 and Proposition 7 (in Appendix G), an
interpretation of C.3 is simply that the “feedback part” of the graph of
Fig. 1, shown in Fig. 2, is bounded-input bounded-output stable* when
C.1 and C.2 are met, N is replaced with its linearization dN (#) extended
in the natural way to all of H(C), and C:H(C) — H(C) is defined by
(Cp)(t) = [} e(t — 1) p(r)dr, t = 0 for each p € H(C).

The k; in Theorem 7 can be taken to be real valued (i.e., to have

* By this we mean that for each L.(C) input to the graph of Fig. 2, there is in H(C)
a unique output, and the output belongs to L..(C). In this case, existence and uniqueness
of an output in H(C) follows from the hypotheses concerning c via the usual successive
approximations approach (Ref. 38, Section 1.13). In Fig. 2, I denotes the identity
transformation in H(C).
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zero imaginary part) if a, b, ¢, and d are real valued, and d™n;'(0)/dz™
is real for all m and j. (It is not difficult to show that thed™n;'(0)/dz™
are real when d™n;(0)/dz" is real for every m and j.) In particular, we
see that Theorem 7 establishes the existence of a Volterra-series
expansion for the important corresponding case in which v, w, x, and
y in Fig. 1 are restricted to be real valued, C.1 is met, and N (which
then would be a map between real-valued function spaces) can be
analytically extended so that C.2 and C.3 are satisfied.*’ In this
connection, Theorem 5 can be used to prove results along the same
lines as Theorems 6 and 7, but with L.(C) replaced throughout with
L.(R). Similarly, Corollary 1 can be used to obtain corresponding pth
order approximation results under weaker differentiability hypotheses

concerning N.
Theorem 6 provides explicit expressions for the gn(Av). For example,

&1(Av) = [d¥(6) — C.] 'Av
82(Av) = —%[d¥(0) — C.] 'd*¥(0){[d¥(f) — C.] 'Av}®
g3(Av) = —[d¥(0) — C.]'d*¥(0) g1(Av) g2(Av)

— %[d¥(0) — C]'d*¥ () &1(Av) T,

and so on. Therefore, assuming merely that we can write down the
representation of [d ¥(#) — C.] along the lines of Part (it) of Lemma
2, notice that it is not difficult in principle to give an explicit expression
for any of the %, of Theorem 7.

Theorem 7 (and Proposition 6) can be extended to cover the case in
which the restriction that [v(¢)]; = 0 for £ = 0 and i > 1 is not met.}
Specifically, using the results and techniques described in connection
with the proof of Theorem 7, it is not difficult to prove the follow-
ing extension in which for each I, x[v(mi), -+, v(m)] denotes the
column vector of order n' whose elements are the n' distinct
products v, (71)Vu,(2) -+ v,,(T1), corresponding to distinct sequences
wi, Wy, -+, w; with each w; drawn from {1, 2, ..., n}, arranged in an
arbitrary predetermined order.

* Observe that this extendability condition is often met. (In particular, polynomial
nmonnh{:eaﬁ)ﬁes frequently arise in locally-valid models, and polynomials in z are entire

ctions.

" Theorem 7 bears on problems concerning the transmission of digital signals over
analog communication channels. Discussions with this writer's colleague, J. Salz, con-
cerning such problems provided part of the motivation to formulate the system model
in Section 3.4 and to develop a theorem along the lines of Theorem 7.

The case of more than one input is of importance, for example, in connection with
studies of the effects of initial conditions. Also, straightforward modifications suffice to
?Stablii,ah cc;rrespondjng results for the time-discrete case in which ¢t takes values in

1,2, -}
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Theorem 8: Under the hypotheses of Theorem 7, for every I =
1,2, --- thereisa ki € S with k; continuous on [0, ) when a and
d are continuous on [0, ), such that

() The iterated integral

J J’ kit =11, -+, t—1)x[v(T), - -+ yv(r)ldry -+ - dmy
(1] 0

exists for t = 0 and v € L.(C), and V}(v) defined on [0, ) by
Vi (v)(E)

=f J kit — 1, -0, t— m)x[v(T), <o+, v(m)]dm <o e dT
o 0

for any v € L«(C) is an element of L.(C).
(ii) With Vi(-) as indicated in (i) above, and with v, w, and 8§ as
described in Theorem 6, the expansion

w=3 Vi)

converges uniformly for ||v| < 8.

It is not difficult to verify that Theorems 7 and 8 remain valid if C.1
is modified to allow a constant multiple (or, more generally, a constant
n X n-matrix multiple) of the identity operator on H(C) to be added
to B.

We do not give here the details of other extensions of Theorem 7,*
but it is worthwhile to appreciate that in some extensions in which C.1
is weakened, series representations can arise in which, unless general-
ized-function kernels are admitted, the terms do not have the form
normally associated with a Volterra series. Consider, for example, that
if n = 1, if A, as well as B, is the identity transformation on H(C),if C
and D have the representations on L.(C) given in C.1, and if C.2 and
C.3 are satisfied with d?n7(0)/dz? = 2, then the hypotheses of Theo-
rem 6 are met and the second term in the sum in (21) is a function
whose values are

* We leave for another paper results concerning cases in which N can be of a more
general form, and the restrictions to L=(C) of A, B, C, and D are not necessarily time
invariant, and generalized functions may be involved in their representations. Also left
for a later paper are applications to differential equations. Assuming merely that A, B,
C, and D are defined on all of H(C) as convolution operators with kernels a, b, ¢, and d,
it is a simple corollary of Theorem 8 that there exists a Volterra-series expansion also
for the case in which the conditions of Theorem 8 are met, with the exception that the
dn(z)/dz are not necessarily nonzero at z = 0. More specifically, N can be replaced
with N plus a multiple 87 of the identity operator I on H(C), with | 8| sufficiently small
that the four linear parts of the system can be modified accordingly and remain Sy’

convolutions.
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t t

k(t— 7)v(r)dr + p* j k(t—7)v(r)dr

0

- pv(t)’ — 2pv(2) j

0

+ 2 J k(t—1)v(r) J k(r — m)v(rn)drdr
0 0

t 13
+ J' f ko(t — 7, t — ) (T)U(T2)dTdT2,
0 0
in which p is a nonzero constant, 2 € S{" and k, € S?.

APPENDIX A
Proof of Proposition 1

Let o be real, nonzero, and such that (ro + o) € A. Then, using the
linearity of L(ro + a),

o '[L(ro + a)e(ro + o) — L(ro)e(ro)]
= L(ro + o) '[e(ro + 0) — e(ro)] + o7 '[L(ro + o) — L(ro)]e(ro)
= L(ro)de(ro)/dr + [dL(ro)/drle(ro) + Ai(o) + Ax(o) + As(o) + Aslo),
where
Ai(06) = L(ro){o [e(ro + o) — e(ro)] — de(ro)/dr]}
As(0) = [L(ro + o) — L(ro)]{o™ [e(ro + o) — e(ro)] — de(ro)/dr}
As(o) = [L(ro + a) — L(ro)]de(ro)/dr
As(o) = {07 [L(ro + o) — L(ro)] — dL(ro)/dr}e(ro).

Since L(ro) is a bounded operator and | o '[e(ro + o) — e(ro)] —
de(ro)/dr||— 0 as 6 — 0, Ai(6) — 0in S as ¢ — 0. It is clear that Az(0),
As(o), and A4(0) approach zero in S as g — 0. This completes the proof.

APPENDIX B
Part of the Proof of Theorem 1

Let % be any integer such that 1 < k& < p, and let vi(-), va(+), -+,
vi(-) denote 2 maps from an open subset of (—o0, ) containing [0, 1]
into %, such that each vj(-) is differentiable on [0, 1]. With [ an integer
such that 0 = I < k — 1, consider d*f[ ¢(8)]Jvi(B) - -+ vr-1-1(B)va-1(B).
Since d*f[ ¢(B)] for 0 = B < 1 is a Fréchet derivative, d*f[ g(8)]v:.(B)

« Up—1-1(B) is a bounded linear map from %, into a Banach space S
for each 8 € [0, 1]. By the version of the chain rule in Ref. 31, p. 173,
d{d*f[ ¢(8)1}/dB exists for B € [0, 1], and
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d{d*f[q(B)1}/dB = d*'fq(®]1g"(B), BE[0,1]. (28)

By Proposition1, (28), and an obvious inductive argument,
d{d*f[ g(B)]vi(B) -+ vi-1(B)}/dB exists for B € [0, 1]. Thus, by
Proposition 1, d{d*f[ g(8)]v1(B) - - - vs-1(B)} /dB exists and satisfies

d{d*f[ (B Jvi(B) -+ ve-(B)}/dB
= d*[ q(B)Jtr(B) - - - va-1-1(B)[dvs—i(B)/dB]
+ d{d*f[ ¢(®)]v1(B) - -+ vi-1-1(B)}/dB ve-1(B) (29)

for g € [0, 1].

By relations (28) and (29), and the fact that df[gq(B)]/dB =
df[ q(B)1g™(B) for 0 = B < 1, we see that an expression Ex(f) can be
given for d™f[ g(8)]/dB™ for B € [0, 1] which depends only on d'f[q(B)]
and g?®(B) for I =1, 2, ---, m. For example, Ez(8) = df[q(8)1g®(B)
+ d*f[ g(B)1g " (B)g ™ (B). Since df[ q(B)]1/dB = (u — uo) for B € [0, 1],
we see that E,.(8) = @ for 8 € [0, 1].

Now consider (5) and (6). Since d'fi[ go(r)] and d'qo(r)/dr’ exist at
r = B, with d'f[ go(B)] = d'f[ ¢(B)] and d’qo(r)/dr’ = ¢*(B) for r = B
andl=1,2, ..., m,by Proposition 1 and observations similar to those
of the preceding three paragraphs, we see that, as claimed in Section
2.2, d™fol q(r)]/dr™| —g exists and that it equals En(f).

APPENDIX C
Proof of Proposition 2

Under the conditions indicated, dg(uo) exists (and equals L). Thus,
using f[ g(u)] = u for u € U, and with I the identity operator on %, we
have df[g(uo)]dg(uo) = I. This shows that df[g(u)] has a right

inverse.
On the other hand, for u € U with ||z — w| < o, g(u) — glw) =

Lf[gw)] — Lf[ g(uo)] + R{f[ g(u)] — f[ &(x0)]} and, thus,
{Io — Ldf[ g(uo)1}[ g(w) — g(uo)] = R{df[ g(uo) [ g(x) — g(uo)]
+ Ri[ g(u) — g(uo)]} + Ro[ g(u) — g(uo)] (30)

in which I, is the identity operator on %o, R1(h) = o(| ||} as | 2| — O,
and, using the boundedness of L, R2(h) = o(| &|)) as || 2| — O.

Now let v € & be arbitrary. By the continuity of f at g(u), and the
openness of X and U, choose 8 > 0 so that g(u) + av € X,
Il g(uo) + av] — fl&(wo)]|l < o, and f[g(uo) + av] € U for |a| <
B. Notice that for each a with |a| < 8, and with u = f[g(uo) + avl,
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we have ||u — w| < o, as well as f[ g(u)] = f[ g(uo) + av], and hence*
g(u) = g(uo) + av.
Therefore, by (30),

{I — Ldf[ g(uo)1}v = a 'R{df[ g(uo) Jav + Ri(av)} + a 'Ri(av) (31)

for 0 <|a| < B. Since the right side of (31) approaches # as « — 0, and
since v is arbitrary, it follows that df[ g(uo)] has a left inverse. Since
df[ g(u0)] has both a left inverse and a right inverse, df[ g(u0)]™* exists.
Finally, a standard type of argument shows that (df)™ exists and is
continuous throughout some neighborhood of g(u) when f is contin-
uously differentiable on a neighborhood of g(u) (see the proof of
Corollary 1 and the references given there).

APPENDIX D
Proof of Lemma 2

In the following, we use L, to denote the set of complex-valued
functions summable over [0, o).

For Re(z) = 0, we have [1, — A(2)]™" = M(z){det[1, — A(2)]} "}, in
which M is the matrix of transposed cofactors of [1, — A(z)] if n > 1
and M = 1if n = 1. Since A; € L, for each i and j, and the convolution
of any two bounded L, functions belongs to L, and is bounded, it
follows that there is a ¢ € L,, and an r € S}, such that

det[1, — A(z)] =1 — j q(He™*dt
]
M(2)A(2) = f r(tye *dt
0
for Re(z) = 0. -

Since det[1. — A(2)] # 0 for Re(z) = 0, it follows (see Ref. 42, PP.

60-63) that there is an element s of L, such that

{det[1, — /"\(z)]}'1 =1+ J’ s(t)e 'dr, Re(z) = 0.
Thus, x defined by
k(t) = r(t) + j r(t — 7)s(7)dr, t=0

0

* Here we use the hypothesis that for each u € U, there is exactly one x € X such
that f(x) = u. N

hNotice that when A(z) is rational in 2, it is a simple matter to show the existence of
such an s.
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belongs to Sy, and H(z) given by

H(z) = I k(t)e "dr, Re(2) =0
(1]

satisfies H(z) = [1, — A(2)]""A(2) for all Re(2) = 0.
Since [1,» — A(2)]A() = K@) + R@[1l. — A@]17"A(2) for
Re(z) = 0, we have

k() = A() + J’ t A(T)e(t — 7)dT (32)
0
for almost every ¢ = 0.*
For an arbitrary p € L.(C), let ¢ € L.(C) be defined by
q(t) = p(t) + J’t k(t — 7)p(r)dT, t=0. (33)
0
We have for ¢t = 0,

t t

k(t — 7)p(r)dr — J At — T)p(r)dr

0

q(t) — (Ag)(®) = p(8) + J'

0
t T
- J- At —m) j k(11 — T)p(T2)dr2dm:.
0 0
Since
'3 Ty
f At —7) J’ Kk(t1 — T2)p(T2)dT2dm:
0 (1]
can be expressed as

¢ =]
J' J A)x(¢ — B — )p(B)dad
0 0

for ¢ = O [the justification of the interchange of order of integration
being provided by Theorems of Fubini and Tonelli (Ref. 43, pp. 137-
45)], we have, using (32), (I — A)g = p. Thus, (I - A) maps L.(C) onto
itself. Similarly, (32) holds with A and « interchanged in the integral,
and (32) so modified can be used to show (see the proof of Theorem I
of Ref. 39) that whenever there is a solution g € L«(C) of (I — A)g =
p with p € L.(C), then (33) holds. This establishes Parts (Z) and (i)
of the lemma.

Suppose now that A is continuous on [0, ). Since « €SS, by Part

* Equation (32) is a matrix-valued-function version of the usual equation for the
resolvent kernel.
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(ii) of Lemma 3, the integral in (32) depends continuously on ¢ for
t = 0. Thus, by (32), the values of k agree almost everywhere on
[0, o) with those of a continuous function. This completes the proof of
the lemma.

APPENDIX E
Proof of Lemma 3

Consider k. That each k;, is measurable on [0, »)’ and satisfies

J’ |Ra(Ty, ==+, 7)) |d(ry, -+, 7)) <o
[O,uv)"

follows from a direct application of Theorems of Fubini and Tonelli
(Ref. 43, pp. 137-45). (See the proof in Ref. 44, pp. 99-100, for the / =
1 case.) Since every s; is summable over [0, ®), and A is bounded, we
see that & is bounded. Thus, () holds.

Suppose now that A is continuous on [0, »)’. Let a,, = 0 be given for
m=12...,L1let8,form=1,2, ...,1Dbe real variables such that
each (am + 8) is nonnegative, and let A be defined by

Ala + 8) = J’ si(Mhjlar + 81— 7, o+, 1+ & — 1dr
1]

for any [ and j. Let y > 0 be given. With b, and b, such that
|Aja(ry, +++, m)| < by and |sy(r)| < bs for (1, ---, 1) € [0, )} and
T € [0, =), choose 7o € (0, «) so that

2b J. |si(7) |dr = % Y,

and observe that
|Aa + 8) — A(a) |

1 .
S—2—'y+bzf |hj1(a1+81—7,---,a;+8;-'r)
[1]

—hjilar =7, -+, p—7)|dr. (34)

Since vy is arbitrary, and, by the boundedness and uniform continuity
of h on compact subsets of [0, ®), the value of the integral in (34) can
be made arbitrarily small by choosing

I
2 |8m]

m=1

to be sufficiently small, we see that % is continuous on [0, »)’, which
proves (it).
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Since A(t — 71, «++, t — T)u(n, -+-, n) and k(¢ — 7, -+, t —
7)(ry, -+, 1) are bounded and measurable on (7, ---, 1) € [0, t]’,
the multiple integrals

J‘ h(t_'rl, e ,t_'rl)u('rl: b le)d(Tl’ "':Tl)
0.1
and
f E(t =71y, +-, t—1)ulry, -+, m)d(r1, ++- , T1)
[o.t1¢

exist. Therefore, two repeated [i.e., two (I — 1)-fold] applications of
Fubini’s theorem (Ref. 43, p. 137) show that the iterated integrals in
(iii) exist, that each equals the corresponding multiple integral, and
that each is invariant under changes in the order of integration. Notice
that the existence of

t t t
J I:J’ J h(t—11, +--, t = T)ulry, -+, m)dr «+- dn:ld'r (35)
0 0 0

for any ¢ > 0 can be established in essentially the same way.
Now let p be defined on [0, ») by

P(t)=j ---fh(t—n,---,t—n)
0 (1]

cu(ry -+, T)dm -+ dmy, t=0. (36)

Since h € S, and u is bounded on [0, ®), it is clear from the
relationship between the iterated integral in (36) and the corresponding
multiple integral that p is bounded on [0, ). That p is measurable on
[0, ), is a consequence of the existence of (35) for all £ > 0.

Similarly, again using Fubini’s theorem and the fact that a bounded
measurable function defined on a set E of finite measure is summable
over E, we have, for any £ = 0,

t T T
j s(t—'r)j J' h(t—m, -+, t—1)ulm, --+, 7)dr « -« dridr
0 0 0

t t—1 t—r
=fs(1')j f At—7—1T1, ser,b—T—T1)
1] 0 1]

u(ry, «++, m)dr - - drdr

t
=Is(1') E(t_'r_'rl,"',t—'r—'r,)
0 .y
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cul(ry -+, m)dr « -« drdr

t
=I fS(T)E(t_'r_’rh"':t—‘r—‘rg)d’r
o1 Jo

'u(Th e ,Tf)d('rl) "ty T[)

=j k(t_fl,"',t_Ti)u(Th"':Tl)d('rh'°°:'”)
[0.e)!

t t
=I J’ kit—m7y, -, t—1)u(ry, -+, )dry -+« dry,
f) 0
showing that (iv) is met. This completes the proof of the lemma.

APPENDIX F
Proof of Lemma 4
By Fubini’s theorem (Ref. 43, p. 137), and the proposition that

bounded measurable functions on a set E of finite measure are sum-
mable on E,

J- |hi1(Tls *tty Tp)kl'l(‘rp+ly trty Tp+q) Id(Tls T, Tp+q)
[0,T)p+a)
Sf |hia(ry, <+« 1p) |d (T, o0, Tp)
[0,00) P

'f |k,‘1(fp+1, ey, Tp+q) Id('rp-!-l, rrr, Tp+q)
[0,0)@

for each { and any finite 7" > 0, from which it is clear that the lemma
holds.

APPENDIX G
On the Necessity of the Condition That Det[1, — A (z)] # O for Re(z) = 0

Proposition 7: Let D.1 (which appears just before Lemma 2) hold. If
for each g € L.(C) there is a p € L..(C) such that (I — A)p = q, then
det[1, — A(z)] # 0 for Re(z) = 0.

Proof:

Since A € S}, by a standard successive approximations approach
(Ref. 38, Section 1.13), it can be shown that there is an n X n matrix-
valued function k defined on [0, ) such that each k; is square
summable on any finite interval [0, 8], and

t

k(t) = A(t) + J Ar)e(t — 7)dT, t=0 (37)

0
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(i.e., and such that (32) is met for ¢ = 0). From (37) and the Schwarz
inequality, the k; are bounded on finite intervals. Using Fubini’s
theorem (see the proof of Theorem I of Ref. 39), if (I — A)p = ¢ with
g and p in L.(C), then

13

p(t) =q(t) +J k(t — 1)q(r)dT, t=0.

1]

Thus, by the hypothesis of the proposition, each k; is summable on
[0, ). In particular, the Laplace transform H(z) of k, given by

Hz) = J x(t)e *dt

exists for all Re(z) = 0.

We have (I — A)(I + H)g = q for every g € L.(C), in which H is the
convolution transformation defined in L..(C) in the usual way in terms
of k. Now let g be given by g(¢) = e ’c; for ¢ = 0, in which c¢; is the
column n-vector whose ith component is unity and all other compo-
nents are zero. Upon taking the Laplace transform of both sides
of (I — A)(I + H)q = q, we find that [1, — A(2)][1. + H(2)]e: = ¢
for Re(z) = 0 and each i. Therefore, [1, — A(2)][1. + H(z)] = 1,
for Re(z) = 0, which shows that det[1, — A(z)] # 0 for Re(z) = 0.
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