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Recent results show for the first time the existence of a locally
convergent Volterra-series representation for the input-output rela-
tion of a certain important large class of time-invariant nonlinear
systems containing an arbitrary finite number of nonlinear elements.
(Systems of the type considered arise, for example, in the area of
commaunication channel modeling.) Here corresponding results are
given for time-varying systems, which arise frequently. A key hypoth-
esis of our main theorem, which asserts that a convergent Volterra
expansion exists under certain specified conditions, has the useful
property that it is met if a certain “linearized subgraph” of the system
is bounded-input bounded-output stable.

I. INTRODUCTION

This paper is a continuation of the study initiated in Ref. 1 concern-
ing operator-type models of dynamic nonlinear physical systems, such
as communication channels and control systems. Reference 1 addresses
the problem of determining conditions under which there exists a
power-series-like expansion, or a polynomial-type approximation, for
a system’s outputs in terms of its inputs. Related problems concerning
properties of the expansions are also considered, and nonlocal as well
as local results are presented. In particular, the results in Ref. 1 show
for the first time the existence of a locally convergent Volterra-series
representation for the input-output relation of a certain important
large class of time-invariant systems containing an arbitrary finite
number of nonlinear elements.

The main purpose of this paper is to give corresponding results
applicable to time-varying systems, which arise frequently. Also, the
results obtained here by specializing to the time-invariant case involve
weaker hypotheses concerning the nonlinear elements (here mutual
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coupling is not ruled out, and, at the expense of somewhat more
complicated proofs, we show how to proceed without the local inver-
tibility of a certain mapping associated with the nonlinear elements*).

With regard to background material, functional power series of the
form

w b b
k+ Y J' J' Em(t, 71, =+, Tm)u(T1) «+ U(tm)dry « oo dTm, (1)

m=1

in which ko is a constant, ¢ is a parameter, and « and the k, form =1
are continuous functions, were considered in 1887 by Vito Volterra®?®
in connection with his studies of functions of functions (which provided
much of the initial motivation to develop the field now known as
functional analysis). About twenty years later, Fréchet proved that a
continuous real functional (i.e., a continuous real scalar-valued map)
defined on a compact set of real continuous functions on [a, b] could
be approximated by a sum of a finite number of terms in Volterra's
series (1), but with (in analogy with the well-known Weierstrass
approximation theorem) the number of terms as well as the kn de-
pendent on the degree of approximation. Further background material
(concerning, in particular, bilinear and polynomic systems) omitted
here to avoid unnecessary repetition, can be found in Ref. 1.

Our results are given in the next section, which begins with some
mathematical preliminaries followed by a description of the general
class of systems to be addressed. Of interest with regard to our main
result, Theorem 2 below, is that a key hypothesis has the useful
property that it is met if a certain “linearized subgraph” of the system
is bounded-input bounded-output stable.

Il. SYSTEMS AND EXPANSIONS
2.1 Preliminaries

Throughout Section II we use L.(C) to denote the complex Banach
space of Lebesque measurable complex column n-vector-valued func-
tions v defined on the interval [0, ®) such that the jth component v; of
v satisfies sup:=o| Vj(t)| < = for j = 1, 2, .+, n, and where the norm
|-l on L.(C) is given by || v|| = max; sup| v;(¢) |. (As usual, n denotes an
arbitrary positive integer.) The symbol # stands for the zero element
of L.(C). We use H(C) to denote the linear space of complex column
n-vector-valued functions A defined on [0, =) such that truncations of
h belong to L.(C) (i.e., such that A, € L.(C) for w € (0, »), where

* A simple way to circumvent the need for invertibility mentioned in (Ref. 1,
Comments of Section 3.5) is often much less satisfactory for the purpose of obtaining
explicit expressions for the Volterra kernels.
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Fig. 1—Signal flow graph. Fig. 2—Feedback part of the flow graph of Fig. 1.

h.)(t) = h(t) for t = w and A,)(t) = 0 otherwise). Clearly unlike L..(C),
H(C) can contain unbounded functions.

2.2 The class of systems

Consider a physical system with an input v drawn from L..(C) and
an output w contained in H(C). Let the system be composed of linear
elements as well as nonlinear elements. Suppose that the nonlinear
elements can be viewed as collectively introducing a constraint that
can be written as y = Nx, in which N is a map from one subset of H(C)
into another, where x and y, respectively, are the H(C) input and
output of the nonlinear part of the system.

With regard to the remainder of the system, which is linear, assume
that there are linear maps A, B, C, and D of H(C) into itself such that

x=Av+ Cy (2)
w = Dv + By. (3)

A signal-flow-graph representation of the relations under consider-
ation is given in Fig. 1.* Concerning the degree of generality of the
model, and the assumption that the values of v, w, x, and y have the
same dimension n, notice that we have not ruled out the possibility
that some components of v, x, and/or y have no effect on the system,
and, similarly, that certain of the components of w can be ignored.
Nonzero initial conditions, if any, are assumed to be able to be taken
into account either in N or as inputs to the system.

2.3 General expansions

Consider three hypotheses:
A.I: The restrictions of A, B, C, and D to L.(C) are bounded linear
maps of L(C) into itself.
A.2: There is an open neighborhood S; of 6 in L..(C) such that N maps

* This is the same class of systems introduced in Ref. 1. Such representations of
systems have been used in different but related settings in Refs. 5, 6, and 7. The maps
A, B, C, and D exist for a very large class of systems.
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S, into L.(C) with N(@) = 8, and d™N (the mth order Fréchet
derivative of N) exists on S, for everym =1,2, ---.
A.3: [I — C.dN(0)] is an invertible map of L.(C) onto L.(C), in which
I is the identity transformation on L«(C), and Cs is the restriction of
Cto L(C).*

We shall prove the following general result.
Theorem 1: When A.l, A2, and A.3 are met, there is a positive
number 8 and an open subset S of So with the following properties:

(i) 8 € S, and for each v € L..(C) with ||v| < 8 there exist unique
x, y, and w of S, L=(C), and L.(C), respectively, such that (2), (3), and
y = Nx hold.

(ii) The function w described in (i) is given by

w=Dv+ 21 B[ gn(Av)]2 (4)

for |v|| < 8, in which the [ gn(Av)]: are defined recursively by the
relations

[£:1(Av)]: = [I — C=dN(8)]'Av (5)
[£1(Av)]: = AN(0)[ g&:1(Av) s (6)
and
hn= 3 @ D, dNOg 4]
k;

[ &r,(AV)]: - - - [gx(AV)] (7

[gn(Av)]i=[I— C.dN(0)] 'Cahm (8)
[gm(Av)]): = AN(O)[ gn(AV)]1 + Am 9)

for m = 2. In addition, the series on the right side of (4) converges
uniformly with respect to ||v|| <.

2.3.1 Proof of Theorem 1

Notice that (2) and y = Nx can be written as x — CNx = Av and
Nx — y = 8, for y and Nx belonging L.(C), and that an expansion for
w in terms of v can be obtained at once from (3) and an expansion for
yin terms of v. These observations motivate us to proceed as follows.*

* Of course, dN () denotes the Fréchet derivative of N at the point 8.
fIn(7), % denotes a sum over all positive integers &, -- -, k that add to

Ry thyt o thyp=m
ki>0

. * An alternative way not pursued here to prove a result along the lines of Theorem 1
involves obtaining an expansion for x in terms of v, one for y in terms of x, and
substituting the former into the latter.
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Let % denote the Banach space L.(C) X L.(C), whose elements we
take to be two-component column vectors, normed by || z|| = max(|| u |,
|uz|) for (w1, uz)’ € L.(C) X L(C), in which “’” denotes transpose.
[We use the same symbol for the norms associated with %2 and L..(C).
The meaning of the symbol will be clear from the context in which it
is used.] Let S; be any open ball in L.(C) of positive radius centered
at @.

Define F: S, X S — 4 to be the map given by

Fi(p1, p2) = pr — CoNpy

Fs(p1, p2) = Np1 — p2

for p € Sp x S1.

The set So X S; is open in #. By A.2 it easily follows that the
derivative dF(p): # — 2% exists and is continuous at each point p of
So X 81, and that it is given by

_ (= Cu«dN(p1)] O

in which here “0” denotes the transformation of L.(C) into itself that
replaces each element by 6. By A.3, it follows that dF(p) is an
invertible map of # onto 4, with inverse given by

o = CdN(p)I™ 0
dF(p)™' = (dN(pl)[I— CudN(p)]™" — )

for p € Sy X S,. Since dF(p) is invertible at p = (6, #)’, by a standard
inverse function theorem (Ref. 8, page 273; see also the comment in
Ref. 1 concerning Lemma 1 of Ref. 1), there are open neighborhoods
S, and S; of (#, )" in B, with S; C S, X S, such that for each g € S
there is in S; a unique p such that F(p) = g. Using the bounded-
ness of the restriction of A to L.(C), §; > 0 can be chosen so that
(Av, 8)' € S; for v € L.(C) with ||v| < 8, and thus so that for each
such v, there is in S; a unique (x, y)’ with the property that F(x, y) =
(Av, 8)' [i.e., such that (2) and y = Nx are met)].

Observe that the set S = {u:(z, Nu)’ € S,)} is an open subset of Sp,
and that for any § € (0, 8,) and for each v € L.(C) with ||v] < §, there
is a unique (x, y, w) in 8 X Lo(C) X L.(C) such that (2), (3), and y =
Nx hold, as claimed in (i).

With regard to part (ii), we shall use the following Lemma in which
f denotes any map from an open subset X of the Banach space 2 into
# with the property that there is a nonempty open convex subset U
of % such that for each u € U there is in X a unique x, such that
f(xx) = u, and in which g stands for the map of U into X defined by
flew)] =uforue U

(11)
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Lemma 1: Assume that the Fréchet derivative d™f exists on X for

each m. Let ug € U, and suppose that df[ g(u)] is an invertible map
of @ onto itself. Then there is a o > 0 such that the expansion

g(u) = gluo) + Elgm(uo, u — uo)

is valid and uniformly convergent for u € U with ||u — w|| < o, where
g1(uo, u — uo) = df[ g(uo)]™ (u — uo),

and

gn(tto, 4 — o) = —df[ guo)]™ é WY diflew)]

\ gt - HRy=m
k>0

- 8, (U0, U — Uo) r,(uo0, 1 — Uo) - -+ Br(Uo, U — W), mz=2

Lemma 1 is a special case of Theorem 4 of Ref. 1 (see also Ref. 9).

With S; and S; as indicated above before Lemma 1, choose X = Sz,
assume without loss of generality that S; is convex, and take U = Ss.
Throughout the remainder of this section, let f denote the restriction
of F to X. The following lemma is proved in Appendix A.
Lemma 2: Under the conditions of Theorem 1, for each p € X and
every [ = 2, 3, + -+ the Ith order Fréchet derivative d'f(p) exists, and
we have

—Cod'N(p)h1rhar -+ hu) (12)

L -
df(p)hlhz s hr ( le(Pl)hnhm Ve hll

for any elements hy, hs, ---, i of # (where h;1 denotes the first
component of h; for each j).

By Lemmas 1 and 2, there is a ¢ > 0 such that S; contains an open
ball in 2 centered at (4, 8)’ of radius ¢, and the solution r € X of
f(r) = s for s € # with ||s|| < o is given by the uniformly convergent
series Ym=1 n(s), in which gi(s) = df[(6, 8)'1's, and

gnls) = —dF[(6, 0] lZE @ X

kytkyte . +Ry=m
7

- d“fl(6, 6)'18k,(5) - - - &r(s)

for m = 2. In particular, by (11) and Lemma 2, when s € B with
8|l < o and s has the form (s, 6)’, we have

(- C.dNO) s,
&ils) = (dN(ﬂ)[I - c.,de)]‘lsl) ™

and
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T (@)

=2

~ [I - C.dN(§)] 0
&m(s) = — dN(@)[I - C.dN@)]" -I

.y (—c,d’N(a)[gk,(s)]l e [g,.,(snl) (14)
kythot o hy=m le(B)[gh(s)]l A [ghr(s)]l
k>0
form = 2.
Now choose 8 € (0, &) so that || v| < & implies that | Av|| < o, and,
referring to the g, of (13) and (14), observe that for ||v| < 8, y of part
(¢) of the theorem is given by y = Ym-1 { gn[(Av, 6)']}2. From (14),

[gm(8)]s = [I — C.dN(6)]™

(D ) C=d'N(O) g ()]s - - - [ 8 ()],
=2 k1+k2-;-;0+k,=m

and

[gn(8)]e = AN(O)[I — CdN()]™'

T ¥ Cod'NO)gns)]h - [gr(s)]h

1=2 ky+kot .o +ky=m
J

£ T NGO - (T

=2 ky+ko+. - +ky=m
s

for m = 2 and || s:|| < o which, together with (13), completes the proof
of the theorem. (The [gn(Av)]; in Theorem 1 correspond to the
{ gn[(Av, 8)']}: here.)

2.3.2 Comments

In principle, it is straightforward to give an explicit expression for
any term in the series in (4). For example, it is a simple exercise to
verify that the third-order term B[ ga(Av)]: is

Y%B{dN(0)[I — CxdN(8)]"'Cx + I} d’N(6)
(I = C.dN(0)]'Av)?, (15)

when d2N(0) is the zero operator (i.e., is the zero operator in the space
to which d”N(6) belongs). If dN () also is the zero operator, then of
course (15) is simply

Y%Bd®N(8) (Av)®.

The interpretation of (15), and more general expressions, under
certain assumptions concerning the forms of N, A, B, and C is ad-
dressed in the following section.
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Theorem 1 (and Lemma 1) hold if L..(C) and H(C), respectively, are
replaced with any complex Banach space and any linear space con-
taining the elements of the complex Banach space.

2.4 Volterra expansions

In this section, we introduce, discuss, and prove our main result. We
begin by considering the following definitions and two hypotheses, B.1
and B.2.

Foreach [ =1, 2, -+, let Ro(l) denote the subset of R**" given by
Ro(l) = {(vo, vy, -++, 1) ER™PMp=vi=0fori=1,2, ..+, 1}

For any positive integers g and [, let S’ denote the set of complex
n X g matrix-valued functions A defined on Ro(I) such that each A; is
Lebesgue measurable and bounded on Ro(l), and satisfies

SUDJ |hij(t, 71, -+, ) (T, oo ) <00 (16)
(0.}

t=0
B.1: There are elements a, b, ¢, and d of S} such that for each p €
H(C),

t

(Ap)(t) = f a(t, 7)p(r)dr
0

(Bp)(t) = J b(t, T)p(r)dr

(Cp)(t) = j e(t, r)p(r)dT
0

(Dp)(¢) = f d(t, r)p(r)dr

0

for t = 0.

In hypothesis B.2 below, I'; denotes the set {z € C":|zi| <y fori=
1,2, ---, n}, in which y is a positive constant and C”" is the normed
linear space of complex column n-vectors with zero element fc and
norm || given by | 2| = max;| 2| for z € C".

B.2: Nisdefined onT = {s € L.(C): ||s|| <y} by

(Ns)(t) =q[s(),t], ¢=0

where 7 is a map from I'o X [0, ) into C" with the following
properties:

(i) n(fc, t) = Oc for t = 0.

(ii) The function £ given by £(t) = n[s(?), t], t = 0 is Lebesgue
measurable on [0, =) for each s € T".
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(iit) For each t € [0, =), 5(-, t) is a continuous map of I'; into C”,
and for each ¢ € [0, =), for 1 < i, j =< n, and for any point a € Iy, the
function z; — ni(ay, -+ -, @j-1, 25, @41, -+ -, an, t) is differentiable with
respect to the complex variable z; for | z;| < y. [This implies (see Ref.
8, pages 204, 205, 226, 227, 230) the existence throughout I'y of every
mth order partial derivative

i
9zj 9z, --- 0z,

(17)

for each ¢ and all m.]

(iv) For any m, ji, +« -, Jm, and i, the partial derivative (17), which
we denote by p(z,, - - -, 2z, t), satisfies the conditions that the function
t+— p(0, ---, 0, t) is bounded on [0, =), and that p is uniformly
continuous on closed subsets of I'y uniformly in ¢, in the sense that
given a closed I'eo C T’y and a &; > 0 there is a 8, > 0 such that

|P(2ar, ««+, Zan, £) = P(281, +++, Zom, E) | < B2

for ¢t = 0 whenever 2z, and 2z, are elements of Iy, such that
IZa - zb' < b

Following are comments and an example.

If 5(-, ¢) is independent of ¢ and (iif) is met, then (ii) and (iv) are
met.

The conditions on 1 of B.2 are met if, for example,

o
M2, t) = _):1 Bij(OAj(z)), t=0
j=

for each i and z € I', in which p is a positive integer, the 8, are C'-
valued bounded measurable functions, and each A; is an analytic
function from the disk | z;| < y in C' into C" such that A;;(0) = 0. In this
important case, N restricted to I" can of course be represented by n
single-input single-output memoryless, possibly time-varying, nonlin-
ear operators.

In order to introduce another needed hypothesis, consider the fol-
lowing proposition.
Proposition 1: When ¢ € S|" and n satisfies the conditions of B.2, for
each p € H(C) there exists a unique q € H(C) such that

¢
p(t) = q(t) — J c(t, 7)L(7)g(7)dT, t=0, (18)
0
where L is the n X n matrix-valued function defined on [0, =) by
Li(t) = ani(z1, ---, zn, t) 0z at 21 = 23 = -« = 2, = 0 for each i, j,
and t.

Since L is measurable on [0, =) (see the proof of Lemma 3 in
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Appendix B), Proposition 1 follows at once from Lemma 6 in Sec-
tion 2.4.2.

B.3: Under the hypotheses of Proposition 1, (18) has the further
property that p € L.(C) implies that the solution g also belongs to
L.(C).

The “further property” of B.3 has the interpretation that the feed-
back part of the graph of Fig. 1, shown in Fig. 2, is bounded-input
bounded-output stable in the indicated sense when N is replaced with
its linearization at the origin [by which we mean its linearization (see
Lemma 3 below) at # extended in the natural way to all of H(C)]. The
node labeled “output” in Fig. 2 is an intermediate output node. For
our purposes here, the output label can be moved to the node to the
right of N when the matrix L(¢)”" exists for each ¢ = 0 and has
uniformly bounded elements.

We shall use also the following definition and proposition:
Definition: Throughout the remainder of this section, for each [,
x[v(ry), +++, v(m)] denotes the column vector of order n' whose
elements are the n' distinct products v,,(T1)v.,(2) -+ v, (7:), corre-
sponding to distinct sequences wi, wy, ++ -+, W with each w; drawn from
(1,2, ---, n}, arranged in an arbitrary predetermined order.
Proposition 2: If k; € SY! for some I, then the iterated integral

J e j ki(t, m1, + o, ) x[U(Ta), <o, v(m)]dTy - - dT
0 0

exists and is invariant with respect to interchanges in the order of
integration for each t = 0 and v € L.(C), and Vy,(v), defined on

[0, =) by
t t
Vi (0)(2) = f cee f ki(t, 7, -+, ) x[v(r1), oo, v(T)]dTy - -+ dTy
0 0

for an arbitrary v € L«(C), is an element of L.(C).
Proposition 2 is a special case of Lemma 4 of Section 2.4.2.
The following is our main result.

Theorem 2: Suppose that B.1, B.2, and B.3 are met. Then

(i) The hypotheses of Theorem 1 are satisfied.
(ii) Foreachl=1,2, --- thereisa ki € SY) such that

w=Y Vi, for [v|<3§, (19)
=1

with the series uniformly convergent with respect to |v|| < 8, where v,
w, and 8 are described in Theorem 1, and V(-) is as indicated in
Proposition 2.

(iii) Each k, can be taken to be continuous on Ro(l) when a and d
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are continuous on Ro(1), and b and ¢ meet the condition imposed on
s in part (if) of Lemma 4 below [the condition is met if b and ¢ are
continuous on Ry(1)].

2.4.1 Comments

Theorem 2 is proved in the next section. Using the proof given there,
it can be shown that, as one would expect, the Volterra kernels %; can
be taken to depend on only (¢ — 71), -+, (¢t — 7;) when @, b, ¢, and d
depend only on (£ — 1), and 7(-, t) is independent of £.*

Similarly, each %; can be taken to be real valued (i.e., to have zero
imaginary part) if a, b, ¢, d, and the partial derivatives of (-, £) at the
origin are real valued. This shows that Theorem 2 establishes the
existence of a Volterra-series expansion for the important correspond-
ing case in which v, w, x, and y in Fig. 1 are restricted to be real valued
and N (which then would be a map between real-valued function
spaces) can be analytically extended so that the hypotheses of the
theorem are met.

For the single-input case in which either n = 1 or v:(t) = 0 for all ¢
and i =2, 3,-- ., n, (19) takes the more familiar form

w(t)= EJ "'fhl(t)Tls"'sTI)
=1 Jo 0

sui{t)oi(r2) -« vilm)dnidrs - - - dry, t=0

for sup;=o|v1(£)| < 8, with the A; belonging to S{"'.

By modifying the proof given in Section 2.4.2, results similar to
Theorem 2 can be obtained for cases in which the basic underlying
function space L.(C) is replaced with another complex Banach space,
and/or A, B, C, and D have a more general* (or different) form. Of
some importance is the case in which L.(C) is replaced with the
corresponding set L.(C)(T) of bounded functions defined on a finite
interval [0, T'], and a theorem along the lines of Theorem 2 for this
case is given in Appendix F.

2.4.2 Proof of Theorem 2

Our proof uses five lemmas, which are proved in the appendix, and
an inductive argument using Theorem 1. We begin with a description
of the lemmas and some associated definitions.

* See Proposition 7 and Lemma 2 of Ref. 1.

" In this connection, Theorem 5 of Ref. 1 can be used in place of Lemma 1 to prove
results along the same lines as Theorems 1 and 2, but with L.(C) replaced with the
corresponding function space over the real field, and Corollary 1 of Ref. 1 can be used
to obtain corresponding pth order approximation results under weaker differentiability
hy;gotheses.

Detailed results for cases in which a, b, ¢, and d are replaced with certain generalized
functions, and N is not necessarily memoryless, will be given in another paper.
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Lemma 3: Suppose that B.2 is met. Then N maps I into L.(C), each
amnf[sl('): R | sﬂ(')s ']
dz; 0z;  --- 0zj,

is bounded and measurable on [0, ) for each s €T, d™N(s) exists for
eachs€T andallm=1,2, ---, and, for any m, we have [d"N(s)h
voo Bm(®)])i=

- v nodnlsi(E), - -+, salt), £]
R (B g (E) -« by (£), E=
j,g} j,E-—l jmz=1 9z;, 02, | -+ 02j, v (Ohil8) in(?) 0

for each s €T, each i, and any m elements hy, hg, « -+ , hm of L=(C).
Definition: For each A € S, A denotes the function defined on
[0, )" by A = h on Ro(l) and h = 0., (the zero n X g matrix)
otherwise.

Lemma 4: Suppose thath € S @ for some l =1, that s €S}, and that
u is a bounded measurable function from [0, ) into the complex

numbers. Then
(i) The function k defined by

t
k(t) Ty, " Tl) = J’ S(t, T)E(T: Ty ", T[)d'l"
0

for (¢, 1, +++, T1) € Ro(l), belongs to i
(ii) If h is continuous on Ro(l), and § meets the condition that
each 8;;, given by
8ij(a, t) = J |§,‘j(t + a, 1) — §i(L, T)}d’r
0
for t =0 and (¢t + o) =0, satisfies 8;;(a, £) >0 asa—0 for each t, then
k is continuous on Ro(l).

(iii) The iterated integrals
¢ t
j e J’ h(t: T1, "'!Tl)u('rl) "‘,Tl)d'rl e d‘T[
0 ]
and
t ¢
j J’ k(t, m, -+ m)u(ny, -, m)dry - -0 dmy
[i] 0

exist, and are invariant with respect to interchanges of orders of
integration, for t = 0, and p defined by

t t
p(t) = J' LR J’ h(t, Ty " 'r;)u('rl, ey, T;)d‘n e d'r;, t=0
0 0
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is an element of L..(C).
(iv) We have

13 T T
f s(t, 1) J’ cee f hir, 71, ++«, )ulry, +++, )dmy ++» dridr
0 0 0

L t
=J ---J’k(t,'n,---,’rr)u(ﬁ,---,’r;)d’rl---dn, t=0.
0 )

Comment

The condition on s of part (it) of Lemma 4 is met if s is continuous

on Ry(1), or if s(¢, ) depends only on the difference (¢ — 7) (see Ref.
11, page 12).
Definition: If r and s are two complex column n-vectors, then rs
denotes the column n-vector defined by (rs); =r;s;fori=1,2, ..., n.
Lemma 5: If h € Sip) and k € Siw, then the function s, defined on
Ro(p + q) by

S(t, Tiy, ***, TP'HJ) = h(tl Tiy ***, Tp)k(t, Tp+ly ***, Tp+q)

for (t, 7, - -+, Tp+q) € Ro(p + q), belongs to S{"*?.
Lemma 6: If A € S}, then for each p € H(C) there is a unique q €
H(C) such that

t

p(t) =q(t) — f AL, 7)g(r)dr, t=0. (20)

0

In Lemma 7, below, we refer to the following two hypotheses.
C.1: A€ S, and A denotes the map of L.(C) into itself defined by

(Ap)(t) = j Alt, )p(r)dr, t=0
0
for p € L.(C).
C.2: A € 8, and, for each p € L..(C), the unique element g of H(C)

such that
3

p(t)=q(t)~J’ Alt, T)g(7)dr, t=0

0

satisfies the condition that ¢ € L.(C).

Lemma 7. Suppose that C.1 and C.2 hold. Then (I — A) is an
invertible map* of L..(C) onto itself, and there is a k € S such that

* Here, as in Section 2.3, I denotes the identity transformation on L.(C).
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t
(I — A)7'p(t) = p(t) — J' k(t, )p(r)dr, t=0
[1]
for every p € L..(C), and such that if A meets the conditions imposed
on s of part (it) of Lemma 4, then so does «.

This concludes our statement of the lemmas that we shall use. As
mentioned at the beginning of this section, Lemmas 3 through 7 are
proved in the appendix.

It is clear that (under the hypotheses of Theorem 2) A.l is met,
Lemma 3 shows that A.2 is satisfied, and, by Lemmas 3 and 6, as well
as the observation that C.1 together with C.2 imply that (I — A)™
exists, we see that A.3 also is satisfied. Therefore, the hypotheses of
Theorem 1 are met.

With v, w, and 8 as in part (i) of Theorem 1,

w=Dv+ 21 B[ gn(Av) ]2

for ||v|| < 8, where the [ gm(Av)]. are defined by (5) through (9), which
involve associated functions [ gm(Av)]1.

For each positive integer p, let H, denote the hypothesis that we
have

[gm(Av)]l(t>=j f Ity 1y =+ Tm)
0 0

'X[U(Tl), ey, U(Tm)]d'r] e dq'm,
and

[gn(Av)]2(2) = L()[ gm(Av) ]1(2)

m t t
+ 3 7 X Bz(t)j j Thy el T2y 200y Tm)
ky+hot -« o ky=m 0 0
k>0

=2

'X[U(Tl), cery, U(‘Tm)]d‘1'1 " d'rm

fort=0,|v|<dandm=12 ---,p, in which
(i) by the sum over / when m = 1 is meant the zero n-vector,

(ii) each gn belongs to S,

(i5i) L is the n X n matrix-valued function described in Propo-
sition 1,

(iv) forl= 2, the B, are bounded* measurable n X n' matrix-valued
funct.ions over [0, ),

(v) for m = 2, the ry,...s, are n' X n™ matrix-valued functions

* By B: bounded is meant that its elements are bounded.
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defined on Ro(m) such that each (rs,...x);; € Si™ with n = 1, and

(vi) the gm, and the ry, ... s, for m = 2, are continuous on Ro(m)
when a is continuous on Ry(1) and ¢ meets the conditions on s of part
(¢f) of Lemma 4.

By Lemma 3, L is bounded and measurable. Using (5) and (6) as
well as Lemmas 3, 4, and 7, we see that H, is met. [Notice that s given
by s(¢, ) = u(t, r)v(r) meets the condition of part (ii) of Lemma 4
when u € S, u meets the condition, and v is a bounded measurable
n X n matrix-valued function on [0, «).] Thus, by Lemma 4, there is
a k, € S such that

t
Du(t) + B[ g1(Av)]o(¢t) = J ki(t, T)v(r)dr, t=0
0
for |v|| < 8, and £, is continuous under the conditions on a, b, ¢, and d
of part (iif) of Theorem 2.
By Lemma 4 (which holds for any n), it easily follows that if H, is
met for some p = 2 then there is a k, € S5 such that

B[ gp(Av) ]2(2) =j j kp(t, 11, - -+, 7p)

-x[v(r), -+, v(rp)]d7 «++ d7p, t=0

for ||v|| < 8, and such that %, meets the continuity requirement of part
(iii) of the theorem. Therefore, to complete the proof of the theorem
it suffices to show that H), is met for every p. For this purpose, suppose
that H, is satisfied for some p. Using (7), we have

(p+1)

hipen =Y ()7 ¥ d'N(6)

=2 kythot. .. +ky=(p+1)
k;>0

‘L& (AV) L[ £r,(AV)]s - - - [gr(AV)],, (o] <@

Now let [ be a fixed integer such that 2=<1I!= (p + 1), and let &4, - - -,
k; be positive integers such that £ + k2 + --- + k&, = p + 1. Using
Lemma 3,

{d'N(0)] gr,(AV))i[ 81, (AV)]: - - - [Er(AV)]i(8)}:

=3 XY - X bilt,jr, o000 l:[ ---J'qk,(t,-r],---,n])x
0 0

h=1jp=1 Ji=1
14 t
olr), -+, vlr)Jdr ---d'r.a,] U f Gty Ty e Th)
7\ 0 0

xlv(r), -+, U(Tk.,)]d'r] res di’:I

Ji
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for t = 0, ||v|| < 8, and each i, in which the bi(-, jy, - - - , ji) are bounded
and measurable. By Lemmas 4 and 5, we see that

d'N(0)[ gx(AV)]1 - - - [ gr(AV)]1(?)
¢ ¢
= Bi(t) J- .. J’rkl,---,k,(t, Tiy **+, T(p+n)
0 o

-xlv(r), »--, U(T(p+n)]dT1 - -+ T(p+1)s t=0

for ||v|| < 8 and for some B; and ry,,... », of the type required. [Here we
have used the observations that a product of integrals

J’ e J’ le(t, Ty ***, Tkl)j][]{x[v(‘rl)l trty U(Tkl)]}[l
0 0

t 13
odTy oo dT'kl cee f eee f q.k‘(t, T ***, Tkg)fﬂ;
0 (1]

- {x[v(m1), «++, v(ma) 13 dr1 -+ + d7y,

in which / is drawn from {1, 2, ---, n%} for each j, can be written as
the iterated integral

f 13
J’ e I Gy (8, T1y <o Tr)jt ot Qrly Tyt w41y 0y
0 0

c1pen)in{x[v(r), -+, v(te) gy - -
AX[O (Tt 41)s =0 U(Tpen) ]} g dTr oo 0 AT (pa),

and that r, given by r(f, 71, -+, Tp+1) = qx, (&, T1, ===, o)+
jitye @iy, Ttk #1s = =+ Tpe1) iy, o0 Ro(p + 1), is continuous when
each g, is continuous on Ro(%;).]

Finally, using (8) and (9), and Lemmas 4 and 7, we observe that
H, +1) is satisfied, showing that H, is met for all p. This completes the
proof.*

APPENDIX A
Proof of Lemma 2

Assume that p € X is given.

Let @ denote the linear map from # into the space L(#B, #) of
bounded linear operators from £ into %, given by

* Our proof shows also that the theorem holds if B.1 and B.2 are modified to the
extent that an arbitrary constant (scalar or n X n-matrix) multiple of the identity map
in H(C) is added to B, and 7(-, £) is required to be independent of ¢.
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_ —Cmd2N(p1)f‘1 0
Q= [ &N(p)r, 0 1)
for any r € 4. Since sup{|| QA hz ||: k1, k2 € B with || k| = | ]| = 1} is
finite, it follows that € is bounded.
Let h € # be such that (p + h) € X. Observe that, using (10) and
(21),

lldf(p + h) = df(p) — Qh| = sup{||df(p + h
= df(p)hy = Qhhu|:hy € B, |hu| = 1} = o(|A|),

which shows that d*f(p) exists, that d*f(p) = @, and hence that the
expression for d*f(p)h.h: given in the lemma is valid.

Now suppose that for some I = 2, d'f(p) exists and that it satisfies
(12). Met M denote the continuous multilinear mapping of 2“*" into
2 given by

7 _ —CoodUH)N(Pl)(qum cce Qum
M(qy, g2, -+ , Qu+n)) = [ d“IN(p)guga - - - quenn j|

for qi, q2, -+, qu+1 belonging to 4. We shall use M to denote the
usual associate (Ref. 10, page 318) of M that belongs to L(A,
L(B, +++, L(B, #)-..)) with (Il + 1) L’s, in which L(A,, A;) stands for
the set of continuous linear operators from the Banach space A, into
the Banach space A,.*

Using the fact that

|d'f(p + k) — d'f(p) — Mh|| = sup{||d'f(p + h)
chihy - by = d'f(p)hahy -+ lu
= Mhhihs - -« h|:|| ]l = |2 = - -+ = ||| = 1}

for (p + h) € X, as well as the boundedness of C., we find that ||
d'f(p + h) — d'f(p) — Mh| = o(|k|)) as | 2]| = 0, which shows that
d"" f(p) exists and equals M. This proves the lemma.

APPENDIX B
Proof of Lemma 3

For each ¢, (iit) implies (Ref. 8, pages 204, 205, 226, 227, 230) the
existence throughout I'y of the F-derivatives of all orders of the map
1(-, £): I'o C C" — C". In particular, each partial derivative (17) exists
in I for any ¢ = 0.1

* For example, if [ = 2, L(%, L(#, --- , L(#, #)---)) = L(#, L(#, L(#, #))).
t See Section 8.9 of Ref. 8.

VOLTERRA EXPANSIONS 217



Given any s €T,
1

nls(®), 1] = f dnlBs(e), tld-s(t), =0
0
in which dn[Bs(¢), t] is the F-derivative of (-, ¢) at the point Bs(¢)
(i.e., dn[Bs(t), t] is the n X n matrix whose ijth element is n:(z, t)/9z;
evaluated at z = Bs(t)). By (iv), the elements of dn[Bs(¢), ¢] are
bounded on (8, t) € [0, 1] X [0, ®). Thus, using (i), N maps I’ into
L.(C).
Similarly, for any s € I' and any & € L.(C) such that (s + k) € T,

1
nls(t) + h(t), t] — nls(2), £] — dn[s(?), t]A(t) = J {dn[B(s(t)
0

+ h(t)) + (1 — B)s(t), t] — dn[s(?), t]}dB-h(t), t=0.

This, together with the continuity described in (iv), yields
sup [nls(t) + h(2), £] — nls(2), £] — dnls(®), JR(®)| = o(|R])  (22)

as ||| — 0. Since the pointwise limit function of a sequence of
(Lebesgue) measurable functions is measurable, and, for each i = 1,
2, +++, n, (22) holds with A(t) = ou() for t =0, in which o is a scalar
and u(i) is the element of C" with u(i); = 1 and u(i); = 0 for 1 #], it
easily follows that the elements of dn[s(-),-] are measurable on
[0, »). By (iv) these elements are bounded. Thus, using (22), dN (s)
exists and

[dN (s)h(t)]: = i anilsi(8), - - -, sald), t]

=1 az;,

Bi(t), t=0

for each i. This shows that the m =1 part of the lemma is true.
Now assume that the assertions of the lemma are true for 1 =m =
1, and again let s € T" be given, and let 2 € L.(C) satisfy (s + h) €T
By (iv), each
a([+l)ni[sl(')! Tty sn('): ']

(23)
0Zjiyy ="t 0zj,

is bounded on [0, ®). To see that each is measurable, observe that for
hy, hg, +++ , h; belonging to L(C),

A n dnilsi(t) + hi(t), - -+, sa(E) + hal?), t]

m haj (¢
= n{:l ,-,2-:1 8zj, -+ 02j, 40
n ® o dnisi(t), -+ -, sn (8), £]
vor hyi(t) — . ! . * 2 R (¢
’h( ) j].gl j?::] aZjl see 6Zjl Ul( )
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. no g Dplsi(E), -, Salt), E]

cee by (t) — ces hyj(t
’J‘J( ) J:gl j{l+§'l 02j,,, *** 92, lh( )
{
vos by (R, @) | = of|R]D TT 1A, (24)
J=1

which is a consequence of (iv) and the relation
anilsi(t) + (), - -+, sa(t) + halt), ] Insi(t), -+, salt), t]

azjl - &zjl azj, “ee &Zj.
no g OnIsi(8), -+ -, salt), t]
_ E hfu+1>(t)
Jusn=1 az.fmllazjf U 621'1

1 n (I+1), v
+ j { d ﬂ:[sl(t) + Bhl(t)’ » Sn(t) + ﬁhn(t), t] hfmn(t)
0

Jusny=1 92j,,,,92j, * -+ 92,

ro 3% nlsi(2), - -, salt), £]
Jusn=1 9z;,,,,02;, * -+ 02j,

hju,,..(t)}dﬂ, t=0.

It easily follows from (24) that each function (23) is the pointwise limit
of a sequence of measurable functions, and is therefore measurable.
In particular, &;(s) defined by

[@:(s)(py, + -+, Pus) (D)

_onox n 3D lsi(2), -+ -, salt), £]
- j(1§=1 j;l o J'ng 02j,.,,02j,, * -+ 02j,
P, () P2;(E) « -+ Purnjy,, (), tz0
for p1, ps, -++, Pusn in Le(C) and i = 1, 2, -+, n, is a continuous

multilinear mapping of L..(C)**" into L..(C).

Proceeding as in the proof of Lemma 2, let @;(s) denote the usual
associate of §;(s) that belongs to L(L«(C), L(L«(C), +++, L(L«(C),
L.(C)) -+.)) with (I + 1) L’s, in which L(A,, A2) stands for the set of
continuous linear operators from the Banach space A, into the Banach
space A,. Using |d'N(s + h) — d'N(s) — Qi(s)h| = sup{||d'N(s +
hhy -« by = d'N(hy -+« hi — Qu(s)hhy +++ h: | A = | he|| =
.+« = | ]| = 1}, as well as our induction hypothesis and (24), we see
that |d'N(s + h) — d'N(s) — Qi(s)h| = o(| h|) as ||| = 0. Therefore
d"V N (s) exists and is equal to ;(s). This completes the proof.

APPENDIX C
Proof of Lemmas 4 and 5

It suffices to prove the lemmas for n = 1 and u(ry, ---, 1) = 1 for
(t1, - -+, 72) € [0, ®)’, and attention is now restricted to that case.
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For ¢ > 0, one has

J:O-’]'

J’ S(tn ‘T)il'(‘l', Ty "= T[)dT d(Tll "ty dT[)

0

t
= I |s(t, 7)|| Bz, 71y + v o, 7o) |drd(Tsy -+, T2)
o1 Jo

t
SJ f |E(T) T, ***, T[)ld('rla e i'”)ls(ti T) |d‘l’
o Jo, )¢

=

t
= sup J Ih(T’ Ty, == Tl) |d(7'.|5 Tty T:)’Sup J |S(t, T) IdT)
[0.Y =0 Jo
in which the measurability of
t
J s(t, V(7 71, +++, )dT (25)
V]

in (7, «++, 1), and the justification for the interchange of the order of
integration, follow from theorems of Fubini and Tonelli (Ref. 12, pages
137-145). The measurability of (25) in (¢, 71, -+, 71) is also a conse-
quence of these theorems.* Thus, since it is clear that % is bounded,
(f) holds.

Now let & and s satisfy the conditions of part (ii). Let (¢, 71, «+« ,71)
€ Ro(l) be given, let @, a1, ++-, a; be real variables such that
(t+a m+ay, -+, T+ ar) € Ro(l), and notice that

Et+a,m+oy o, mi+a))—k(E T, -, ™)

= I [§(¢ + a, 7) — §(¢, 'r)]ﬁ'(q-, T+ ay, -, T+ ag)dr
0

+ f s(¢t, T)[E(T, T+ ay e, T+ ) — il'(T, Ty, =, 'r;)]d‘r. (26)
0

Using the hypothesis of part (i) concerning s, the boundedness of A
and s, and the uniform continuity of ~ on compact subsets of Ro(/), we
see that each integral in (26) approaches zero as (¢t + a, 11 + a3, «+-,
1+ a;) = (¢, 11, -+ -, 71), showing that (i7) is true.

Straightforward modifications of the proof of part (ii) of Lemma 3
in Ref. 1 establish that (iif) here holds.

With regard to part (iv), using the theorems of Fubini and Tonelli
cited above, and the proposition that a bounded measurable function

* Consider, for arbitrary finite T > 0, the_existence and iterated-integral representa-
tions of the multiple integral [jo, T2 &(t, T)A(T, T, <+, T}, 71y « =+, 71, 7).
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on a set E of finite measure is summable over E, we have

¢ . .
J s(t, 7) j e J’ h(r, 11, oo, 7)dry o+ dridr
0 0 0

t

= J s(t, 1) hir, 1, +-+, )d(T1, +++, Ti)dT
L] [0,7}¢

= j s(t’ T) E(T) T, ** ), Tl)d("rll A ] Tl)dT
0 [0,¢)

¢
= J J’ s(t, Dh(r, 1, + -+, T)drd(Ty, -+, 7))
0.1 Jo

t ¢
=J J’ k(t,n, ... m)dr -+ d7y
0 0

for ¢t = 0, which establishes (iv) and completes the proof of Lemma 4.
Under the hypothesis of Lemma 5,

J’ 'h(t! T, ** %, Tp)k(t) Tip+1)y ** "> T(p+q)) Id(Tls Tty T(p+q))
[0,e]tP+d)

= sup J’ |A(t, T1y <oy o) |d(T1y o+, Tp)
(0.4

X sup J |R(E, Tipry » v 5 Tt |[A(T (1), *+ 0, Tiprg)
[0.t}7

for every ¢ = 0, which proves the lemma.

APPENDIX D
Proof of Lemma 6

By the proof of Theorems 2.3 and 2.5 of Ref. 13, there exists a
measurable function k from Ry(1) into the set of complex n X n
matrices such that the elements of k are bounded on bounded subsets
of Ro(1), and « satisfies the resolvent equations

k(t, ) + Af, 1) = J A, u)x(u, 7)du 27

k(t, 7) + AL, 1) = J’ x(t, w)A(u, 7)du (28)

fort=r=0.
For each p € H(C), the function g defined on [0, ) by
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t
g(t) = p(t) — J’ k(2, T)p(r)dr, t=0 (29)
0
belongs to H(C), and, using (27) as well as theorems of Fubini and
Tonelli (Ref. 12, pages 137-145) to justify an interchange of order of
integration, it is simple matter to show that g given by (29) satisfies
(20) for each p € H(C). Similarly, it is essentially well known that (28)
can be used to show that if there is a ¢ € H(C) that satisfies (20) for
a given p € H(C), then g satisfies (29), which completes the proof.

APPENDIX E
Proof of Lemma 7

By Lemma 6 and its proof, (I — A) is an invertible map of L.(C)
onto L.(C), and there is a measurable matrix-valued «, defined on
Ro(1) such that the elements of k are bounded on bounded subsets of
Ry(1), with the property that (28) is satisfied and

t

(I-N)"p(t) = p(t) - f k(t, T)p(r)dr, =0

0

for each p € L..(C). Since (I — A)™" maps L.(C) into itself, it follows
(Refs. 14 and 15) that each «;; satisfies

t
sup J | kij (2, 7) |dT < e0. (30)
=0 ),

Using (28), (30), and the boundedness of A, we see that « is bounded on
Ry(1). Therefore, k € S,

Assume now that A satisfies the condition on s of part (if) of Lemma
4, recall that « satisfies (27), and let r be defined by

r(t, )= J A2, we(u, T)du
0

fort=r=0*
Let £ = 0 be given. For arbitrary ¢ and j, let

A.-J-(a, t) = j |T‘-,'j(t +a,71)— F,'j(t, T) [d'r
(1]

for (t + «) = 0 (see the definition preceding Lemma 4 for the meaning
of 7; r belongs to S because « and A do and (27) is met). Notice that
to complete the proof of our lemma, it suffices to show that
Ajjla, t) > 0asa— 0.

* With regard to the meaning of &, see the definition immediately preceding
Lemma 4.
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It is clear that A;;(a, 0) — 0 as « — 0. Assume now that ¢ > 0, and
let o be such that ¢ — |a| > 0. We have

t—| |
Aijla, ) = J’ |rij(t + a, 7) = rij(t, 7)|dr
0

t+al
+ J |Fii(t + a, 7) — Fij(¢, ) |dr, (31)

~|al

in which (by the boundedness of r) the second integral goes to zero as
a — 0. Further,

t—|a|
j |r.-j(t +a,r7T)— r,-,-(t, T) |d“l‘
(1]

J'lAlnl
0
t

- i Air(t, u) £2j(u,m)du | dr

k=1 0

n

o
)y J Aie(t + o, u)kpj(u, v)du
0

k=1

=

o]

ki

1

t—|a| w@
j f |Kialt + o, ) — Kinlt, ) |- | asCat, ) | duds
1] 0

which, using the boundedness of the k;;, shows that the first integral
on the right side of (31) also approaches zero as a — 0.

APPENDIX F
Volterra Expansions on a Finite Time Interval

In this appendix, T denotes an arbitrary positive constant, L. (C)
(T) stands for the complex Banach space of measurable complex
column n-vector-valued functions v defined on [0, T'] such that the jth
component v; of v satisfies supreo,ry |Vi(t) | <o forj=1,2, ..., n, and
where the norm |||z on L.(C)(T) is given by |v|r = max; sup:

|v,()], and for each I=1,2, ---, Ro(I)(T) denotes the subset of R"*"
given by Ro(I)(T) = {(vo, v1, -+, v) € R“"T = v = v; = 0 for
i=12..-,1}.

Similarly, for any positive integers ¢ and 7, S{(T') denotes the set of
complex n X g matrix-valued functions A defined on Ro({)(T') such
that each h;; is Lebesgue measurable and bounded on Rq(I)(T).

We shall refer to the following two hypotheses.

D.1: There are elements a, b, ¢, and d of S''(T) such that for each
P € L.(C)T),
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13

(Ap)(t) = f a(t, ) p(r)dr
0

(Bp)(t) = f b(t, 1) p(r)dr
(1]

(Cp)(t) = J’ c(t, 7) p(r)dr

(Dp)(¢) = J d(t, r)p(r)dr

0

fort € [0, T].
D.2: With y, Ty, C", and #. as indicated in the paragraph preceding B.2
of Section 2.4, N is defined on I" = {s € L.(C)(T):||s||r < v} by

(Ns)(¢) =ms(t), t], tE€[0,T],

where 7 is a map from I'y X [0, T] into C" with the following
properties:

(Z) n(0, t) =G fort [0, T].

(it) The function £ given by £(¢) = n[s(t), ], 0 =t = T, is Lebesgue
measurable on [0, T'] for each s € T".

(itf) For each t € [0, T], n(-, ¢) is a continuous map of I'y into C",
and for each ¢ € [0, T'], for 1 = i, j < n, and for any point a € T, the
function z; — ni(ay, -+, aj-1, Zj, &js1, +++ , 0, t) is differentiable with
respect to the complex variable z; for |z;| < y. [This implies (Ref. 8,
pages 204, 205, 226, 227, 230) the existence throughout I'; of every mth
order partial derivative

a’"n,-
dz; 0z; -+ 825

(32)

for each ¢ and all m.]

(iv) For any m, j1, -+, Jm, and i, the partial derivative (32), which
we denote by p(zy, - -+ , 25, t), satisfies the conditions that the function
t — p0, ---, 0, ¢) is bounded on [0, T], and that p is uniformly
continuous on closed subsets of I'y uniformly in ¢, in the sense that
given a closed I'ee C I'y and a &; > 0 there is a §2 > 0 such that

IP(Zal, s, Zan, t) - P(Zbl, ey Zpn, t)l 581

for ¢t € [0, T'] whenever z, and z, are elements of I'g such that |z, —
zb| < 8s.

Direct modifications of the proof in Section 2.4.2 suffice to establish
the following result, in which by Proposition 2’ we mean the corollary
of Proposition 2 obtained from Proposition 2 by replacing SY, t=0,
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L.(C), and [0, ») by Sw(T), ¢ € [0, T], L(C)T), and [0, T],
respectively.*

Theorem 3: When D.1 and D.2 are met, there is a positive number §
and an open subset S of I" of D.2 with the following properties.

(Z) S contains the origin in L.(C)(T'), and for each v € L.(C)(T)
with ||v|lr < §, there exist unique x, y, and w of S, L.(C)(T'), and
L..(C)(T), respectively, such that (2), (3), and y = Nx hold.

(ii) Foreachl=1,2, - .. there is a k&, €S,/(T) such that

w=Y Vi) for |v|r<§,
=1

with the series uniformly convergent with respect to |v|r < 8, where
V&(+) is as indicated in Proposition 2’ (which is described just before
Theorem 3).

(iii) Each k; can be taken to be continuous on Ro(/)(T') when a, b,
¢, and d are continuous on Ry(1)(T).

REFERENCES

1. I. W. Sandberg, “Expansions for Nonlinear Systems,” B.S.T.J., this issue. See also
I. W. Sandberg, “Functional Expansions for Nonlinear Systems,” Proceedings of
the 1981 Int. Conf. on Digital Signal Processing, Florence, September 2-5, 1981.
. V. Volterra, “Sopra le Funzioni che Dipendono da Altre Funzioni, Nota 1,” Rend.
Lincei Ser. 4, 3 (1887), pp. 97-105.
. V. Volterra, The Theory of Functionals and of Integral and Integro-differential
Eguations, New York: Dover, 1959.
. M. Fréchet, “Sur les Fonctionnelles Continues,” Ann. de L'Ecole Normale sup., 3rd
Series, 27 (1910).
. I. W. Sandberg, “On the Properties of Some Systems that Distort Signals — II,”
B.S.T.J., 43, No. 1 (January 1964), pp. 91-112.
. I. W. Sandberg, “On the Theory of Linear Multi-loop feedback Systems,” in
Feedback Systems, ed. J. B. Cruz, Jr., New York: McGraw-Hill, 1972.
. J. G. Truxal, Automatic Feedback Control System Synthesis, New York: McGraw-
Hill, 1955, p. 114.
. J. Dieudonne, Foundations of Modern Analysis, New York: Academic Press, 1969.
. A. Halme, J. Orava, and H. Blomberg, “Polynomial Operators in Nonlinear System
Theory,” Int. J. Syst. Sci. 2, No. 1 (1971), pp. 25-47.

T. M. Flett, Differential Analysis, London: Cambridge University Press, 1980.

N. Wiener, The Fourier Integral and Certain of its Applications, New York: Dover
Publications, 1933.

S. McShane, Integration, Princeton: Princeton Univ. Press, 1944.

13. R. K. Miller, Nonlinear Volterra Integral Equations, Menlo Park, California:
Benjamin Inc., 1971.

. D. C. Youla, “On the Stability of Linear Systems,” IEEE Trans. Circ. Th., CT-10,
No. 2 (1963), pp. 276-9.

15. C. A. Desoer and A. J. Thomasian, “A Note on Zero-State Stability of Linear

Systems,” Proc. First Annual Allerton Conf. Circ. and Syst. Th. (1963), pp. 50-2.

HO W = o ;s N

= e
W

—
[

* In this connection, see the last paragraph of Section 2.3.2. Also, a hypothesis
corresponding to B.3 is not needed because when D.1 and D.2 hold, and L(¢) is as
indicated in Proposition 1 for ¢ € [0, T')], for each p € L.(C)(T) there exists a unique
g € Lo(C)(T) such that p(t) = q(t) — [ c(t, 7)L(r)g(r)dr, 0 < t < T. On the other hand,
& and S of Theorem 3 depend on T.
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