LETTER TO THE EDITOR

Comments on "Fractionally Spaced Equalization: An Improved Digital Transversal Equalizer," by R. D. Gitlin and S. R. Weinstein*

(Communication received November 1981)

In the Gitlin and Weinstein paper, Fig. 3 and Formula (15) give the following result: the equalized signal, called $\tilde{u}(t)$, is analytic, i.e., its real and imaginary parts are a Hilbert transform pair. This result is contradictory with the fact that in QAM, $Re\{\tilde{u}(t)\}$ contains in-phase data a_n , and $Im\{\tilde{u}(t)\}$ contains independent quadrature data b_n . It is worthwhile to make the three following points:

- (i) $\tilde{q}(t)$ in Formula (13), is not analytic since ω_c is within the band of s(t). Therefore, $\tilde{q}(t)$ cannot be written as $q(t)+j\check{q}(t)$ as it was done on page 281. Consequently, $\tilde{u}(t)$ is complex but not analytic and its real and imaginary parts are not Hilbert transform. $\tilde{q}(t)$ and $\tilde{u}(t)$ are analytic if ω_c is on the edges of the band of s(t) or outside this band as is the case in single sideband systems.
- (ii) In Formula (9), $\tilde{s}(t)$ is analytic if and only if $P(\omega) = 0$; $|\omega| \ge \omega_c$.
- (iii) On page 280, it should be noted that $\tilde{f}_B(t)$ should be given by the convolution of $\frac{1}{2}\tilde{x}_B(t)e^{-j\theta}$ with p(t), where $\theta = \angle X(\omega_c)$. The factor $\frac{1}{2}$ was indeed mentioned in the Appendix, Formula (62).

G. Kawas-Kaleh Ecole Nationale Supérieure de Télécommunication Department Systemes et Communications 46 Rue Barrault, 75634 Paris, CEDEX 13

Author Response

Mr. Kawas-Kaleh is correct in pointing out that $\tilde{q}(t)$ is not an analytic signal. Since $\tilde{r}(t) = r(t) + j\tilde{r}(t)$ is an analytic signal centered about w_c , the demodulated signal $\tilde{q}(t)$ will be a complex signal having frequency components centered about the origin, and hence cannot be an analytical signal.

The condition that P(w) = 0 when $|w| \ge w_c$, which is implied though not explicitly stated in the paper, is standard practice.

It should be noted that Mr. Kawas-Kaleh's comments concerning analytic signals in no way affect the performance attributes of the fractionally spaced equalizer reported in the paper.

R. D. Gitlin

^{*} B.S.T.J., 60, No. 2 (February 1981), pp. 275-96.