Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 4, April 1982
Printed in U.S.A.

No. 10A Remote Switching System:

Host Software

By D. W. BROWN, J. J. DRISCOLL, and F. M. LAX
(Manuscript received April 29, 1980)

The Remote Switching System (RSs) is a distributed control system
which has the call-processing control in the host Ess. This design
provides the capability of easily giving Rss lines the same features
that are available to host Ess lines. A significant amount of new
software is required in the host EsS to provide the control of the 10A
Rss. This article describes the Rss host call-processing functions and
the administrative and message handling software necessary to pro-
vide this control.

I. INTRODUCTION

A local Electronic Switching System (Ess) provides the call control
for a 10A Remote Switching System (rss). The 10A Rss acts as a slave
executing orders sent to it from the host Ess and reports events, such
as line originations, to the host. A major advantage of this type of
distributed control is that the complex tasks of call processing can use
existing host software and share host equipment and trunking facilities.
This sharing of host Ess software provides the capability of easily
providing rss lines with the sophisticated features that are offered to
host Ess lines.

Figure 1 shows the system configuration consisting of a host Ess
office, a 10A Rss (remote terminal), a data link controller, intercon-
necting voice channels, and data links. The data links are used for
communication between the host Ess and the 10A Rss, and provide
the means by which orders from the host are transmitted to the 10A
rss and acknowledgments are returned to the host. Voice channels are
used to provide the rss lines with access to the host network and are
selected dynamically. In the No. 1 Ess Rrss host implementation, the

491

HOST ESS OFFICE NO. 10A RSS

- B i
' b= HosTEss | -
SWITCHING | & MICRO-
| - T e e TRUNKS | PROCESSOR | — CUSTOMER
—_— t . Fou
l r TWO DATA LlNKS_-I : LINES
|| TWO DATA LINKS
e | e |
| iR |
I____]:_:___:__J___I |l_..____._1

Fig. 1—Remote switching system configuration using digital carrier.

data link controller is a Peripheral Unit Controller/Data Link (puc/
DL). .
The host Ess software structure for Rss is influenced by five basic
system requirements:

(i) All existing host Ess line features should be capable of being
provided to RsS lines with comparable service performance.

(it) The effects on the host capacity to process non-Rss calls should
be minimized. :

(itf) Although the first rss development uses a No. 1 Ess for a host,
the design should be portable to other local Esss with minimum
development.

(iv) New host features should be able to be provided to Rss lines
with minimum development.

(v) The 10A rss hardware and firmware must be identical for all
host machines.

The first requirement is met by making maximum use of the existing
host call processing, translation and administration programs, with
modifications wherever necessary. This also tends to minimize the
overall development since a major portion of these programs are
independent of rss. Modifications, where necessary, are done in a
manner to minimize the cost in processor real time to non-Rss calls
and functions [Requirement (i)].

The reduction of the cost of development over different ESs ma-
chines is realized by recognizing that a major portion of any software
development is spent on requirements, planning, design, and testing,
with a lesser portion of the time spent on the actual program coding.
Fundamentally, all the Ess machines have similar software facilities to
perform switching functions, although the method of implementation
may differ. These factors are used in the Rss by producing host
software requirements and designs that strive for machine indepen-
dence to maximize portability between different host machines. Since
the programs are functionally equivalent, higher level test plans are
also portable between the machines.

492 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

This paper describes the rRss host software architecture, call-proc-
essing functions, and the database administration and integrity facili-
ties. The host software structures to provide Rss resource administra-
tion and to handle rss messages are also described.

Although most of the designs and functions are discussed from a
host-independent viewpoint, the data linking and message handling
structures discussed in Section V apply specifically to the No. 1 Ess
design. This is because the input/output (1/0) structure of the different
local Esss are quite different, and the data link controller used in No.
1 Ess (puc/pL) will differ from other systems. However, the data link
protocol and the message structures are the same for all systems so
that the same 10A Rss is used for all host Esss.

Il. RSS HOST SOFTWARE ARCHITECTURE

An overview of the major components of the rss host software is
given in Fig. 2. The design of the software architecture is such that all
software was put into one of the following three categories:

(i) Hooks in existing programs—These are basically decision func-
tions in the host programs that make a decision concerning some
aspect of the 10A Rrss feature. They are required in host programs that
are shared by Rss where a special action is required for Rss lines. For
example, in Fig. 2 hooks are required at appropriate places in the host

ESS OPERATING ENVIRONMENT

— / N T~

HOST ESS CALL
s HOST PROCESSING
RSS o AT‘.‘AB ASE DATABASE (TERMINATING,
INPUT/QUTPUT ADMINISTRATION ORIGINATING,
INTEGRITY COIN, ETC.)
RSS RSS RSS
ROB INPUT DATABASE DI RSS
EXECUTION| | MESSAGE ADMINIS- S- RESWITCH
ROUTING TRATION CONNECT
RSS
RESOURCE
ADMINIS-
TRATION
RSS
NETWORK
ROB
soms. | | TERMNAL
TRATION ADMINIS-
TRATION

Fig. 2—Remote switching system host software architecture overview.,

HOST SOFTWARE 493

call-processing programs to invoke routines to perform Rss adminis-
trative functions. These hooks are coded in the host Ess standard
language and the location of these hooks is quite dependent on the
host software structure; thus, they are not directly portable to other
hosts. However, high-level structure charts and functional descriptions
may be portable since the same Rss actions are generally required in
a call sequence independent of the host.

(i1) Unique rss, host-dependent software—This is host software
that performs unique Rss functions but whose design is different for
different host Esss. In Fig. 2, the Rss 1/0 and Remote Order Buffer
(roB) administration functions fall into this category. Software may
be put into this category to utilize some aspect of the existing host
system or to save on host resources, such as real-time. Structure charts
and functional descriptions are highly portable to other hosts; however,
pseudocode and state diagrams normally are not.

(Zit) Unique Rss, host-independent software—This is host software
that performs unique Rss functions whose implementation is host-
independent since they only interact with the host 10A rss database
and are not dependent on the host operating system or database. This
class of programs is highly portable to other host machines, even at a
detailed level. The structure charts, flow charts, functional descriptions
state diagrams, and even the pseudocode generated during the devel-
opment process should be portable. To increase the portability of this
code to other hosts, these programs were written in a high-level
language. The rss Network Terminal and Path Administration pro-
grams in Fig. 2 fall into this category.

The host software components shown in Fig. 2 are discussed in the
following sections.

lIl. RSS RESOURCE ADMINISTRATION

The processing of Rss calls requires the allocation and management
of resources that are physically located at the 10A Rss or shared
between the host Ess and the 10A Rss. These resources include the
channels that interconnect the host and 10A Rss, receiver off-hook
(ROH) tone circuits located at the 10A Rss and the 10A Rss network
crosspoints. Also, the status of RsS lines is maintained at the host.
Several factors were considered in deciding whether to place these
functions in the 10A Rrss or in the host Ess. These factors are

() The effect on service because of the additional time delay if

the 10A Rrss has to be interrogated to determine line status, and to
hunt voice channels and network paths.

(if) The additional software development required if the host Ess
programs have to take a real-time break to interrogate the 10A RrsS to
obtain a line’s status. Host software is structured around data that are
accessed without taking a real-time break.

494 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

(iit) The duplication of development effort that is required to
provide the same functions in several host ESS systems.

Factor (iii) indicates that the overall development effort would be
reduced by placing the line, channel and 10A RsS network path
administration in the 10A rss. However, the service criteria and the
effect on the existing host software were judged to be more important;
therefore, these functions are allocated to the host Ess.

The overall development effort is reduced by making the program
and data structure designs independent of the host Ess. Thus, they are
highly portable between Ess machines. This section describes the data
structures and programs required to administer the rRss resources.

3.1 Data structures

Data structures are required in the host Ess memory (call store) to
record the status of the rss facilities and to provide for their admin-
istration. These data structures are contained in one contiguous mem-
ory block, called the rss Path Memory Block. To simplify the engi-
neering of the office, the Rss Path Memory Block is provided in one of
three sizes corresponding to three basic network sizes of the 10A Rrss.
Each of the substructures in the Path Memory Block is described
below.

3.1.1 Network map

The network map is only provided in one size (for a fully equipped
10A rss network) and contains a status bit for each A-link and junctor
in the 10A Rss network.

3.1.2 Path memory remote record

A path memory remote (PMR) record is provided for each possible
line and channel network appearance. Since the 10A RSs network can
be equipped in three different sizes, considerable Ess memory is saved
by also providing PMRs in substructure sizes corresponding to the
network size. The PMRs contain information about the state of the
terminal and a pointer which is used to link the PMR to another PMR
or to point to another memory block (call register or path memory for
junctor (PMJ) involved in the call.

3.1.3 Path memory for junctor record

A PMJ record is a block of call store that is associated with a junctor
in the 10A Rrss network and is provided for each equipped junctor. It
is used to store path and terminal information when the junctor is in
a network path. A PMJ also contains a state and pointer which is used
to link to another PMJ or to a call register.

HOST SOFTWARE 495

3.1.4 Remote miscellaneous scan point status map

Scan points are provided at the 10A Rrss for use in alarms, make-
busy keys, and stop hunt keys, etc. The remote unit periodically scans
these scan points and reports any changes to the host Ess via the data
link. The rss Path Memory Block contains a scan point status map
which has a bit for each possible remote scan point and is updated to
indicate the present state of the scan points. Host ESS programs
determine the state of a scan point by interrogating the map in the
host rather than sending a data link message to the remote terminal.

3.1.5 Channel head cells

The channel head cells contain memory for linking the idle voice
channel PMRs onto a one-way linked list, as well as for traffic usage
and peg counts. One head cell is provided for the channels terminating
on each of the two modules of the 10A Rss.

3.2 Programs

The responsibility for managing the Rss resources resides within the
host in the RrSs terminal and network administration programs. These
programs are designed to provide the functions required by client
programs, such as hunting channels, hunting 10A Rss network paths,
and fetching or changing the state of a line. In general, the client
program is isolated from the data structures since the administration
programs provide the interface with the Rss resources. This technique
of “data hiding” keeps the data structure access confined to the
portable programs.

3.2.1 Network terminal administration programs

The 10A rss network terminal administration program contains
routines for channel hunting, channel idling,-changing the state of a
terminal (line or channel), and for determining the state of a terminal.
These routines have the responsibility for maintaining the state and
pointer fields of the line or channel PMR (see Fig. 3) to indicate the
status of the terminal.

The pMRs for idle channels are put on a one-way linked list, with the
last channel idled at the bottom of the list. Channels are selected from
the top of the list, thus providing rotation among channel usage. A
linked list is provided for each of the two frames of the 10A Rss (see
Section 3.1.5). A channel PMR on an idle link list has the state field
(see Fig. 3) set “idle”; the pointer field contains the remote equipment
number (REN) of the next channel on the idle linked list. The pointer
field of the last PMR contains an “end” code.

The first choice on selecting an idle channel is to select from the
same module on which the REN that is to be connected to it appears.

496 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

STATE | POINTER (OPTIONAL)
STATE | POINTER == == = —= —i=

CALL STATE

PMR FOR RSS LINE
(REN A}
PATH DATA CALL
(REN A, REN B} DATA
STATE | POINTER PMJ CALL
REGISTER
PMR FOR
RSS CHANNEL
(REN B}

Fig. 3—Two-terminal Rss path memory configuration.

This conserves the usage of the limited number of intramodule junc-
tors. However, if there are no idle channels on the desired module, an
attempt is made to find an idle channel on the other module.

3.2.2 Network path administration programs

The main functions of the 10A Rss network path administration
programs are to hunt and idle network paths between a given pair of
Rss network terminals. In the course of performing these functions,
these routines administer three types of data structures: the Rss
Network Map, PMRs, and PMJs. A path hunt is performed by selecting
an idle junctor and A-links (using the busy/idle status in the network
map) so that when the corresponding network crosspoints are closed,
a talking path exists between the two given network terminals. This
hunt is exhaustive in that it looks for all possible combinations of
junctors and A-links that could be used to form a path. The selected
junctor and A-links are marked busy in the network map so that they
are not selected by the next path hunt request.

A record of the path configuration between two terminals is main-
tained in the PMRs of the two terminals and the PmJ for the junctor
included in the path. Figure 3 shows how the path memory elements
are set up. The state field of the pMRs indicates that the PMR is in a
path and the pointer fields contain pointers to the pMJ. The usage of
the state and pointer fields of the pMJ is similar to that of the PMR.
The pointer field may optionally be empty or it may be set up to point
to a call register. The state field indicates which situation applies.
Other data fields in the PMJ contain the REN of each of the associated
terminals in the path. This structure permits the entire path to be
reconstructed from the data in the PMRs and pmJ. Path trace routines,
included as part of the network path administration programs, accept
as input the REN of either terminal and trace through the structure to
obtain the other REN and the junctor associated with the path. The
identity of the A-links are also known since only one A-link can
connect a given network terminal to a given end of the junctor.

HOST SOFTWARE 497

More complex RSs network path configurations arise during special
switching actions, such as when two Rss lines that are connected
together through the Ess network are in the process of being “re-
switched-down” (to be described in Section 6.4) so that they are
connected solely through the Rss network. The process of linking PMRs
and pMJs is extended for these cases to include all the path elements.
Figure 4 shows how the elements are linked for a 4-terminal path
where two pairs of terminals (A1-C1 and A2-C2) are connected and a
reserved path (marked busy in memory but idle in hardware) exists
between Al and A2. As with the two-terminal path, all the RENs and
path element identities can be obtained by tracing the structure given
any REN associated with the path.

Routines that idle paths perform the reverse function of the path
hunt routines. Given any REN associated with the path to be idled, a
path trace is performed to obtain all the RENs and the junctor used in
the path. The A-link and junctor status bits in the network map, the
PMRs, and the PMJ, are then marked idle.

IV. DATABASE ADMINISTRATION

In addition to the generic programs, Ess machines have an extensive
database that provides the information necessary for these programs
to process calls and perform maintenance and administration func-
tions. These data are called translation data and contain information
such as line features, call routing and charging, and equipment config-
urations. Many functions, such as routing and charging, are not af-

A1|STATE | POINTER

STATE| POINTER

PMR FOR LINE A1
A1-C1
PATH DATA
{REN A1,
c1|staTe| POINTER REN C1}
PMR FOR CHANNEL C1 PMI (A1-CT) | staTe| FTRTO CALL STATE
CALL REG
Al1-A2
PATH DATA
st CALL DATA
REN A2)
A2|STATE| POINTER
STATE | POINTER }— PMJ (A1-A2) CALL REGISTER
PMR FOR LINE A2
A2-C2
PATH DATA
(REN AZ,
C2 | STATE | POINTER REN C2)
PMR FOR CHANNEL C2 PMJ (A2-C2)

Fig. 4—Four-terminal Ras path memory configuration.

498 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

fected by the rss feature and, therefore, most translation data are not
affected either. However, changes and additions to the existing host
translation data are required where it is necessary to identify line
terminations and scan or distributor points as being RsSs items. Also
new translators are required for new Rss items. This section describes
the modifications that are required for the host Ess translators, the
new translators, and the programs to administer them.

4.1 Translations

Translations refers to the office-dependent data that describes the
office and customer characteristics, the programs for accessing the
data, and the means for changing the data. All translation data are
stored in the host Ess and items that are required at the remote
terminal are periodically transmitted to it via the data link. Since the
host Ess performs all of the call-processing control functions, such as
routing, charging and trunk selection, most of the existing translations
are not affected by Rss.

The additional translations required for Rrss fall into the categories
of new translations and modifications to existing translations. The new
translators required are the

(i) REN translators, which contain the originating translation data
for rss lines. If the REN is associated with an Rss channel, then the
translators contain the associated Ess host line equipment numbers.

(ii) Remote scan point number (RMSN) translations, which define
the scan point usage, are used to determine the action to be taken
when a scan point changes state.

(iii) Remote terminal (i.e., 10A Rss) translators that contain data
on the equipage and stand-alone* features for the rss.

Both the REN and RMSN translators have corresponding host trans-
lators, and the data substructures for the new Rss translators are made
identical to the Ess translators. This permits the existing host programs
that access and change these translators to be used for the Rss
translators with only small modifications. Another important consid-
eration is the requirement that service features available to the host
ESS lines be also available to Rss lines. By using the same data
structures, this requirement is easily met and new features offered in
the future will be available on Rss lines with minimum additional
development. It also lessens the impact upon the client call-processing
programs since the data returned by the access routines have the same
formats. New programs are required to administer the remote terminal
translator since it has no Ess counterpart.

* Stand-alone refers to the operation whereby the 10A Rss processes intra-Rss calls
when communications with the host Ess are lost.

HOST SOFTWARE 499

In addition to the new translators, several existing translators require
modifications for Rss. An indicator has been added to the directory
number translator output to specify whether the called party is an Rss
or an Ess line. Several other translators that can contain equipment
numbers require indicators to specify whether the equipment number
is remote or local. For example, multiline hunt lists can contain a
mixture of RSs and Ess lines. Similarly, some translators require an
indication that scan and distributor points be specified as either remote
or local.

After initial call setup, the host call-processing programs use the line
equipment number (LEN) of the Ess end of the voice channel in the
call register data area rather than the REN for the line involved in the
call. This permits the existing host software to handle rss calls without
making extensive changes. However, since the REN of the Rss line is
required for some call actions, such as disconnect and coin functions,
a means must be provided to obtain this line REN from the ESS LEN of
the channel. This means is provided by way of the LEN translator
which contains the channel REN for the Rss channel. The path memory
associated with the channel REN can then be traced, as described in
Section 3.2.2, to obtain the Rss line REN from the PMJ used in the Rss
line to channel path.

Corresponding to the RSS translation data discussed above, the host
recent change and service order programs are modified to enable these
data to be changed by the operating company. The same recent change
message formats used for host lines are also used for rss lines, with
different keywords to indicate items that are Rss-related—for example,
LEN is replaced by REN in the No. 1 Ess application. Additional
keywords are added where a new item is required, and new messages
are provided for the unique 10A Rss translation data. The flexibility of
the EsS recent change programs permits this to be easily implemented.

4.2 Remote terminal translation data update

Although the host call-processing programs use the translation data
stored in the host, there is a subset of translation data that is required
at the remote terminal for use during both normal operation with the
host and during stand-alone operation. These data are

(i) Multiparty ringing option (ac/dc or superimposed).
(zz) Ground start applique circuit number for ground start and coin
lines.

(iif) Hardware equipage information, such as the network size and
channel interface board equipage.

In addition to the above data items, stand-alone operation, whereby
the 10A Rrss processes intra-Rss calls when communications with the

500 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

host Ess have been lost, requires additional data to perform the
following translations:

(/) Emergency directory number routing data. Up to four, 3-, 6-,
or 10-digit directory numbers (such as 911) can be specified for special
routing during stand-alone operation.

(ii) Terminating directory number translations to yield the REN
and type of ringing.

(Zii) Multiline hunting lists.

(iv) Originating line translation data which includes the type of
dialing, distributor point assignments and major class. The major class
stored at the remote terminal is a subset of the major classes served
by the host. It can be individual, two-party, multiparty, coin, manual,
or unassigned. The major class of each Rss line, as stored in the host
translation database, is mapped into one of these major classes before
the data are sent to the 10A Rss.

The 10A Rss copy of an individual subscriber’s translation data is
updated whenever a recent change on that line is entered into the host.
At that time, a translation data update message, which contains all
the data pertaining to that line, is sent to the remote terminal. A total
update of all remote terminal translation data is done whenever the
remote terminal requests it. This is done on a routine basis, once a
day, and whenever the remote terminal suspects that the data may
have become mutilated. The update can also be requested manually
from the host teletypewriter.

V. THE RSS MESSAGE HANDLING
5.1 Hardware overview

Figure 5 is a diagram of the 10A Rss No. 1 Ess host interface and the
hardware components involved in the transmission of data between
the remote terminal and the host. Communication between the two
machines takes place over a pair of low-speed data links that share the
same transmission facilities as the voice channels that interconnect
the remote terminal with the host. Each data link is placed on a
separate transmission facility for reliability. Where carrier facilities are
used, the links are assigned to a dedicated voice channel on the carrier
system with each link being assigned to a separate carrier terminal.

Both Rss links are 2400 bps synchronous links. The on-line link is
active and carries the entire data traffic between the host and 10A
rss, while the off-line link is maintained in a standby state as a spare.
The on-line, off-line status of the links is determined by the host office
based on error information accumulated by the software responsible
for running the links. At the remote terminal, the link is interfaced to
the microprocessor through a data link interface circuit (DLI). The DLI
provides a small amount of data buffering and performs a number of

HOST SOFTWARE 501

*90BJI9UI JSOY SST T 'ON—SSY¥ V0T 'ON—G F1J

LINJHID
30I1AH3S

LINJHI1D
ANNHL

N s 30V4HILINI
AN viva L NOILYOIddv AN VLva
10HINOD HITTIOHLNOD H317081NOD
IVHINID LINN ssH
VY 3IHdIYI3d
s 30V4HILNI
‘l JINIT Yiva
\\ SHNIT Y1va
\\\\‘
P
STINNVHO <
~ .
HHOMLIN Y NHOMLIN
LSOH
SHNIT 30107 SLINJHID SsH

S3NI

1883 LSOH

3D1AHIS TYSHIAINN

S3NIT SSH YOI

v

502 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

control functions essential to implementing the synchronous link pro-
tocol.

At the host, the link interfaces with a functionally similar line
interface unit that is part of the puc/pL. The PUC/DL is a peripheral
unit controller that has been equipped with the hardware and firmware
to serve as a data link terminal for up to 16 data links. The function of
the puc/pL is to provide the control for physically transmitting and
receiving data on the links and to provide data buffering for the host
office. The data being transmitted and received by the puc/pDL are
buffered on a per-link basis within the terminal. Sufficient data buffer-
ing is provided to allow the host to efficiently exchange large blocks of
data with the terminal on a schedule that is efficient to the host.

5.2 Software overview

The routines that control the data transmission between the remote
terminal and host are located in the remote terminal, the puc/pL, and
the host office. The organization of these programs is illustrated in
Fig. 6. There are two basic functions to be performed. Data must be
transferred reliably over the link and an interprocess communication
system must be provided to allow software processes in the host to
communicate with processes in the remote terminal. These two func-
tions are provided by the data link protocol software and a set of
message routing routines. The protocol software provides virtually
error-free transmission of data over the link by executing a set of error-
detection and error-correction procedures. The message routines allow
a process in one machine to direct a message to a process in the other.
These two systems are largely independent and bear a hierarchical
relationship to one another in the sense that the message routing
routines rely on the link protocol routines to accurately transmit data
from one end of the link to the other.

5.3 Data link protocol

The protocol routines are executed in the remote terminal and the
puc/DL. The 10A Rss application uses the link level portion of the
X.25 protocol to control the link. This is an industry standard protocol
which is suitable for other link applications furnished from the puc/
DL in addition to Rss. It is a bit-oriented protocol designed for syn-
chronous link operation. To provide for error detection and correction,
the data to be transmitted are segmented into numbered blocks termed
frames. The frame format is shown in Fig. 6. As frames are transmitted,
they are sequentially numbered and a cyclic check code is computed
over the data in the frame. The frame number is transmitted in a
control byte at the beginning of the frame, and the check code is
appended to the end. The frame numbering scheme makes it possible

HOST SOFTWARE 503

‘marazaao urerSoxd uorsstwsuer) Byeq—9 “Sig

39VSSIN SSH
viva
[-l
S3LAE 93HD %0078 =08 ¥3avaH
S3LAS NOILYIWHOANI = | INAS
31A8 1OHLNOD =0
31A8S53HAAY = ¥ .
JLAE ONIWVHL = 4 _ # IWvH4 SZ'0X _ _ _
N SS300Hd) 4 08 o8 \ 9 v 4 J) N SS300Hd
z ™ 3M303 e le— LINSNVHL =
@ @
. ¢ 3 3 4)
.] o (] [} .
m = 3 m
. E] =} Q = .
] Q Q <}
c =] =] c
5 [r S
3 2
© LINSNYHL [EYSESEL T e
0 §5300Hd 05530044

- IVYNIWGIL
1SOH — 10-2nd ; AN 210W3H

—]

504 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

to identify frames for retransmission and to detect missing frames in
the received data. As frames are processed at the receiving end of the
link, the cyclic check code is recomputed and compared to the one
transmitted with the frame. A mismatch indicates that a transmission
error has occurred. A positive acknowledgment is returned to the data
transmitter for all frames received correctly, and a retransmission
request is returned if a frame is received in error. In response to a
retransmission request, the data transmitter will retransmit all the
frames it has previously transmitted starting with the one in error.

The protocol software at the Puc/DL has the additional function of
providing link status reports to the host machine. Error conditions
such as high transmission error rate, frame acknowledgment time outs,
and loss of data carrier are monitored by the protocol and reported to
the host. The transmission error rate is determined from the number
of retransmission commands received and sent by the Puc/DL protocol
program. From these data, the host data link state control can take
action to remove a link from service if it becomes inoperative or if its
throughput is restricted because of excessive data errors.

5.4 Message routing routines

The routines that are responsible for routing data between individual
processes in the two machines are executed by the remote terminal
and the host processor. These programs assume that data received
from the link protocol programs are error free and that any additional
error control procedures for detecting transmission errors are unnec-
essary. These programs are designed to transmit data between buffers
associated with client programs in the two machines. A program
having data to transmit will load the data into its associated buffer.
When the data are completely assembled, the buffer will be activated
for the message routing routines and the data will then be transferred
to a buffer associated with the destination program.

To facilitate the data transfer, the message routines assemble the
data to be transmitted into messages that can be addressed to a
particular destination. The rRSS message format is shown in Fig. 7. A
message is comprised of 16-bit data words, which is a convenient
length for both the puc/DL and the remote terminal processors. The
two initial words are a SYNC word and a message header. The sync
word denotes the start of the message and the header contains the
address information necessary to route the message to a particular
client program and buffer. It is possible for multiple buffers to be
allocated to certain programs, such as the remote terminal call-proc-
essing routines, so that multiple processes can be executed concur-
rently. The message address structure allows data to be routed to an
individual buffer associated with a client program by providing a c1

HOST SOFTWARE 505

RSS MESSAGE
SYNC

MESSAGE HEADER

DATA

16 BITS

MESSAGE HEADER
[a] smI WORD COUNT]

CI = CLIENT PROCESS IDENTIFIER
SRI = CLIENT BUFFER IDENTIFIER
WORD COUNT = COUNT OF DATA MESSAGE WORDS

Fig. 7—Remote switching system message structure.

field to identify the program and an sri1 field to identify one of its
associated buffers. The word count in the header, along with the sync
word, enables the message routing routines to parse individual mes-
sages from the received data supplied by the protocol programs.

5.5 Host data reception

The routines and buffers in the host that handle messages transmit-
ted from the remote terminal are pictured in Fig. 8. The data received
by the Puc/DL from the remote terminal are buffered in a RAM memory
within the Puc/DL that is accessed from the host in the same manner
as an existing scan memory. Message data in the PUC is then trans-
ferred to the host programs in two stages. Data are first transferred to
a receive buffer in host call store by an interrupt level routine that
executes every 25 ms. It is executed frequently enough at this rate to
ensure that data from the link will not overflow the scan memory in
the puc/pL. This is necessary since the Puc/DL is not equipped to
initiate a data transfer into the host when data are received from the
link. In a No. 1 Ess host equipped with a signal processor, this is
performed by a signal processor program.

A second routine, executed by the host Central Control (cc) at base
level, is responsible for unloading the call store receive buffers and
routing messages to destination client buffers. Individual messages are
defined in the receive buffer by scanning for the sync word at the
beginning of a message and using the message word count in the
header to locate the final word.

Once a complete message has been received, the client identity (c1)

506 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

- PUC-DL HOST

()
£
=
5 SUPERVISION
@ ™™ HOPPER
RSS 0 RSS 0 o
w
(U}
a ASS 1 !
o SYNC 7,1
o w .
= . HEADER 2 .
o : 3] .
T o
o . DATA e
Zz
o
Q
RSS N 3 TELE-
I |—={ TYPEWRITER
. E HOPPER
. Z
w
b Q
N CLIENT
CENTRAL HOPPERS
CONTROL
RSS N BASE-LEVEL
TASK

HOST RECEIVE
CALL STORE
BUFFERS

Fig. 8—Host message reception.

and srI indexes (see Fig. 7) are used to locate the client buffers. A set
of routing tables, as shown in Fig. 9, are supplied for each rss. The
primary route table is indexed with the c1 in the message header.
There are two types of entries in this table. If the client program has
a single buffer associated with it, the entry contains the address of the
load head cell for the buffer. The load pointer in the head cell enables
the routing program to transfer the message from the receive buffer to
the client buffer.

If the client program has multiple buffers, the primary route table
entry is the address of a subroute table associated with the client
program. The subroute tables are indexed with the SRI entry in the
message header to obtain the load head cell address for a specific
destination buffer. After the message transfer is complete, the client
program is alerted to the fact that a message has arrived and is
available to be processed.

5.6 Host data transmission

The buffering technique adopted for the transmission of peripheral
orders to the remote terminal was designed to be compatible with the
structure of the existing host software. The order buffering and mes-
sage transmission must be tailored to the host software structure if the
existing call processing and maintenance routines are to be preserved.

HOST SOFTWARE 507

LOAD
POINTER

TOP

LOAD
HEAD CELL

UNLOAD
POINTER

TOP

UNLOAD
ELL
HEADC HEAD CELL

ADDRESS

SUBROUTE TOP

ADDRESS

SRI UNLOAD

POINTER / //////

PRIMARY ADDRES
ROUTE TABLE S POINTER

ZERO
ZERO

SUBROUTE CLIENT
TABLE BUFFER

Fig. 9—Message routing tables

A few remarks on the nature of the call processing programs are
necessary to understand the interface requirements.

The host call-processing programs are divided into call segments
that process an input from a subscriber or a peripheral circuit to
completion in one real-time segment (Fig. 10). All the peripheral orders
required to process the input are generated by the program segment,
but their execution is carried out by a separate set of input/output
(1/0) programs. Peripheral operations in the host or remote terminal
take tens or hundreds of milliseconds to execute, which precludes their
direct execution within the call segment. During execution, a typical
program segment may generate several remote terminal peripheral
messages that are destined for different rsss. In most cases, it will also
generate a number of orders to be executed in the host periphery in
conjunction with the remote terminal actions. The execution routines
must be able to coordinate the host-remote terminal peripheral actions
and coordinate the transmission of the remote terminal orders to the
different rsss. Frequently, it is necessary to execute the remote ter-
minal-host peripheral actions in a predefined sequence where either
the host or the remote terminal action must occur first.

The call processing and maintenance programs are coupled to the
1/0 programs through a set of 1/0 buffers that are loaded with the
peripheral orders to be executed. All host peripheral orders are

508 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

ENTRY FROM
SYSTEM MONITOR

HROB POB)
T 5
o HOST
% PERIPHERY
BGNBLK @
= o
a
ROB
HOST PERIPHERAL
ORDERS
— UWLERS BGNBLK z
o
5
REMOTE TERMINAL ORDERS 2 ?E:SLEAL
ORDERS X PERIPHERY
@
ACKBLK 2
ACKBLK «
AROB ENDR

RETURN TO
SYSTEM MONITOR

Fig. 10—Remote switching system call segment

buffered in peripheral order buffers (poBs) where they are executed by
the POB execution programs, which are designed to handle the timing
requirements presented by the host periphery.

A set of remote order buffers (ROBs) are provided in the host
machine to buffer the peripheral orders being transmitted to the
remote terminals, They are loaded and administered by the call
processing programs in the same manner as the peripheral order
buffers. Before a set of remote orders is generated, an ROB must be
seized from a common pool provided in the host. The orders to be sent
to the remote terminal are loaded in the ROB via a set of order macros
which provide a high-level interface with call processing. When order
loading is complete, the ROB is activated and the 1/0 routines transmit
the orders to the remote terminal. An individual ROB may be used to
send orders to any RSS. An administration macro is called before the
orders are loaded to specify the identity of the remote terminal to
receive the orders. The host can have any number of rROBs pending to
send orders to an Rss; however, each remote terminal has a fixed set
of eight RoB RECORDS that are used to store orders received from an
ROB at the host (Fig. 11). The roB RECORDS are buffers associated
with the peripheral order execution program in the remote terminal
that executes the orders transmitted from an ROB. Before the orders
are transmitted, an idle RoB RECORD in the remote terminal must be
selected by the host and the SRI in the message header must be set up
to route the orders to this particular RoB RECORD.

HOST SOFTWARE 509

HOST L PUC-DL | REMOTE TERMINAL

/‘\‘I N
ROB
— RSSO [— RSS RECORD |—
0
z RECEIVE 4
e HOPPER ‘é 3
3 SE
u PUC-DL . . =3
. w e INPUT . . = %
. @ FIFO . . | w
o o a
& e
o @
T ROB
I RSSN RECORD =i
7
\/
HOST ROBs DATA LINK

DESTINATION HOPPERS

Fig. 11—Host data transmission.

5.6.1 The ROB execution protocol

A rudimentary protocol has been established to coordinate the
activities of the call processing routines at the host with the execution
of ROB orders at the remote terminal. Several orders will be grouped
together into a single message at the host to be transmitted to the
remote terminal. The orders in the message are executed at the remote
terminal and upon completion an acknowledgment is returned to the
host. The acknowledgment will indicate whether all the orders in the
message were successfully executed or not and must be received by
the host before any further actions will be permitted on this call. If the
remote terminal encounters a failure in executing an order, the ac-
knowledgment message will specify the failed order to the host and
the remote terminal will suspend execution of all remaining orders in
the roB RECORD.

It is essential to receive a positive confirmation on the status of the
orders for several reasons. If an order failure occurs, the host fault
recovery routines can be scheduled to clear the call from the system.
In addition, the acknowledgment allows the host to correctly sequence
any other peripheral actions with the remote terminal orders. When
the acknowledgment is received, the host can activate an associated
POB or return to a call-processing program to implement the next
action on the call. The restriction that additional rss orders will not
be transmitted until the acknowledgment is received also prevents the
host from transmitting multiple sets of orders for the same call that
would be executed in an arbitrary sequence at the remote terminal.

510 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

5.6.2 The ROB Entries

Two types of entries are loaded into an ROB. There are peripheral
orders to be transmitted to the remote terminal and subroutine calls
to be executed by the ROB execution program. The ROB subroutines
are used to implement the message protocol and control the data
transmission to the remote terminal. Figure 10 depicts the ROB loading
and administration operations involved in a call segment for an Rss
call. An roB is hunted at the beginning of the segment (HROB), and a
Begin-Block (BGNBLK) subroutine address is loaded in the ROB by the
BGNBLK macro. When the BGNBLK routine is executed by the ROB
execution program, it will identify the Rss, the subsequent ROB orders
are to be sent to, and will also select an RoB RECORD at the remote
terminal to receive the transmitted orders. Following BGNBLK, the set
of orders to be executed at the rss are loaded in the ROB by a set of
order macros that format the order data and place it in the ROB. After
the last order is loaded, an Acknowledgment-Block (ACKBLK) macro is
called to terminate the loading process. This ACKBLK macro will set a
flag in the last order loaded in the ROB to indicate that an acknowl-
edgment should be returned by the remote terminal after the order is
completed. In addition, an ACKBLK routine is loaded in the ROB to
process the acknowledgment message when it is returned. If all orders
were successfully executed, the ACKBLK routine passes control to the
next entry in the roB. If a failure is indicated, the fault recovery
routines will be initiated to tear down the call. The final entry in the
ROB is made when the ROB is activated for execution. The Activate-
ROB macro activates the ROB to permit the ROB execution routines to
process it and loads the ROB with the address of an END-ROB (ENDR)
routine. Upon completion of the ROB activities, ENDR will initiate the
next program segment required for the call. This may be the poB
execution program or it may be a predefined call processing segment
that will handle the next stage of the call.

Sequencing the execution of ROBs and POBs is necessary to control
the order in which the host and remote terminal actions are carried
out. This control is provided by the ENDR routines that are loaded in
the poB and ROB on activation. The ENDR routines provide the capa-
bility for ROBs and POBs to be sequentially executed in either order or
for the rROB and POB to be executed simultaneously. Simultaneous
execution is used where it is important to minimize call setup delays
and where the host and remote terminal actions can occur independ-
ently of one another. Control will be returned to the call processing
client after both the ROB and POB actions have been fully completed.

VI. THE RSS CALL PROCESSING CONTROL
The Rrss host call-processing software provides an Ess central office

HOST SOFTWARE 511

with the capability to supply Ess features to lines served by the Rss.
Since most of the call-processing functions for Rss lines are performed
by the host Ess office, a full family of Ess features can be provided to
the remote subscribers. The Rss call-processing software resident in
the host Ess provides the means of controlling a remotely located
switching system by taking advantage of existing equipment and
control capability in the Ess. Firmware in the remote terminal supple-
ments the host call-processing software appropriately. All call-process-
ing control resides in the host Ess and any required actions at the rss
are requested via data link messages to the Rss. This permits the host
to exercise total call control.

6.1 Originating call

A line originating in the Rss is first recognized during line scanning
performed by the RSs microprocessor. The Rss line-scanning program
in the remote terminal recognizes the line off-hook, performs timing to
ensure the origination was not a transient “hit,” and sends an origi-
nation request data link message to the host Ess. The host performs
originating translations on the line. If service is allowed, it marks the
RsS line busy and hunts an idle voice channel between the rss and
ESS. It also hunts a path through the Rss network from the originating
line to the selected voice channel, and selects a customer digit receiver
in the host, along with a host network path from the voice channel to
the receiver. A Remote Order Buffer (RoB) is then executed to send
appropriate data link messages to the remote terminal to set up the
RSS network path. Messages are also sent to set the line supervision
mode to repeat supervision of the originating line over the channel in
the dialing (fast repeat) mode. This ensures that the dialed digits will
be received properly by the host digit receiver. If the originating line
is identified in translations as a two-party line or a line associated with
a sleeve lead (or remote distributor point), appropriate data link
messages are also included in the above ROB to perform a party test or
operate the remote distributor points, respectively.

Upon successful completion of the data link orders in the remote
terminal, the host then executes orders to its periphery [via a Periph-
eral Order Buffer (roB) mechanism] to set up the host network path
between the voice channel and receiver to provide dial tone.

Processing of the call from this time on proceeds basically the same
way as an origination by a host line. Digits are collected and analyzed
by the same host software used to process host calls. At the completion
of dialing and digit collection, a data link message is sent from the host
to the remote terminal to set the line supervision mode to repeat the
supervision of the originating line over the channel in the talking (slow
repeat) mode to conserve remote terminal microprocessor real-time

capacity.

512 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

The RSs originating call, from this point on, is routed and completed
normally (excluding terminations to Rss lines) just as non-Rss line
origination processing. This originating call configuration is depicted
in Fig. 12 for a call that terminates in the host office. Upon answer by
the called party or, for calls to other offices upon completion of
outpulsing, the talking connection is established from the voice channel
through the host network. In Fig. 12, this is shown by completion of
the junctor (JcT) connections. The Rss answer timing, billing, traffic,
and other administrative functions are all performed by the host just
as for non-grss calls. If the call terminates to an Rss line, special
terminating rss functions are performed as discussed in the following
sections. When either the calling or called parties disconnect, discon-
nect functions are performed as discussed in Section 6.5.

6.2 Terminating call

An rss terminating call is recognized when the host Ess performs
the called number [terminating directory number (DN)] translations
from digits collected from an originating host line or trunk. The rss
lines are distinguished from host lines by special rss indicators in the
terminating line translation output. After the translation is completed,
special actions, as with the rss originating call, are required to set up
ringing. The host hunts an idle voice channel to the Rss, hunts a path
in the rss network between the voice channel and the terminating
line, and seizes idle host ringer (whose function is explained below)
and audible service circuits with associated host network paths to the
voice channel and originating line or trunk, respectively. In addition,

i_ns? _______ T‘ r ____________ NO. 1_J1A_Es:||
I i | LINE LINK TRUNK LINK |
| I | NETWORK NETWORK i
| R | | " « | | RINGING
| ——C/ﬁ’ | | S << ciRCUIT | |
[TERMINATING N—— |
| ORIGINATING | 1 LINE |
1] e |
| | yoree | 4= 1
	CHANNEL! s AupiBLE	
} , L3¢5 RINGING		
		CIRCUIT
	para ‘ I	
	LNk	
l t I		
CENTRAL		
	conTROLLER] [
I ——— | . e J

Fig. 12—Remote switching system originating call.

HOST SOFTWARE 513

a talking path through the Ess network between the voice channel and
the originating line or trunk is reserved.

An RroB is activated to send data link messages to the remote
terminal to connect the terminating line to the voice channel and
apply ringing to the line. Upon receipt of the data link orders, the
remote terminal selects an idle universal service circuit (Usc), along
with a metallic bus and time slot to provide the type of ringing specified
in the data link message. Supervision of the line is transferred across
the voice channel to the host in the fast repeat mode. As with the
originating call setup procedure, appropriate data link messages are
included in the above ROB and sent to the remote terminal to operate
sleeve leads or remote distributor points if so indicated in the output
from the terminating line translations.

Upon successful execution of the ROB data link orders in the remote
terminal, the host executes a POB to set up paths in the host network
from the voice channel and the originating line or trunk to its associ-
ated service circuit. Power cross and low-line-resistance tests are done
on the voice channel from the host ringing circuit. The host ringing
circuit is then left in a state to monitor ring trip sent by the remote
terminal over the voice channel to the host. Actual ringing is applied
to the line by the usc at the remote terminal; the Ess host ringing
circuit does not apply ringing voltage to the voice channel, but is only
used to monitor for ring trip. This call configuration, as shown in Fig.
13, maximizes use of the existing terminating call sequences in the
host.

i_m ______ : r— u_o.1_n:e;s—i
UNIVERSAL |
| SERVICE | | |
| CIRCUIT | | LINE LINK TRUNK LINK |
NETWORK NETWORK
| , auDiBLE | |
| i e e RINGING | |
| 7% ~ CIRCUIT |
('3 N
| TERMINATING ORIGINATING 3 |
| LINE LINE
| f
vOICE | A=
CHANNEL P
L o .| | riNGING
M HHT CIRCUIT
DATA |
LINK
Ca CENTRAL
CONTROLLER j—d L SENTRAL
______ | s

Fig. 13—Remote switching system terminating call.

514 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

When the called party answers, the remote terminal automatically
releases and idles the ringing facilities (Usc, metallic access bus, and
time slot) and relays the ring trip report (off-hook signal) of the line
across the voice channel and sets the supervisory mode to slow repeat.

The host Ess detects answer over the voice channel at the ringing
service circuit, tears down the ringing and audible circuit connections
in the host, and sets up the talking path that was previously reserved
between the voice channel and the originating line or trunk. If the
originating line in the Rss terminating call description is actually
another voice channel to the same Rss as the terminating line, the call
is considered an intra-rRss call and special actions are invoked as
described in Section 6.4.

Disconnect actions are identical to those for the Rss originating call,
except for the disconnect timing associated with the terminating versus
the originating party.

6.3 The RSS reverting calls

The mss reverting calls involving a call between two parties on a
party line are handled similar to host reverting calls. However, ringing
is provided similarly to the way it is applied on RSs terminating calls,
with the exception that two time slots are needed in the RSsS remote
terminal so that ringing can be applied to both customers. Each rss
has its own ringing office option as defined in translations. This Rss
ringing option, which can be either ac/dc or superimposed, is com-
pletely independent of the host Ess office ringing option, or any other
Rrss served by the same host. The Rss universal service circuit has the
capability to provide either ringing option under firmware control.

6.4 Intra-RSS call

An intra-grss call, where both the originating and terminating parties
are served by the same Rss, is handled initially as a combination of an
RrSs originating call and an Rss terminating call. After answer, the host
initially establishes a talking path within its network between the two
voice channels. Immediately following the establishment of this talking
connection, certain Rss actions are invoked to reswitch-down the call
so that the talking connection resides entirely within the rRss network,
thus releasing the Ess network path and voice channels for use on
other calls. The call is initially set up through the host network, then
followed by a reswitch-down. This two-step process maximizes the use
of existing host line-to-line call setup routines and provides for a well-
defined interface with the reswitch-down software module.

The reswitch-down action is initiated when the host hunts an intra-
RSS network path between the originating and terminating lines. An
ROB is activated to send data link orders to the remote terminal to

HOST SOFTWARE 515

disconnect both line-to-channel network paths and connect the two
lines through the rss network. The supervisory mode of the RSs lines
is set to scan for either a disconnect or switchhook flash, depending on
the features associated with each line. Since the intra-Rss connection
is entirely within the RsS, a change in supervisory state of the line must
be reported over the data link to the host. The sequence of intra-Rss
call configurations including reswitch-down is illustrated in Fig. 14.

If a network path in the Rss is not available, or one of the lines is an
RSS coin line, the intra-rRss call is not reswitched-down and remains
connected through the host Ess network. Intra-grss calls involving coin
lines are not reswitched-down in order to utilize host coin disconnect
routines and thus, simplify disconnect actions.

The use of various custom calling services or other special services
requires a reswitch-up of an intra-Rrss call to establish a talking path
between the two parties via the host network using two voice channels.
This allows existing host software and equipment to be utilized to
provide these customer services. The following operations require a
reswitch-up operation on an intra-Rss call.

(i) A flash by an Rss customer to add on a third party.
(i) A terminating call to one of the two parties of an intra-Rrss call
that has the call waiting-terminating feature.

(iii) A busy verification test of one of the two parties of an intra-rss
call by an operator.

When the host determines that a reswitch-up function must be
performed, for any of the reasons given above, the host seizes two idle
voice channels to the Rss and hunts a path between them in the host
network; the host also hunts a path between the two voice channels
and both lines in the remote terminal. A POB is executed in the host to
set up a talking connection between the two voice channels. Following
this, an ROB is executed to send data link messages to the remote
terminal to disconnect the intra-rss talking connection, connect each
line to a voice channel, and set the supervisory state of each line to the
talking mode (repeat supervision of the line over its respective voice
channel). Once the intra-rss call is reswitched-up to a talking connec-
tion via the host Ess network, the original service requested can be
provided just as it would to a normal line-to-line connection of two
host lines.

6.5 Disconnect functions

Disconnect actions for rss calls are a function of the particular call
configuration involved, i.e., intra-Rss calls or Rss calls through the host
network. For call configurations involving both rRss and Ess paths, the
EsS disconnect programs control the call disconnect actions. The same
disconnect sequence that is performed on ESs host lines is used on Rss

516 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

"aguanbes uojoauU0d ssU-enul—k1 ‘S

(HIMSNY H3L3V) dNLIS TVILINI

I - s] R —— q
_ g 1| | 431708.LNOD | |
" _ *7 _ n_m._.q_qo /*/ _
R L |
| = N | |
ra ./\/
(NMOG-HILIMS3Y HIL4V) dN13S ONINTY.L _ m.&@* _ “ ~N 5 W
||||||||||||| [oLonnr | I
_1 J0uLNOD |“ “| H3T10HLNOD |" | _ W 2
wveinad 1D _ _ I Tonmvo 711 _
_ I Tagnwo [_ ; / _
|| | MHOMLIN MHOMLIN | A
_ r ...;wl _ | SNIT 3NNYL SINIT 3NIT _ _ D \ |
: sS3 VL/L" il
_ | @ | [ssawsoN I ...
| _ W ﬂ (HIMSNY 380438) dN13S TVILINI
| | oNITIVD _ T e B
JOHINOD
| »HomLIn >HOmMLaN 47 | _ _ IVHINGD || _
| N NI _ \ Q | P |
| SNAEL 3NA | = S | “ } _ | |
. ﬁ _
A v/l 0
SsawwtoNn o L S| | Linowo e || ﬂ
| | oNIDNIY e —==71 T 7
| [soron] L |
| [S e mh >SS |
| | 31=anv o T ToNmwo] |
_ MHOMLIN soonan | | o \ew \.\\ _
* SINIT INNEL snraNn || v \ _

vy s s

HOST SOFTWARE 517

channels that terminate on the host line network. This disconnect
control strategy provides the ability to centrally recognize an RSS
channel during normal host disconnect processing. This recognition
occurs when ESs programs perform a restore verify action on the Rss
channel (restore the channel’s line ferrod to the idle state and verify
that it can detect an off-hook signal). At this point in the host
disconnect processing, unique host Rss disconnect modules are invoked
to disconnect the RSS network path. The normal host disconnect
program and RSS disconnect module then autonomously complete
their respective disconnect actions. The only common resource be-
tween the two control programs is the RSs channel. The Ess host
disconnect program administers the host end of the channel on its
network, and the rss host disconnect program administers the rRss end
of the channel on its network. After both ends of the channel are idled,
the channel is then available in the host for reallocation to a new call.

In the case of an intra-Rss call, where the call configuration involves
a connection totally within the Rss network and no channels or ESs
network paths are involved, the Rss lines are supervised in the 10A
Rss. Hits, flashes, and on-hooks are detected by the Rss; flashes and
on-hooks are reported to the Ess host via data link message. These
messages are routed to unique Rss disconnect control modules in the
host for proper processing. In the case of an on-hook, these programs
perform the proper disconnect timing and then execute ROBs to dis-
connect the intra-rss network paths and idle the lines involved. The
intra-rss call is reswitched-up on receipt of a flash message (as dis-
cussed in Section 6.4).

VIl. DATABASE INTEGRITY

In an electronic switching system, the status of resources and tele-
phone calls are recorded in temporary memory. These data can become
mutilated because of program bugs, hardware errors or program design
errors, resulting in the loss of resources or system degradation. The
problem is further complicated in rss because parts of the new data
structures in the host Ess are duplicated in the remote terminal. The
new structures are

(f) PMRs for lines
(i) PMRs for channels
(iti) Network map
(iv) Remote order buffers (ROBs) and
(v) Remote miscellaneous scan point map.

The actual data stored in the two copies of these structures are not
identical in all cases since the host and remote terminal do not perform
identical functions. For example, the state stored in a line PMR at the
remote terminal represents the supervisory state of the line (origina-

518 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

tion, repeat supervision onto a channel, high and wet, etc.), whereas
the state in the host PMR represents both the status of the line (idle,
busy, maintenance) and the type of path memory configuration, as
discussed previously. However, there is a mapping between the two
sets of states in that the host line state implies the possible supervisory
states of the line. Deviations from this mapping should only be because
of the time lag of the data link.

To ensure the integrity of the data structures, the first step is to
prevent as many errors as possible. The Rss software applies many of
the techniques that have been successfully used in other Ess projects
to avoid potential causes of errors. Some of these are good documen-
tation, standardized program interfaces, structured design, structured
programming, a high-level programmer’s language, and a standardized
data definition language. In addition, access to the new data structures
introduced into the host is limited to the administrative programs that
have the responsibility for that particular database.

The second step is to make the programs as error tolerant as possible
since data errors will still occur. The main technique for this is
defensive programming. The degree to which a data error is propagated
through the system depends upon how the programs use the data. To
have a minimal effect upon the system, programs should account for
bad data. Some specific types of defensive coding techniques are

() Range checks on data to prevent overindexing tables.
(ii) Accounting for all possible subroutine return code values.

(itf) Use of symbolic definitions for data values.

(iv) Accounting for all possible program inputs.

and
(v) Invalid data value checks.

Despite the preventive and defensive techniques that are employed,
errors can still occur in the data. Programs are required to detect these
errors and restore the facilities to the proper condition to avoid system
degradation. The audit programs are responsible for detecting and
correcting data errors and the initialization programs are responsible
for restoring system facilities when the degradation is severe enough
to cause major system degradation.

7.1 Audit programs

The integrity of the data structures is checked and corrected by a
set of audit programs. Each audit program is individually tailored to
a specific data structure or group of data structures and determines if
the data items follow certain established rules. If the checks fail, the
audit programs idle all resources (both software and hardware) asso-
ciated with the particular error and print error messages on the
teletypewriter. The audit programs also aid in the initialization of the
data structures.

HOST SOFTWARE 519

As previously discussed, the Rss system has new data structures in
the host Ess that are duplicated in the remote terminal. From a call
processing viewpoint, the remote terminal functions as a slave to the
host, executing the various orders sent to it. The remote terminal
updates its databases as a result of the orders received from the host.
Orders involving lines or channels cause the remote terminal to set its
PMR to the supervisory state appropriate to the order. The network
map bits are set to busy or idle when it receives a setup or tear-down
order, respectively. Although the host is the controlling entity, calls
can be lost or service can be denied a customer if the data stored in
the remote terminal are not consistent with the host data. For example,
if the host has a line in the origination state and the remote terminal
has supervision turned off on that line, the customer will not be able
to originate since the remote terminal would never detect the off-hook.
Thus, a means must be established to ensure that service or facilities
cannot be lost because of differences between the two data structures.
In addition, the data structures must be internally consistent within
each entity independent of the synchronization problem.

The audit philosophy adopted for rss is that each entity (host or
remote terminal) will maintain the integrity of its databases independ-
ently. If the host finds a discrepancy in its database, it corrects the
problem by idling all host resources involved and instructs the remote
terminal to put its facilities into a known (usually idle) state. If the
remote terminal finds a discrepancy in its database, it sends a message
to the host and the host audit programs initiate the actions given
above.

Thus there are three classes of audits associated with the rss system:

(i) Host audits that maintain the internal integrity of the data
structure in the host.
(if) Remote terminal audits that maintain the internal integrity of
the data structures in the remote terminal.

(#ii) Audits that guarantee that the host and remote terminal data
structures are consistent.

Audit classes 1 and 3 are discussed below.

7.1.1 Host audits

Existing host audits are extended to include the new data structures
and new data values introduced with rss. The main audit modifications
are for the Rss path memory, the Rss network map, channels, and
ROBS.

The Rss path memory and network map are audited by making the
following checks:

(1) Point-to point-back checks are performed between PMRs and

PMJs; that is, a PMJ that is pointed to by a PMR must contain the REN
associated with the PRM.

520 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

(i) Point-to point-back from a PMR or PMJ to a call register if
linkage to a call register is indicated. In this case, a PMJ contains the
REN of one of the terminals involved in the path and the call register
contains an REN or LEN of the channel.

(iii) The junctor busy-idle bit in the network map is checked to
ensure that it is idle if and only if the pPmJ is idle.

(iv) Each of the network map bits that is marked busy is checked
to guarantee that it is in a valid path.

Additional checks are performed on channels to ensure that every
idle, equipped channel is on the idle link list, to ensure that the idle
link list only contains equipped idle channels and that the associated
host line bit for the channel is idle if the PMR is idle. The latter check
requires timing since the two ends of the channel are idled autono-
mously, and thus the status of the two ends can be out of step for a
short interval.

The ROBs are audited by periodically rebuilding the idle link list and
by timing busy RoBs. If an ROB remains busy for an extensive length
of time, the ROB and any associated call register are idled. All paths
and circuits are also idled. The corrective action taken by the host
audits is to idle facilities (hardware and software) in the host and to
send orders to the remote terminal to cause the facilities at that end
to be idled.

7.1.2 Synchronization between host and remote terminal

The problem of maintaining the data structures in the host and
remote terminal in synchronization is greatly simplified by taking
advantage of the normal system operation. The remote terminal
updates its data in response to orders from the host. Bits in the remote
copy of the network map are marked busy or idle in response to orders
to set up or tear down network paths. Thus, no network map audit is
required between the host and remote terminal since the host does the
hunting and idling of paths and the remote copy will trend towards
the proper state even if it does temporarily get out of step.

Similarly, RoBs are controlled from the host end and normal opera-
tion will result in the remote copy being brought back into step with
the host.

The remote terminal audits check that all equipped lines have
supervision turned on. Any equipped lines that are unsupervised are
reported to the host via a data link message. If the host audits
determine that the line state really calls for supervision to be on, the
line and any associated resources are idled.

Periodically, the host sends a copy of its version of the remote scan
point map to the remote terminal which overwrites its map with the
host’s data. If the hardware state of the scan point differs from the

HOST SOFTWARE 521

map, the normal scan program will detect this as a change and report
it to the host, resulting in both copies being brought back into step.

7.2 Remote terminal initialization

System initialization programs are responsible for correcting errors
that prevent the system programs from cycling correctly. The initiali-
zation programs are usually executed as a consequence of errors being
detected by the processor check circuits that monitor the sanity of the
system operation. In the remote terminal, the primary checks for
monitoring proper program operation are the system sanity timer
which monitors the main program cycle time, the write protect cir-
cuitry which prevents illegal writes into program store and certain
peripheral error checks which detect attempts to access unequipped
areas of the periphery. If any of these errors are detected, it is
indicative of an error in the system database and the method of
recovery is to initialize a segment of the data and then return to the
normal program cycle.

Since the initialization process inherently destroys a portion of the
call-processing data, a corresponding set of calls will be lost, and it
becomes a requirement for the initialization program to release the
peripheral circuits associated with these calls. Any network links,
channels, or service circuits employed on these calls must be idled by
the initialization program before a return to normal system operation
is begun. This is accomplished by releasing all the circuits that are
marked idle in the initialized database.

Whenever an error is detected by a fault detection circuit, a processor
interrupt is generated that executes the fault recovery programs.
Various fault recovery actions are taken, depending on the type of
errors detected and their frequency. As the result of a write-protect
error or a sanity timer timeout, the off-line processor complex may be
switched on-line and some degree of data initialization performed,
depending on the number of errors that have been detected within the
recent past.

The amount of data that is initialized on the first error is small. As
successive errors are detected the serverity of the initialization is
increased with the consequent loss of progressively greater numbers of
calls. The ultimate action is to initialize the entire database and restore
the system to an idle state. The goal of handling the fault recovery in
stages, with increasingly more severe initializations, is to restore the
system to a working mode with the loss of a minimal number of calls.

At either the remote terminal or the host, there are three funda-
mental levels of initialization: a minimal clear, a transient clear, and a
stable clear. A minimal clear involves the initialization of the variable
data associated with the active processes in the system and has the
potential of disrupting at most several calls. A transient clear will

522 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

initialize all the data in the system that is related to any call in
progress. All calls in the process of being established or disconnected
will be lost; however, calls in a stable talking state will be preserved.
The final stage of initialization is a stable clear where the entire
database is reinitialized and all calls are lost.

For the rss system, the initialization process is somewhat more
involved than normal because the host and remote terminal databases
are interrelated and an initialization level (phase) in one machine
affects the database of the other system. Although the host machine
is responsible for the control of the remote terminal on a call-related
basis, the operation of the processors in the two machines is fairly
autonomous with respect to their instantaneous activities. This is the
situation for fault detection where the two systems are entirely inde-
pendent. Each machine is responsible for initializing and carrying out
is own fault recovery actions and the level of the accompanying
initialization will be solely determined by the conditions within the
machine that detected the error. In effect, either machine is able to
initiate any level of initialization on its own database independently of
the other. However, as part of the initialization procedure, the hard-
ware and software within the two machines must be synchronized so
that the databases reflect a consistent set of calls. The calls that were
destroyed in one machine must be reported to the other so they can be
cleared from that system also. For example, a host transient clear will
destroy a number of calls that involve remote terminal lines. These
calls must be cleared in the remote terminal so that periphery and call
records are in agreement with those in the host.

The exact procedure for synchronizing the two machines will depend
on which system has initiated the phase. Since the host is in charge of
call control, its call records are regarded as the master copy and the
remote terminal state is brought into agreement with its set of records.
The host is, therefore, in charge of synchronizing the two machines.

Whenever a phase occurs in the host, the synchronization procedure
is straightforward. The host will initialize its database and periphery
and will then send initialization orders to the remote terminal to bring
it into agreement with its updated records. When the remote terminal
undergoes an initialization, it reports the level of the initialization to
the host. In some instances, on a stable clear for example, this is
sufficient information to allow the host to initialize its database. In the
case of a transient clear, it is also necessary to transmit a map of the
lines that are in a transient state in the remote terminal. From the
data specifying the initialization level and the map of transient lines,
the host is able to update its call records and periphery. Once this is
accomplished, it will conduct an initialization of the remote terminal
in the same manner as for a host-initiated phase.

HOST SOFTWARE 523

VIl. SUMMARY

The host Rss software supplies a local Ess with the capability to
control a 10A rss. The major call control resides in the host, with the
10A Rss acting as a slave in executing orders from the host.

This paper has described the major host software functions required
for implementing the Rss feature on a host Ess. These major functions
are Rss resource and data administration, the RSS message handling,
and call processing and database integrity. The host rss software is
structured to meet system requirements to provide easy portability
among local Esss, to provide the capability of giving Rss lines the same
features as host Ess lines, to minimize the effects on host capacity for
non-Rss calls and to easily make new host features available to rss
lines.

IX. ACKNOWLEDGMENTS

In addition to the authors of the other papers in this issue of The
Bell System Technical Journal, many others contributed to the design
and implementation of the 10A Rss host software. Those who deserve
special mention are R. T. Broeren, W. 1. Czajkowski, E. J. DiVecchio,
R. T. Emery, G. A. Inberg, G. W. Lambrecht, S. A. Lottes, and L. H.
Ringwald.

524 THE BELL SYSTEM TECHNICAL JOURNAL, APRIL 1982

