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Queueing network models play an important role during each stage
of a computer system’s life cycle (from initial conception to system
maturity), where in each stage broadly applicable performance anal-
ysis tools are needed. This paper presents new results which contrib-
ute to the foundations of a tool to support performance analysis and
modeling activities. In dealing with some performance issues, it is
important to be able to quantify distribution or moment information,
because these quantities can influence system capacity and service
and performance measures. It is also important that models include
the effect of congestion adaptive 1/0 devices, in a stable and efficient
manner, for this inclusion can significantly affect the outcome of
studying certain performance issues. We address the problem of
direct, recursive computation of moments of the queue size distribu-
tions at a class of service centers embedded in a mixed network of
queues. The parameterized class includes state-dependent processing
rates useful in modeling congestion adaptive 1/0 devices. We also
present results for calculating moments of both the waiting time and
virtual delay (work backlog) distributions at a class of service centers.
In addition, we obtain a Little’s Law type of relation between delay
moments and queue size factorial moments. For a class of networks,
an algorithm is given for the direct, recursive computation of the tail
of the node delay distribution.

. INTRODUCTION

Performance analysis and modeling activities are essential for an-
swering key questions at various stages of a computer system’s life-
cycle, ranging from initial conception to maintaining and growing a
mature system. Although both the questions asked and the analysis
approaches may differ from stage to stage, in each of these stages
broadly applicable performance analysis tools are needed to support
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such activities. This paper presents new results which contribute to
the foundation of one such tool: algorithmic techniques for efficiently
solving a class of queueing networks.

In dealing with some performance issues, it is important to be able
to quantify distribution or moment information (e.g., delay variability
as opposed to only the mean delay)' because these quantities can
influence system capacity and service and performance measures. It is
also important that models include the effect of congestion adaptive
1/0 devices, in a stable and efficient manner, for this inclusion can
significantly affect the outcome of studying certain performance issues
(e.g., the impact of multiprogramming).*’

In this paper, we present results for the direct recursive computation
of moments of the queue size distributions at a class of service centers
embedded in a mixed network of queues. The class of service centers
allows us to efficiently treat, in a stable manner, a parameterized class
of state-dependent processing rates useful in modeling congestion
adaptive 1/0 devices.>*® By dealing with mixed systems, we allow
consideration of systems with workloads from a finite population (e.g.,
a collection of terminals), multiprogrammed systems, together with
workloads from basically infinite customer populations. We present
results for calculating moments of the waiting time and virtual delay
distributions at a class of service centers that enable us to quantify the
variability of node delays, as well as work backlogs.

The well-known class of multiple resource models, usually referred
to as product form queueing networks,’ have been used to address a
wide range of performance issues, such as capacity estimation and
planning, bottleneck identification, performance prediction,” memory
interference, and software lockout in multiprocessor systems.® Usually
the models used to address these issues have approximately included
the factors of interest (e.g., priority processor scheduling disciplines).’
A considerable amount of effort has been devoted to the study of this
class of queueing networks, and efficient computational algorithms
exist"*'° that allow one to obtain, for example, mean values of the
desired quantities. While, in principle, the entire network queue size
state description can be obtained from the above, one may be inter-
ested in obtaining results, directly, for a more moderate level of detail,
e.g., moments of queue sizes, as well as in quantifying variability of
delays at a network node. Existing algorithms for calculating even only
mean values can become much more complex and sometimes exhibit
chaotic behavior."’ This situation arises, for example, when a state-
dependent service rate is used to model a class of devices, such as an
efficiently scheduled disk or drum,**** whose efficiency is a function

* See Ref. 5 for examples of secondary storage units that employ a scheduling
algorithm which attempts to minimize rotational latency and/or seek times.
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of the number of queued requests. The complexity results from a
requirement that the entire* marginal queue size distribution is needed
at each step of the computation.’

The results in this paper overcome some deficiencies in present
methods for analyzing networks of queues and enable us to quantify
important performance measures for which, previously, no efficient
computational methods existed. In Section 1.1, we discuss how a tool
for evaluating networks of queues can fit into a performance analysis
and modeling methodology, and in Section 1.2, we give a more specific
definition of the problems treated and outline the remaining sections
of this paper.

1.1 Use of network of queues models

To illustrate the aforementioned need for broadly applicable tools
and how a queueing network analysis tool can fit into a performance
analysis and modeling methodology, we consider the various stages of
a system’s life cycle. During the system’s conception stage, where one
is concerned with the services to be offered, broad objectives—per-
formance, reliability, etc.—basic architecture, proposed components
and initial sizing, questions involving initial feasibility arise. Initial
feasibility studies generally require several tools to address the follow-
ing type of question: Given a proposed architecture and assumptions
concerning the way the system is to be used (e.g., obtained from a
gross workload characterization tool which may indicate various usage
scenarios), how well can the system be expected to perform? The
answer to this question often leads to a modification of the proposed
architecture and/or what the system is planned to do. During this
stage, where system specification is often at a macroscopic level of
detail, a tool based on a network-of-queues methodology can be useful
for the performance prediction. Here, for example, use of a tool
incorporating a central-server'” queueing network model can be helpful
in answering questions such as the effects of cpuU size, number of disks,
and the number of terminals that can be supported, while meeting
broad performance objectives, as well as estimates of cost. The partic-
ular form of input that may be available from a workload characteri-
zation is particularly suitable for use by a network-of-queues method-
ology at this stage.

During a system design phase (when one is attempting design
optimization), one may tend to focus more on subsystems, and models
would tend to include more microscopic details, such as a disk schedule
model or a cPU process schedule model. Although this stage generally
requires more detail than is attainable with a network-of-queues model,

* Some simplifications result when the state dependence disappears above a given
loading,"" the so-called limited queue-dependent server.
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issues such as the effect of the degree of multiprogramming** and the
effect of a disk schedule which uses a SCAN' algorithm versus a FIFO
discipline, can be treated. We note that at this stage it is important to
have models which include, at least parametrically, the effect of a
device being congestion adaptive since this can significantly influence
the performance that can be expected.! In this stage, distributional
information can also be important, as opposed to just dealing with
mean values, since performance criteria and service objectives may be
in terms of the tail of a distribution.

During the stage when one is dealing with and maintaining a mature
system—adding features, growing, doing capacity estimation and plan-
ning—a tool or methodology for viewing the overall system is desirable.
Here, measurement tools, providing resource utilizations, workload
characterizations, and response times, together with proposed changes
in system use and growth, can be used with an overall system perform-
ance model to answer such questions as Is the system adequate? How
much more load can it handle? or, What system changes are required
to handle a further load increase? A capacity planning methodology
which accepts, say, maximum allowable utilizations on various system
resources and measurements of current utilizations and workloads, and
predicts allowable increases in load could use the output of a network-
of-queues tool to determine what the maximum resource utilizations
should be. We note that the determination of these levels, and thus
the system capacity, could very well be based on distribution infor-
mation.

1.2 Outline of paper and summary

In this paper we address the problem of recursively computing
moments of the queue size distribution at a service center embedded
in a class.of product form networks. Parameterizing the service center
with respect to its state dependence allows us to treat, in an efficient
manner, congestion adaptive models with either improved or degraded®
efficiency. We treat mixed systems where the population corresponding
to a given job type may be fixed (i.e., a closed chain) and where system
requests corresponding to other job types may arrive exogenously from
basically an infinite population (i.e., an open chain). Closed chains

* Reference 2 also shows that the multiprogramming effect, representing an increase
in potential throughput of up to 75 percent, can depend strongly on the disk scheduling
algorithm.

i Actually Ref. 2 considers the LOOK algorithm which is similar to SCAN.

# Reference 3, which presents a performance comparison of two 1/0 access disciplines,
notes that the relative comparisons, representing capacity improvements in excess of
100 percent, can depend strongly on whether the 1/0 device is congestion adaptive (e.g.,
a fixed head drum employing the shortest access time first schedule) or congestion
independent (e.g., FIFO).

¥ Resulting, for example, from increased overhead with increased processor queueing.
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arise when dealing with finite population models where, for example,
a finite number of terminals places requests into a computer system.
They also arise in modeling multiprogrammed systems where the size
of the finite population corresponds to the degree of multiprogram-
ming.

Figure 1 shows an example of a mixed system where the closed
chains correspond to each of the terminal groups, each group with
possibly different think-time distributions and routing and service
requirements (workloads). Figure 2 shows a closed network model
representing requests arriving to a system, S, over a finite collection of
access trunk groups. A request is blocked if all trunks in the group are
occupied. Note that a trunk is held during the entire time the request
is in S. When a trunk is available in group i, requests enter S from
group i at rate A; (the Poisson arrival rate to group i). The population
of chain i is K;, the size of trunk group i, and the blocking probability
at group i corresponds to 1—utilization of the node with service rate
Ai. In addition to throughputs and resource utilizations as the usual
quantities of interest, other quantities of interest may be queue size
moments, and the distribution, or moments, of the time from trunk
activation to its first entry into the cPU (reaction time).

We treat the problem of recursively calculating moments of the
waiting time and virtual delay distributions at first-come-first-served
(Fcrs) state-independent service centers, which enables us to get a
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Fig. 1—Mixed system illustration.
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handle on the variability of nodal delays and to estimate the distribu-
tion of such delays. With knowledge of the virtual delays, we can
compare performance, for example, as viewed by arriving customers to
that viewed by an outside observer. We can thus estimate performance
measures such as the system reaction time'® distribution, which is a
measure of the time between a terminal request and this request first
getting the attention of the cpu. In another application, it could
correspond to the time between a request coming into a system over
an access trunk group and the start of processing.

In addition to obtaining algorithmic results, we obtain a relation
between moments of node delays and queue sizes at a class of FCFs
service centers. We finish with an algorithm for the recursive compu-
tation of the tail of the nodal delay distribution at a FCFs service center
embedded in a network consisting of either single-server, state-inde-
pendent nodes or infinite server nodes, e.g., the central server model
of multiprogramming.'?

The organization of this paper is as follows: In Section II, we present
the class of networks under consideration, including specification of
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the job-type characteristics and specification of the class of service
centers. In Section III, we consider closed systems and present results
for the factorial moments of queue size distributions, for different
levels of customer aggregations. The aggregations considered are the
total number of jobs of a given type at a network node and total
number of jobs of all types at a network node, the former requiring
consideration of joint factorial moments and correlations. Results for
mixed systems are given in Section IV by considering a mixed system
as the limiting case of a multi-job-type closed system, formed by
augmentation, as the population increases and the augmented node
becomes the bottleneck.

The recursions for nodal delay and flow time moments are presented
in Section V for closed systems and in Section VI for mixed systems.
Delay results are obtained as experienced by arriving customers or as
experienced by an outside observer i.e., the virtual delay. Delay distri-
bution results appear in Section VII, and the appendices contain
details of the investigations.

Il. CLASS OF NETWORKS: SERVICE CENTER AND
JOB CHARACTERISTICS

We define the structure of the networks in terms of the types of
service centers or nodes and the job-type characteristics in terms of
their routing through the network, their service requirements per
service center visit,* their populations for closed job types, and their
exogenous arrival rates for open job types.

We consider a network with R types of customers (jobs, chains)
where s = 1, 2, ..., r correspond to closed chains and s = r + 1,
- -+, R correspond to open chains. The nodes in the network are either
single-server nodes, using a FcFs,’ processor sharing or last-come-first-
served preemptive resume (LCFS-PR) queueing discipline or infinite
server nodes. At the single-server nodes, the processing rate can
depend on the total number of customers present.

Customers of a given job type (chain) may change class membership
as they traverse the network but always remain in the same chain.
Allowing customer class change allows one to model a broad class of
routing scenarios including a deterministic, fixed sequence of node
visits and also allows for different visits to, for example, a processor

* Job characteristics can also be defined in terms of the workload requirements, the
average resource usage/job lifetime for each resource where job lifetime is suitably
defined for closed customer types.

* Other types of customer selection rules, not depending on actual customer service
Fequi.l;fments. (e.g., random selection, LCFS nonpreemptive) can also result in product

orm.
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sharing node by a given customer to have different service requirement
distributions.

For the open chains, s = r + 1, --., R, we let Ajos = rate of
exogenous arrivals of chain s customers, with class membership ¢, to
node i. Exogenous arrivals of customers, of a given chain-class pair, to
a particular node are assumed to be Poisson.*

If we let p};;c = the probability that a chain s job completing service
at node k as a class [ customer will next enter node i with class
membership ¢, then the actual node-class-chain flow rates ;s satisfy
the so-called traffic equation,

Aics = Aioes+ 2 ArssDiics
(BDET,

s=r+1,---,R; (i,0) E L, (1)

where I, is the set of feasible node-class pairs for chains s jobs.
We note that for each closed chain, the node-class-chain rates satisfy

Ai,c.s = E ?\k,z,spit.xc;

(kDEL,
s=1,.00,r; (i, ¢) € L. (2)
The closed chains are further specified by their population,
K=(K,K, - - ,K), (3)

where K, denotes the system population corresponding to the closed
chain s. We denote the rate of customers of a given chain, s, flowing
into a node as

Ai,s = 2 Ai.c,s; (4)

ceCils)
where
Ci(s) =[¢; (i, ¢) E L].

We assume that for each open chain the traffic equation (1) has a
unique solution' for the traffic rates

(Aics;(i:c)EIx); 3=r+1,'-',R,

and that every closed chain has an irreducible routing matrix so that

* This does not preclude having a large class of state-dependent arrival processes,
including examples where customer sources are turned off or blocked when their system
population reaches a threshold. These can easily be transformed into a mixed network

of the type being considered.
' This precludes certain pathological cases where customers enter the system and

never exit.
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the solution to (2) is unique up to a scalar.* Thus, the actual flow rates,
for a given job type, can be specified by an arbitrary solution to (2),
yielding relative arrival rates for classes in a closed chain, and a
proportionality constant.

We note that the actual proportionality constant, for a given closed
chain, say A(K), depends on the population vector K and that the
actual flow rates, A;(K), can be written as

Nies(K) = X(B)Aies, (i, ¢) € L,. (5)
Thus, the actual node-chain flow rates A;(K) can be written as
Ais(K) = A(K)ss, (6)

where A;, is given by (4).
The assumptions on the service time distributions are those for
which the product-form solution holds (see Ref 6). We denote

pics = mean amount of service required by a chain s class ¢ customer
at node i when only one customer is present at node i (note that
at a FCFS node it is required that p;.s = p.s for all ¢, s, e and f),

and

wi(k) = the processing or service rate of node { when a total of %
customers (regardless of type) are present.'

Clearly, the average service requirement of an arbitrary, with respect
to class, chain s customer, denoted pz', is given by the weighted
average of the individual class average service requirements.

Aies _
pa'= ¥ “)\—“#ici- (7}
cECils) Nis
While we allow the network to contain nodes with general state-
dependent processing rates, we focus on getting queue size moments
at nodes with a parameterized class of processing rates defined by

* This follows from the assumption of irreducibility of the routing matrix

P = [ pisicl; klice I,

and precludes the pathological case where the set of communicating node-class pairs
can be decomposed into disjoint subsets. We note that the matrix can be made
irreducible by using enough chains.
For example, the number of seconds of processing per second of elapsed time.

Without loss of generally we have let p(1) = 1.

*Recall that these are not adjusted for state-dependent processing rates. Another
interpretation of (7) is that p;;' represents the average service time of an arrival to node
i in a system whose only customer is a single chain s customer.
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Fig. 3—A class of state-dependent service rates.

pi(k) = 8*

an + ank’
where @i = 0; aio + @n = 1. We note that ai; = 1 corresponds to a
single server with state-independent processing rate, while aa = 0
corresponds to an infinite-server node, often useful in modeling a finite
population source—a collection of terminals—or a random delay.
These are shown in Fig. 3, along with cases 0 < @i <1 and a; > 1 that
can be used to represent congestion adaptive devices. We also note
that the family of service rates may also be useful in approximating
subsystems with restricted entry'>'® by a single state-dependent node
as is done in multiprogramming models."” What is needed here is the
subsystem throughput as a function of the sizes of its populations, and
recursive methods are naturally suitable for obtaining this.

ll. QUEUE SIZE FACTORIAL MOMENTS—CLOSED SYSTEMS (R = r)

We present recursions for two different levels of customer aggrega-
tion: (i) for the total number of jobs of all types at a network node, and
(i) for the total number of jobs of a given type, the latter requiring
consideration of joint factorial moments and correlations.

We denote

* The methods of this paper can be extended to include a generalization of this family
of processing rates. The above family provides a good fit to the empirically obtained (by
R. J. T. Morris) state dependence used in Ref. 2 for an efficiently scheduled (similar to
SCAN) moving head disk over the multiprogramming range considered.
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Bi(K) = Elki(ki = 1) - -+ (ki —j + 1); K] 9)

as the jth factorial moment of the total number of customers, k;, at
node i at an arbitrary time in equilibrium, for a system with population
vector K. Appendix A shows that 8;(K) satisfies the following recur-
sions

B Na(K)
By(K) = ¥ —

s=1 is

{anﬁgj(K — ;)

+[1+ (- Daa]Bi-(K — e}, (10)*

with initialization 8,(0) = 0; j > 0 and B:,(K) = 1. The quantity e, is
a unit vector in direction s. We thus obtain the jth moment at popula-
tion K by updating the jth moments corresponding to systems with
one less customer for each chain in addition to similarly including the
effect of the (j — 1)st moments. The node-chain throughputs,
Ai.(K), are available via standard mean-value analysis;' however, the
standard analysis requires computations’ of marginal probabilities at
nodes with state-dependent processing rates. For networks, with nodes
of the type under consideration, we can generalize mean-value analysis,
in a stable manner, without ever computing marginal probabilities and,
furthermore, obtain the higher order moments. When j = 1, (10) yields
the generalization

R ).
Ba(K) = >-:1 Am(:{) [auBia(K — e,) + 1]. (11)

Defining the mean node flow time for a chain s customer as the mean
time a chain s customer spends at node i per visit* to the node i queue,
T:is(K), Appendix A shows that

T4(K) = ni [1 + auBa(K — )] (12)

The mean number of chain s customers at node i
Bi1s(K) = E(kis; K)
satisfies
. Birs(K) = Xis(K) Tio(K) (13)8
where the (i, s) throughput satisfies [see (6)]

* In all recursions, terms with a negative population component are zero, e.g., K — e,
with K = 0.

* Those computations can become unstable.

*If a customer is fed back to the same queue after a service completion, as in the
central server model of multiprogramming, this corresponds to starting a new flow time.

8 The relation with (12) is via Little’s Law for chain s customers at node i.

11,18
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1. Initialize 8;;{0)=0;>0, B;,(0) = 1.

Loop on K until desired population K*.
Compute node flow time means, T,-stK), from (12), ieNfs),s=12,..., R.
Compute throughput proportionality constants, T\SCK) from (15),5s=1,2,..., R.

Compute node-chain throughputs, 7_\,~5(K), ieNfs),s=1,2,... R, from (14).

o v s w N

Compute f8;;5(K) from (13), ieNfs), s=12,..., R and B;, (K) from (16).
7. If do not desire BJ-‘,-(K) j>1or ﬁ,}'s('(’ j>1,goto2.

8. If desire BU(K) J >1,compute ,G‘-‘,-(K) from (10) at desired nodes for 1<j<J.
If do not want ﬁ,-fs(l() j>1g0to2.

9. Ifdesire B, (K*): If K= K*—Je, initialize Y; 5 ¢ S(K) = BilK), €=01, ... J
If K= K*—negn<Jcompute ¥; ;_,¢ s(K) from {(21) as shown in Fig. 5. Go to 2.

Fig. 4—Algorithm for queue size moments—closed systems.

Ais(K) = Ao (K). (14)
In terms of the flow times, the chain s proportionality constant is
- K
5 = o = ls 2: R )
As(K) S AeTo(K) s R (15)
ieNls)

where N(s) is the set of nodes visited by chain s customers. To close
the algorithmic loop, we use -

R
Bia(K) = ¥ Bas(K). (16)

The algorithm (12) — (15) — (14) — (13) — (16) (see Fig. 4), with
initial condition B:1(0) = 0 and with the relative traffic rates, Ai, as in
the previous section,* represents a simple, stable! modification of
mean value analysis for the desired class of state dependencies. With
the node-chain throughputs from (14), the aggregate higher order
factorial moments are obtained, in a numerically stable manner, by
(10). We note that, unlike the mean values, it is only necessary to
compute higher order moments at those nodes of interest. Thus, at
the desired node we have the algorithm (see Fig. 4) (12) — (15) —
(14) — (13) — (16) — (10). We now turn our attention to obtaining the
higher order moments for the lower level of aggregation.

To obtain the higher order (>1) factorial moments of the number of
each type of customer at a node

* We recall the relative traffic levels need not be computed for each population vector
since they do not depend on K.
t Note that no subtractions appear in the computations and recall @i = 0.

720 THE BELL SYSTEM TECHNICAL JOURNAL, MAY-JUNE 1982



BiisK) = Elkis(kis = 1) -+ (ki — j + 1); K], (17)
we consider the joint factorial moments
Yijis(K) = Elkig(kis — 1) « -« (kis—J + 1)
ki(ki —1) -+« (ki= 1+ 1); K]. (18)
Note that
‘y;‘.o.z.s(K) = ﬁi.I(K) , (19)

the high level /th factorial moment defined by (9) and computable
from (10), and

Yijos(K) = Bi;s(K) (20)

the desired low level jth factorial moment.
From Appendix A, we have the recursion

Xis(K)

13

Yi.j,!.s(K) = {ailYi.j—l.Hl,s(K — ey

+ (1 + 2lan)yij-10sK—e) +[1+ (1+ ain)(l—1)
+ aa(l — 1)2]‘Y:‘.j—1.l—1.s(K —ey); J=>0. (21)
For j = 0 the computation is made via (10) and the identification (19).
We note that for = 0, j = 1 (21)' reduces to (13). Making the
identification (20), gives
Ais(K)

Biis(K) = [Bij1:(K — €,) + anyij-114K — ey]. (22)

We note that if we are interested in the Jth factorial moment of the
number of chain s customers at node i for a target population K*, i.e.,
Biss(K*), then (21) and (22) are initialized at population K* — Je, with

'Yi.D.l.s(K* - Jes) = ﬁi,z(K* - Je.,),
1=0,1,---,d, (23)
the simple high-level aggregation result. We further note that (21) and
(22) only need be updated along parameter direction e,. This is shown
schematically in Fig. 5 and the steps in the algorithm in Fig. 4. If, for

example, one is interested in a mean and variance analysis, this
specializes to

Ais(K*
ﬁizx(K*)= ( )

is

[Bis(K* — €5) + anyiri(K* — es], (24)

"Terms with a negative subscript are zero.
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Fig. 5—Schematic for moments of low-level aggregation—closed systems.

where the correlation is given by

Yi1(K* — ) = AulK” - e.) [anBa(K* — 2e,)

+ (1 + 2aa)Ba(K* — 2e,) + 1]. (25)

IV. QUEUE SIZE FACTORIAL MOMENTS—MIXED SYSTEMS

To obtain the mixed network results, we consider an augmented
closed system which contains an external node for each open chain.
The service rate of an external node corresponds to the system arrival
rate for the corresponding open chain, i.e., Aos = Yiens, Aios; § =T+

, R. When customers depart in the original system, they are
routed to the appropriate external node in the augmented system. A
departure from a given external node, say, corresponding to the open
chain s, is routed to node i as a class ¢ customer with probability Aiocs/
Aos. Taking the limit of the closed network results as the populations
of chains r + 1, - - - , R — o, and assuming the external nodes become
the bottlenecks,! we obtain the desired recursion for the high-level
aggregate factorial moments

t Note that if an internal node becomes a bottleneck, the original mixed system is
unstable.
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p;

Bi(K) = U+U-Dhay) Ta? Bij-1(K)
d Ais(K)
" T = aup (P )
+[1+ (j = DaalBi(K — ey}, (26)
where
R Ais
pl = — (27)
s=r+1 Mis

is the unadjusted utilization [unadjusted for state-dependent service
rates pi(k) # 1] at node i, corresponding to all open chains. We note
that the stability condition is given by

p?au < 1, (28)

where we note that p’a;; is the limiting (as k; — o) utilization due to
customers belonging to open chains. Equation (26) is initialized by

ﬁi.o(K) =1
and

[1+ (j— Daale?
1 — aap?

Bii(0) = Bij-1(0), (29)

the open network factorial moments. For j = 1, (26) yields
P? " XIS(K)
(1 — aap?) o= pis(l — aap?

Ba(K) = ) [1+ aaBa(K —es)], (30)

with initial condition

Bu(0) = —2—. (31)
1 — aapi

The required node-chain throughputs, Ai,(K), in (26) can be obtained
via a standard type of mean analysis. However, as before, we are
interested in a generalized analysis that does not involve marginal
probabilities. These throughputs are obtained via the limiting argu-

ment which yields the recursions

Ai(K)

18

ﬁila(K) =

[1+anfuK—e); s=r (32)
for the closed chains and

Bis(K) = E [1+ auBa(K)]; s>r, (33)
for the open chains. We note that in (32), Ais(K), the closed chain s-
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node i throughput, is to be solved for, whereas in (33), A;; is simply the
solution to the traffic equation for open chain s. Summing (33) over all
chains, we obtain

o

Ba(K) = 1——p-i—‘_,- [1+ aafi(K)], (34)
— aapi
where
R
BAa(K)= ¥ l Bis(K), (35)
Bi(K) = 21 Bis(K), (36)

which relates the mean value of the total number of open customers
at node i to the mean value of the total number of closed customers at

node i. To obtain the desired recursion for Bii;, s < r we use (34) in
(32), which results in

BisalK) =~ AulB) S Y ) A

(1 — anp?

and from Little’s Law, the mean chain s flow times

Tw(K) =———‘——"——D"[1 + ailﬁfl(K - es)]| s=r. (38)
pis(1 — @ap?

The node chain throughputs are calculated from

Xis(K) = Mho(K), s=r, (39)
where, A,(K), the chain s proportionality constant (independent of i)
is given by
K,

___E T (K); s<r. (40)

A(K) =

The algorithm,
(38) — (40) — (39) — (37) — (36),
(see Fig. 6) with initial condition
Bi(0) = 0,
is identical to the algorithm (see Fig. 4) for closed systems,
(12) — (15) — (14) — (13) — (16).

However, the closed chain service rates have been adjusted to account
for the presence of the open chain customers, i.e.,

pis = pis(l — @apf). (41)
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1. Initialize B,—l (O) from (31) and B,-I-(O) from (29) for 1< j £ desired order moment.
C (0] =
i (0)=0.

2. Loop on K until desired population.

3. Compute node flow time means, T;.(K),s< r
(i.e., for the closed chains) from (38) for /e N(s).

Compute throughput proportionality constants )_\S(KJ from (40) fors<r.

4
5. Compute node-chain throughputs, X,-S(K}, s<r, from (39), eN(s).
6

Compute f3;,(K) from (37) for s < r, ieN(s) and ,8';71 (K) from (36).

7. If desire,B‘f?1 (K) or ,BHSCKI. for some s > r,use (34) for ,8:?1 (K} and (33) with B;, (K)

given by the sum of B, (K) and 87, (K).
8. If do not desire ﬁ#-(K)j >1or Bifsm” >1,goto 2.

9. Ifdesire 8;,(K)J > 1, compute ﬁ'ﬁ(K) from (26) for 1< j< U
If do not want 18,75"(” >1,go to 2.
10.  If desire Bi.rs(K') sEriif K= K*—Jeginitialize ¥;50,(K) = B;0(K), ¢=0,1,... .
If K= K*—ne,, n<J Compute 'Y,-‘J_,,'Q'S(K) from (42) as shown in Fig. 5. Go to step 2.

11. At the desired population K*, if desire BJ-JS(K') for s > r, initialize
Yiogs(K*) = B;o(K*) 2=0,1,...J. Compute ¥;,_, ¢ ((K*) from (45)

as shown in Fig. 7.

Fig. 6—Algorithm for queue size moments—mixed systems.

We note, however, that the adjustment is not directly related to the
actual open-chain utilization (as in the state-independent case!'), but
rather to the limiting open-chain utilization.

The above algorithm, together with (33) and (34) describing the
open chains, represents a simple, stable modification to a standard
mean value analysis for mixed systems with the desired family of state
dependencies.

With the node-chain throughputs from (39), the aggregate higher
order factorial moments can be recursively computed in a numerically
stable manner from (26). We note that, unlike the mean values, it is
only necessary to compute higher order moments at those nodes of
interest. Thus, at the desired node we have the algorithm (see Fig. 6)

(38) — (40) — (39) — (37) — (36) — (26).

We now turn our attention to obtaining the higher order moments for
the lower aggregation level.

To obtain the higher order factorial moments of the number of each
type of customer at a node, B;;s(K) defined by (17), we require the joint
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factorial moments y;;;s(K) defined in (18), noting the relations (19) and
(20). Treating the mixed system as a limiting closed system, we obtain

Ais(K)

+ (1 + 2lan)yi (K —e) +[1+ (1 +an)l—1)
+ ain(l = 1)*]yij-114(K — es)}; J>0,s=r, (42)

which is the same form as (21). For I = 0, j = 1 (42) reduces to (32).
For j = 0, use (19) and (26). Making the identification (20), we get

Ais(K)
s

‘(i,j,l.s(K) = {@iryij-141,(K — e,)

[Bi.j—l.s(K - es)

+ anvyij-11K — es)], s=r. (43)

Bijs(K) =

If we are interested in B;,.7s(K*); s < r, then (42) and (43) are initialized
at population K* — Je, with

'Y:',O,E.S(K* - Jey) = BEI(K* — Je); I=0,1,.---,d,8=r (44)

the high-level aggregation result. Thus the computation proceeds as in
the closed system case shown in Fig. 5.

For the open chains, the limiting system argument results in the
relation

Ais
Yi. j,l.s(K) = ;— {ailYi,j—l,Hl.s(K)

+ (1 + 2lan)yij-10-(K) + [1+ (1 + an)(l — 1)
+ an(l — 1)2]7.',_,:_1.1_1,5(1{)] _] >0,s>r. (45)

At l=0,j=1 (45) reduces to (33) and for j = 0, use (19) and (26). We
note that (45) is not a recursion in K and can be evaluated as an
aposteriori computation. Thus, if it is desired to compute Bi.us(K);
s > r at a fixed desired population vector K*, all that is needed is the
high-level aggregate Bi(K*); I=0,1, ---, J, which starts off the (45)
computation. This is shown in Fig. 7 and the steps in the algorithm in
Fig. 6. As in the previous section, it is a straightforward matter to write
down the expressions needed to do a mean and variance analysis.

V. DELAY AND FLOW TIME MOMENTS—CLOSED SYSTEMS

We consider the problem of obtaining recursions for the moments of
the time a customer spends at a FCFS, single-server, state-independent
node embedded in a closed network. As earlier, we define the node
flow time as the length of time an arriving customer, either arriving
from another node or being fed back from the node output, spends
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® TO GET Biys IK¥) = Yijos (K*) ;s> r
* DENOTE ¥ijes BY (/.2)

POPULATION (7,0)
K* |J,*0]
U—I,O)\ -1, 1)
4 -l -~
- | -
b-2.00 w-2,1) W-2,2)
. - -
.
. [] [ .
.
. . L] -
(1.0 . (1,2) .« s {1,4-1)
’ ~
T = - II‘ ~ T \ ,” T \\
- I ~< -~ o
K* {0, 0) © 1) 02 =ee (0,0 soe (01 (0
4
/
/

* INITIALIZE WITH HIGH-LEVEL MOMENTS  f3;0(K*)

Fig. 7—Schematic for moments of low-level aggregation mixed systems—open chains.

until he next exits the server. The node delay is correspondingly that
portion of the flow time spent in the queue. We also present a Little’s
Law type of relation between moments of the node flow times and
queue size moments.
Denoting T};,(K) as the jth moment of the flow time for an arbitrary
chain s customer at node i, Appendix B shows that
R T .
() = 3 5’—(5#—‘*—’ Tul —e) + £ T j=1, (46
i=1 i i

where the quantity ji;' is the common mean service time at node i

(i.e., i = pis = par)." From the initial conditions with respect to j
Ti.o,s(K) = ]-, (47)

and (46), we have

Tijs(es) = %'; . (48)

We note that an alternate form of (46), which only involves the flow

time moments corresponding to the job type of interest, is obtained by
recognizing that

Ti(K — e;) = Tis(K — e)).

" Required at a FCFs node to have a product form solution. Since node i has a state-
independent service rate, u;(k) = 1.
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It can similarly be shown (using the approach discussed in Appendix
B) that the jth moment of the delay distribution corresponding to a

chain s customer satisfies

R XK — e,
WilK) = 3 2B =)

I=1 i

WK — e,) + f WK  j>1, (49)*

and
W) = 3 NiE =€) g ey 4Ly AE ) g
i=1 i i 1=1 i
forj=1.

As with the flow time moments, the delay moments at a given
population are formed by updating the same order moment for reduced
populations, together with including the effect of the lower order
moment at the same population. We, thus, note that jth moment of
the delay and node flow time distributions satisfy the same recursions,
(46) and (49), for j > 1, the difference lying in the boundary equation
(50), which results in

Wis(e)=0; j>0. (51)

It is not necessary, however, to have a separate computation for
W,i.(K) since Wi, is obtainable from T;s by the relation
R Xa(K —e,
Wis(K) = ¥ i_——)
1=1 i
We note that the distributions of delays, as seen by arriving cus-
tomers, will usually differ from the work backlog at a node at an
arbitrary point in time (i.e., the virtual delay) as might be measured
by an outside observer. If we define

Ti(K—e); Jj>0. (52)"

Vi (K) = E(W(t); K), (53)

where W;(t) is the work present at node i at an arbitrary time in
equilibrium, as the jth moment of the virtual delay, then it is shown
in the next section that V;;(K) can be obtained from the moments of
customer delay using the relations

* The computation of these delay moments or the preceding flow time moments are
easily included in the algorithm shown in Fig. 4.

t Note that for j = 1, this simply states the known result W;;,(K) = Bu(K — e.)/p:.
Relations (49), (50), and (52) can be written in a form containing only moments
corresponding to the job type of interest by using Wi(K — e,) = Wi;s(K — e).
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R (K ' .
Vi(K) = ¥ ‘; ) Wo(K) +éVi,j—1(K); j>1  (54)*
=1 i i
and
R Y.
va) - 3 M0 (1, Witk ). (55)

Having obtained results both for the queue size factorial moments,
Bij(K), in Section III and the ordinary moments of the flow time
distribution T7;s(K) (see above), we now present a relationship between
them analogous to a well-known Little’s Law type of relationship for
the M/G/1 queue in isolation. Appendix B shows that these quantities
are related via the j-fold summation

R R
Bi(K) =3 -+ ¥ X, (KX, (K — es)
8=1 §;=1

i—1 -1
. x,;gj(K - JE esq)Ti_,-sj(K - Z e.,q) .

g=1 g=1

The special, single chain, case R = 1 gives

K

Bii(K) = ( I1 X,-(l))T.—,-(K—j +1), (56)
I=K—j+1

where A;(l) is the node i arrival rate when our closed system contains

! customers and T;(K — j + 1) is the jth moment of the node i flow

time when our closed system contains K — j + 1 customers. Relation

(56) is analogous to a known result" for an M/G/1 queue in isolation

which states
B =NT;. (57)

Noting that X is replaced by the product of flow rates, each with a
different population, we see that (56) generalizes (57) in the sense of
holding for a queue embedded in a closed network with the correspond-
ing, complicated arrival process.

VI. DELAY AND FLOW TIME MOMENTS—MIXED SYSTEMS

To obtain the mixed network results, we consider the augmented
system as in Section IV. We obtain recursions for the delay and flow
time moments at a FCFs node with a single state-independent server

* As pointed out in Section VI, the virtual work results also apply to a limited class
of processor sharing or LCFS-PR nodes; the limitations being that the service times are
exponential with pi = pg (i.e., the same assumptions being made for the FcFs nodes).
Inclusion of this computation in the closed network algorithm shown in Fig. 4 is
straightforward.
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embedded in a mixed network. Results are obtained for delays expe-
rienced by customers in each of the closed chains and for customers in
any* of the open chains, thus, yielding moments for the virtual delay
or unfinished work at a node.

Denoting ji; ' as the common mean service time at node i (i.e., i =
pis = pi)' and p? as the actual utilization at node ¢ due to customers
belonging to open chains,

R hil +
=Y = (58)
I=r+1 i
we obtain
C X;‘l (K- €;)

T"nK = —__———Ti' K- s,

() :Z:l Bl — p?) i e
+ é T j-1.5(K) +_—Jm—o‘ ti-1(K — e5); s=r, (59)

fi gi(1 — p?)

where T¢,(K) is the jth moment of the flow time experienced by
customers belonging to any open chain at node i and satisfies

" Au(K) J
TUK) = ¥ —————— Tii(K) + ———— T j-1(K). 60
oK) El i1 — p?) () p1—-p9 " () (60
The recursion (60) is initialized with
J J!
Tf0 =_——T?I'_ 0 T Vi 61
W0 =7 T O =Ea =7 (61
the open network flow time moments, and (59) is initialized with
Tijs(es) = Tz(o) . (62)

The initialization (62) can be obtained by recognizing that the distri-
bution of the number of customers found at node i by the single closed
chain customer is identical to the distribution of the number at node
i at an arbitrary time point, in equilibrium, in a system with no
customers belonging to closed chains, i.e., K = 0. Since the distribution
at an arbitrary point in time is identical with that seen by an arbitrary
open customer, we have (62).8

The results for the moments of the delay distributions can be found
using a similar argument. For the closed chains, this results in

* We note that from Ref. 20 it is easy to show that delays experienced by customers
belonging to different open chains have the same moments.

lt Recall that this condition is required at a FCFs node in order to have a product form
solution.

*Since node i has a state-independent processing rate, pi(k) = 1 and p{ is the actual
utilization as indicated.

% An alternate way of obtaining (62) is by use of (59) at K = e,, use of (61) and
induction.
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(K — ey)
Wis(K A2 7 %)
() = ,El (1 — pf)

Jo! .

— Wi, €;); =r )

El=p9 (K—e);, s=r j>1, (63)
where W7 ;(K), the jth moment of the delay experienced by customers
belonging to the open chains, is also the jth moment of the virtual
delay or unfinished work at node i at an arbitrary point in time. The
corresponding result for j = 1 is
" MK — e 1
Wis(K) = ), _!(—o) (? + Wiu(K - Ea))

=1 (1l = p?) \j

Jﬂ'(K es) + m J=1, s(K)

p? .
7 s=r;j=1. (64)
(1 — p?) J

The moments of the virtual delay, or delays experienced by open
customers, are given by

0. d :l(K)
W0 = L ga—on M ®
J .
— Wi, : . , (65
+#=(1— ,)WJ (K); J>1, (65)
and for j =1
i #(K) 1 pi 1 .
K) = _'—( +W.-1(K))+ = j=1. (66
il [§1 pi(1 7) \ I 1—p? [ / )

We note that for both the open and closed chains, the jth moment of
the delay and node flow time distributions satisfy the same recursions,
(59) and (63), for the closed chains and (60) and (65) for the open
chains, the difference lying in the boundary equations (64) and (66).
The initial conditions

Wi (0) = 0; l=r,
together with (66) and (65), give

. o
Wi (0) = L‘ = pi W:’, 1(0) = [ﬁ] ’ (67)

the open network result. Usmg the same argument as was used for the
closed flow time moments, we have

Wiis(es) = Wi;(0) (68)

which can be used to initialize (63) and (64). It is not necessary to have
a separate computation for W;;(K) if the flow time moments have
been computed since they are related by
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" Ai(K —e,)

WijE(K) = E Tijl(K - es)
I=1 i
+ p?THEK — e,); s=r (69)
and
" Aa(K
W5(K) = ¥ ’f(t ) T:;:(K) + p? THK); s>r (70)*
=1 i

for the open chains or virtual work.
To obtain the moments of virtual delay for closed systems, denoted
by V;(K), we observe that
Vi(K) = lim W5 (K),
pi—o
which results in the relations given in (66) and (67).

As a final note here we observe that in addition to applying to the
FCFs nodes as stated, the virtual work results, W§;, Vy;, apply to a
limited class of processor sharing or LCFS-PR nodes’ the limitation
being that service times are exponential with rates pi = pu = . This
follows from the insensitivity of the stationary queue size distribution
to the queueing discipline for this case and the memoryless property
of the exponential distribution.

VIl. DELAY DISTRIBUTIONS

We consider a multi-job-type closed* network containing either
state-independent service centers or infinite server nodes, e.g., central
server model of multiprogramming, and present results for the tail of
the delay distribution experienced by a type s job arrival to a FCFS
service center embedded in a product-form network. Appendix C,
which uses multidimensional generating functions and the known
relation between the stationary distributions and those seen by cus-
tomer arrivals to a node,” contains the details of the investigation.

We denote

W, (t; K) = P(dis > t; K) (71)

as the probability that a chain s arrival to node i is delayed in excess
of ¢ in a system with population K. Figure 8 shows a single-chain
example where the delay shown corresponds to the time between a

* The inclusion of the results of this section into the mixed network algorithm shown
in Fig. 6 is straightforward.

TOr other types not affecting the stationary queue-size distributions, e.g., random
?election or LCFs nonpreemptive. The identification as actual delay moments is, however,
ost.

#1t is a straightforward matter to treat the limiting mixed network, as well as a class
of state-dependent nodes (e.g., multiprocessor nodes) by the techniques presented.
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Fig. 8—Closed system illustration—delay distribution.

terminal request and the time the request first gets the attention of
the cpU in a system with K terminals. References 22 and 23 contain a
study of the response time distribution (queueing and service) for a
single node being fed traffic from a collection of terminals, the classical
machine repair problem with multiple repairmen. This could corre-
spond to a multiprocessor version of Fig. 8, but without the 1/0
processors. In Ref. 24 the asymptotic behavior, as the number of
terminals increases, is studied. We note that the methods described in
this paper can easily be used to obtain results for the response time
distribution (delay plus service time) for the above example.* In
general, the state of the art for obtaining response time distributions
for multiple resource systems is quite limited '

Figure 9 shows a representation of two loosely coupled systems with
shared mass storage devices modeled as two central server models
with some shared 1/0 queues.” For 1/0 requests served on a FCFS basis
in each 1/0 queue, the delay distribution of interest shown corresponds
to the delay in accessing a disk, either dedicated or shared, for each of
the component systems and to the delay in getting each of the cpu’s
for Fcrs scheduling algorithms. We note that the population vector
here, K = (K, K;), could correspond to the degree of multiprogram-
ming for each component system.

We start our presentation of results with the single-chain case and
then generalize to the multichain case. For the single-chain case,
letting

Wi(t; K) = P(d; > t; K), (72)

* The single node being a limited queue-dependent server.'

t We note that these response times could involve several visits to a given resource,
as well as visits to other resources. This is studied in Ref. 25 for the single resource
queue with feedback. Some other recent work is discussed in Section VIII 62728
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Fig. 9—Two systems sharing mass storage devices.

it is shown in Appendix C that Wi(¢; K) satisfies the M{" order

recursion
Ml

Wit; K) = yi(t; K= 1) — ¥ &(K - DWi(t; K - ), (73)
. J=1
where M, = M is the number of single-server nodes in the petwork.
The coefficients @, (K — 1) are related to the coefficients of Z’, &, in
M, ;i M, )
PZ)=1] (1—jZ)= ¥ o, (74)*

=1 J=0

where ); is the relative arrival rate to node i.
Clearly,

o= (—1) > PiPiy *** Pijs (75)
1=ij<iz< - - - <ij=M)
where p;, is the relative utilization A;/m;,. The coefficients of (73)
a;(K — 1) are obtained from

* We have arbitrarily labeled nodes 1 through M, to correspond to the single-server
nodes. Since these nodes are state-independent service centers, in this section we denote
the common mean service time at node iasp ', i=1,2, --- , My,
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(K —1) = (-1)’ D pi, (K—1)

1=ir< oo <=M,

Pip(K—2) -+ py(K—J), (76)

which corresponds to (75) with the actual utilizations
_ANE-)

Y

pi, (K — J) (77)*
evaluated at the appropriate population replacing the relative uti-
lizations p,. Recall that the actual utilizations are available via
standard analysis. The forcing function on difference equation (73),
¥i(t; K — 1), can be obtained recursively (see Appendix C) from

K-1

and the initial condition

yi(t; K) = s pi(K) (1 +%) Yilt; K — 1) (78)

yilt; 1) = e™5;(1). (79)

The quantity a. represents the relative loading on all the infinite-
server nodes

a0y

j=My+1 By

Qo = (80)

We note that for the network example of Fig. 8,

1
it K) == (E)(pr+ mt)n(t; K- 1),
where p is the fraction of cPU requests feedback to the terminals,
mean think time

mean CPU service time’

and ;¢ represents the point at which we are evaluating the tail of the
delay distribution in units of cPU service times.

For the multi-job-type networks, the tail of the node i delay distri-
bution as seen by a chain s arrival is shown in Appendix C to satisfy
the multidimensional recursion
ms(t; K) = yi(t;K_es) = z Ef]-jz----jR(K_es)

(0<j1+j2+- -+ jR=M))

. I/Vis(t; K- jlel - _]'292 — e — jReR)- (81)

The quantities a;, ... (K — e,) are the multidimensional analogues of
a;(K — 1) in (76), ie., they are related to the coefficients of Z% .

* Here X;(K) denotes the actual arrival rate to node i for a system with population K.
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) ; )
Z% - ZF, a,...jp 1IN

M, R A
PZ)=1]] (1 -3 fz) (82)

Analogous to (76), we have
Ejr'-fﬂ (K - eb‘) = (_1)j1+'”jn 2 {[5i1,1;1(K —€) .- 5'}]'];1(K —€es

{ipg) EL
—(h—De)] - -+ [Piir(K — €5 — j1e1
— evr jra€r-1) -+ Py ur(K— €= jier— oo =(jr—1er)]},
where

R
0< ¥ jr=M (83)

r=1

and {i,,} € L corresponds to

h <igg < - <ij]1
: ; Lmn 7 Lik; (84)

hp<lp<--- inR
ie., &,,...(K — ) is a sum of products of utilizations with p;, ;-

evaluated at the population (K — e, — jie1 — jz€2 — -+« jr1€r1 —
(p — 1)e,). The forcing function is obtained recursively from

[ (@s(K) + Ais(K)t)
K.

s R(i), sER ), K =0Vr&R*(i),
(&NW(K) + X:a(K)t)S(K)
KdS(K — es)

sERG), K, =0Vre R*i), (K — e;) > 0f
L 0; K.>0 forsome re&®*(i,
with initial condition

yi(t; K — es);

yi(t; K) =< yi(t; K — e5); (85)

e | pirle)e™ 5 rERG)
yt(t: er) - {0 r ¢ @(E). (86)

# (i) denotes the set of chains passing through node i, and 2 *(i)
denotes the set of chains which either pass through node i or through
an infinite-server node. The quantity

5(K)= ¥ K,

re® (i) Ao ’
1+ =

tIf 5(K — e,) = 0 and K — e, # 0 [if K — e, = 0, use initial condition (86)] ¥(¢; K) can
ll)(e computed from the first relation for some s & A (i), s € A *(i) corresponding to
s> 0.

(87)
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the relative chain r loading on the infinite-server nodes

Mo
e = Y, L, (88)
J=M+1 P-jr

and the actual chain r infinite-server loading

Mo (K
k) = y 2B

J=M+1 H-jr

=AM (K)ar. (89)

We note that it is only necessary to compute yi(¢, K) in the subspace

spanned by chains passing through node i or any infinite-server node.

For the special case where M, = M (e.g., the central server model)

R (1) =A*(i) and (85) becomes
wt_|K|

yi(t, K) = SER(I), K, =0Vr& #3i), | K|>1, (90)

0; K, >0 forsomer¢&ZI(i),

pis(K) yi(t, K — e;);

where

R
K| = z K.. (91)

Vilil. SUMMARY

This paper has presented contributions to the foundations of a tool
to support performance analysis and modeling activities aimed at
answering some key questions at various stages of a computer system'’s
life cycle. The emphasis here has been on presenting easily and
efficiently computable results for calculating distributional information
and a stable, efficient method for dealing with congestion adaptive
devices.! Mixed systems have been considered to allow us the gener-
ality of dealing with traffic sources which are fundamentally different
in their behavior. By obtaining results for different levels of customer
aggregation, we allow one to consider a macroscopic or more micro-
scopic level of detail. The virtual delay results allow us to quantify
differences between service as perceived by an arriving customer and
that perceived by a measuring device.

We note that many open questions exist in the areas of obtaining
results related to the distribution of total time a customer spends in a
subnetwork consisting of several nodes with feedback (e.g., Fig. 1,

In a recent paper,” a modification of mean value analysis is introduced to eliminate
numerical instabilities when dealing with general state-dependent service rates. The
method involves analysis of complementary systems and evaluation of marginal queue
size distributions.
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where the time of interest is the response time).* This is an area of
active research in the literature (e.g., see Refs. 26 and 28); however,
the results available are fairly restrictive with respect to the network
topology' or customer paths, and do not apply to, for example, the
network of Fig. 1. Approximating the moments of the distribution of
the overall time to transit a network from the individual node flow
time moments is one possible approach which would have to be studied
and evaluated. The problem arises because of statistical dependence
of a given customer’s flow times as he sojourns the network. For open
Jackson networks, Reiman® uses a heavy traffic limit theorem to
obtain a diffusion approximation for the network sojourn times. An-
other area of importance relates to the inclusion of priorities in, for
example, the cPU schedule. We note that an approximation technique
(based on utilization adjustments) does exist? for handling a class of
priority disciplines and can perform quite satisfactorily in many
cases.t The approximation is such that it enables us to compute
performance measures using results in this paper.

APPENDIX A
Recursions for Queue Size Factorial Moments
For closed systems, it is known' that the marginal, stationary prob-
ability distributions satisfy
1 EXs(K)
(ki = ks K) = ——
P wlk) 2 e

pli=k-1;K—e); k>0. (92

While conceptually, the desired moments could be computed from
recursively computed marginal probability distributions, it is not rec-
ommended. Other, more computable, approaches could involve the
use of generating functions.*® Qur approach is to directly obtain a
recursive relation for the moments. We use (92), (8), and (9) to obtain
(10), with the indicated initial conditions in a straightforward manner.
We obtain the required node-chain throughputs, A;; (K), by considering
the lower level aggregation

* Or, for that matter, at a processor sharing node embedded in a general closed
network. The waiting time distribution for a specific closed network consisting of a single
processor sharing node fed by a single finite population class is treated in Ref. 31.

TIn Ref. 27 a computational methodology is given for obtaining upper and lower
bounds where an arbitrary network topology is allowed. When applied to two M/M/1
queues in tandem (for which the exact solution is known) the upper and lower bounds
are close; however, over 30,000 states were used in the computation at 80 percent
occupancy. Computational aspects are presented in Ref. 32.

*Reference 34, which obtains a closed form solution for a two-node closed network
with priorities, proposes a criterion under which the approximation technique would be
expected to perform well.
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k; = (kil, ki2, ey, kiR),

where k; represents the number of chain r customers at node i.
Denoting k; as the total number of customers at node i, we can write
the recursive relation

ki Ais(K)
kau ﬂ-t(k )ﬂm

which is obtainable from the product form solution. From (93), (8), the
standard Little’s law argument at each node and about the entire
system, and the irreducibility of the routing chains we get (12) through
(15). To obtain the desired recursion for the joint factorial moments,
we use (8) and (93) in (18), make the appropriate identification corre-
sponding to a system with reduced population and obtain (21).

The mixed system result (26) is obtained directly from (10) by
considering the augmented system with population

K' = (K|Kr+1, --- , Kg),

pa(k:: K) P:(k €;s; K- es); ka > 0; (93)

denoting

Bi(K) = lim Bi (K"
K, K,

e KR—

and decomposing the sum over the open and closed chains. The lower
level aggregation results are obtained by use of

B Ais
3 ] k .;; K H
o o, PO — e Ky s>
lim  pik; K)= (94)
K, pye oo Kp—soo _
ki Ais(K) ,
Emp,(k—es, K-e); s=r,

where e; is an R-dimensional unit vector in direction s as opposed to
e, the corresponding r dimension vector for s < r.

APPENDIX B
Recursions for Node Delay and Flow Time Moments

Denoting W(t, K) as the complementary delay distribution expe-
rienced by a chain s customer at node i when the system population is
K, we can write

I ()
Wilt, K) = 3 e kit =k K),  (95)
& k=D

where p;. = p; at the FCFs state-independent node under consideration,
ki(t:;) represents the number of customers at node i seen by a chain s
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arrival to node i, and |K| = K, + K> + -+ + Kg. For the class of
closed* systems, we are initially considering

plki(ts) =k K) = plki=k; K — &), (96)

i.e., the distribution as seen by an arriving chain s customer is equal to
the distribution at an arbitrary point in time in equilibrium (i.e., the
stationary distribution) for a system with one less chain s customer.?
Using (96) in (95), we can obtain the Laplace-Stieltjes transform of the
flow time distribution for node-chain pair (z, s)

i .qIKI -1 k+1
Tiuln, K) = ——— — ki=kK—es 97
(n, K) Tt m gl pl e)( +ux) (97)

The jth moment, obtained by differentiation, satisfies

7 IK|-1
.,S(K)——T.,-H(K)+— Y kk+1) - (k+j—2)

P-a k=1
pk=kK—e), (98)

and the summation in (98) can be written as

|K|-2 K
Y (g+1)- (q+1-1)2;('u——)
q=o0 i

pizqg; K—e—es), (99)

where we have used (92) to get the one-step recursion on the tail of
the marginal queue size distribution. Inserting (99) in (98) and making
the appropriate identification, we get (46), with initial and boundary
conditions as indicated.
To obtain the Little’s Law type moment relation, we use the defi-
nition of B8;(K) and summation by parts to get
|K|—j
Bi(K) = j [20 I+1)(I+2) - (U+j—Vpki=1+j;K), (100)

which upon repeated application of (92) results in
R R _ _ J-1
Bi(K)y= 3% .- Z Ais, (K)Ais, (K — €5)) +++ Aig, (K— ) eaq)

=1 g=1

|K|=J J

¥ @+1)- (l+j—1)p(k.-2l:K— }:esq). (101)
,u-z 1=0 g=1

Identifying the last term, we obtain

* The mixed system results obtained by the usual limiting system argument are
reported in Section VI.
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R

R J-1
BRI = 3 -+ T A(KN(K — ) -+ Ay (K— ¥ es,,)
5=1 .3’-1 g=1

j=1
X Ty, (K— ) e) (102)
q=1

which for the special, single chain, case R = 1 gives the moment
relation

K
Bi(K) = ( T )\f(l)) T;(K—j+1). (103)
I=K—j+1

APPENDIX C
Recursions for the Tail of the Node Delay Distributions

We consider a closed system of M, state-independent, single-server
nodes and M — M, infinite-server nodes and obtain an M‘" order
difference equation for the tail of the customer delay distribution at a
FCFS node. Denoting

Wis(t; K) = P(dis > t: K)

as the probability that a chain s arrival to node i is delayed in excess
of ¢ in a system with population K, we can write

W K IK|-1 (#‘_”kq b= b K o
is(t; K) = kg]l E-D1° phiz kK —e,). (104)

We denote the product-form normalization constant* as
GER) = ¥ giki)guks) - gulkn),

Tk~K

1

where
AL
gik) =l (;) .. (_,_R) ;
j1s v RiRD \ M1 Kir
j= 1l21 e 1Mll
MY AR\
Go) )
gk) =——— g J=Mi+1.-- M, (105
al - kig!
and we have labeled nodes j = 1, ..., M, as the single-server nodes.

Multiplying (104) by G(K — e;) and obtaining the generating function,
we have

* Our final result will not involve computation of the normalization constant, the
calculation of which can result in numerical problems.
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LID Y

r=1 Hi R
L (Z) = exp[—u.-t (1 ) _Zr):l, (106)
r=1 .U-i "
where
LiZ)= Y --- ¥ Wilt; K+e)GEK2Z ... Z¥, (107)
K,=0 Kp=0
and
S(Z)y= Y --- ¥ %(KZF ... Z§r, (108)
K\=0 Kgp=0

where %;(K) is the normalization constant for a reduced network
(node i absent)

%K) = Z gl(kn) gx-l(kf_l)gm(km) gR(kn). (109)

Inserting
Si(2) =] §(@), (110)
Ji
where
r 1 .
m; J E Ml |
_ r=1 Wjr )
5/(Z) = 1 (111)
z Y 2
er=1wr : j > M.
-

into (106), we get

R
R . ar=tA )L,
Acr ) 21( At)Z é Hl,(t, Z)’ (112)

P(Z)Li(Z) = e (Z —Z, | e~
r=1 .ﬂ.;’
where P(Z) is the polynomial given by (82) and a,. given by (88).
Inversion of (112) and division by the appropriate normalization con-
stant results in

1§l . %‘ - ) lis(K_eB_jlel_"'_jReR)
J=0 Jjr=0 TR G(K — &)
JyHe - JR=My
_ hi(t, K - es)

GE o) 2YtK-e) (13
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where a;,....;, is the coefficient of Z{Z% ... Z/# in the polynomial (82),
hi(t; K) is the inverse generating function of H;(¢; Z) given by

hx(t K) =e |: H M} AirKr

—_—; 114
re®* (i) K;! rea) ti(@re + Airt) ( )

Z (1) denotes the set of chains passing through node i and % *(i)
denotes the set of chains which either pass through node i or an
infinite server node. The quantity /s (K) in (113) satisfies

li(K) = Wil(t, K + e,)G(K). (115)

As it stands (113) represents an M order recursion for the distribution
tail; however, the coefficient and forcing function involve the normal-
ization constant. Upon use of (115) in (113), and recognizing that

GK —e,— jiey— --. — jreg)
G(K— es)

can be written as a product of node throughput proportionality con-
stants

-1 J2—1
I: H XI(K — €s — llel)jl . [H xz(K - € — jlel - 3282)] v

=0 ;=0
=l _ .
I[[ Ar(K—e;—jie1— -+ — jriep1— IRER)j| )
13=0

we obtain (81) and (83).
The recursions (85) for the forcing function

ey hi(t, K)
yil; K) = TK) (116)
follow from
_ (asm + Aist) S(K) . _ . .

hi(t, K) = X 5(K — o)) hi(t, K — e;); SEZA(I), (117
where §(K) is given by (87), and from

hi(t, K) =ms—°°;—Mh;(t,K—es); SER(E),sER*(E). (118)
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