Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 6, July-August 1982
Printed in U.S.A.

Automated Repair Service Bureau:

System Architecture

By R. L. MARTIN
(Manuscript received June 29, 1981)

The four main functions being served by the Automated Repair
Service Bureau are (i) Customer Line Card Maintenance—a large,
complex data base problem; (ii) Trouble-Taking and Tracking—a
simple transaction problem; (iii) Loop Testing—a process-control
problem; and (iv) Trouble-History Review—a large, filter, sort, and
count report-generation problem. All of these functions were imple-
mented among different computers, which were then networked to-
gether to form the full ARsB architecture. This decomposition resulted
in an architecture that has been adaptable to Bell Operating Com-
panies’ needs over a full decade.

I. INTRODUCTION

The architecture of a system is the product of the history of the
organization which builds it, the present and near-present technology,
and the intended application. The architecture of the Automated
Repair Service Bureau (ARsB) is the result of several iterations, and
many decisions. In retrospect, many of the decisions which we tortured
over seem, given that the system works, clear and obvious. Hopefully,
our experiences will be useful lessons for other similar developments.

After describing the characteristics of the present ARSB architecture
and the history which led to it, the major design decisions in its
formation will be discussed. This will be followed by a slightly more
detailed discussion of the architectures of the subcomponents of the
system.

1.1 History

The Loop Maintenance Operations System (LMOs), as an operations
system for the Repair Service Bureau, was first conceived as a system

1115

in August, 1970, as part of a broad-reaching systems engineering study.
Specific development work on what ended up being its prototype, the
Mechanized Line Record System (MLR) started in April, 1971. The
first MLR repair service bureau (RSB) was placed on-line in Manhattan,
New York, on December 8, 1972, on an IBM 370/155 and DEC PDP*
11/20 computer. The 370/155 provided all the major user functions.
The 11/20 initially provided simple backup when the 370/155 was
down by recording trouble entry and status transactions for later
submission to the 370 when it recovered; also, it provided loop-testing
facilities via the Line Status Verifier (Lsv), an early automated testing
system. After going on-line, the next year and a half of MLR application
development had two major activities:

(i) The transactions were restructured for ease of use and to utilize
the IBM 3270 synchronous display terminals.

(if) The data bases were restructured to improve computer perform-
ance and simplify program development by changing a combined line
record/trouble data base to separate line record and trouble data
bases.

As other Bell operating companies (Bocs) (Southwestern Bell Tel-
ephone Company and South Central Bell Telephone Company, in
particular) expressed interest in MLR, we decided to totally rewrite the
system because:

(i) The existing data base structure could not easily accommodate
the new Universal Service Order (Uso) requirements. (Uso is the
language used for the entry of customer service requests for new
services or changes to existing services.)

(if) An IBM 370-based system would not have been economical for
the “small” towns (small, at that time, was anything less than 750,000
people.)

(iti) The IBM 370-based system’s one-half hour or so mean-time-
to-repair or daily availability of 16 hours was not satisfactory for a
back-bone customer support system. It is important to note that given
a fixed monthly availability, e.g., 98.5 percent, the user is more con-
cerned with mean-time-to-repair than with mean-time-to-failure.

We initially planned to build two systems, an IBM 370 maxi-based
system for the large cities and a separate DEC 11/45 mini-based
system for the suburban/rural areas. They were to have identical user
views to minimize development cost and time, and to facilitate moving
RSBs and personnel from one system to the other. J. Cloutier of Bell
Laboratories suggested the distributed architecture which we subse-
quently implemented as LMos and which this paper addresses.

Though no MLR code was included in LMOS, the MLR system provided
two major benefits to the LMos project. First, it was a working model

* Registered trademark of Digital Equipment Corporation.
1116 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

or pilot plant from which we could gather data and experience for the
LMos design decisions. Its role in this capacity cannot be over empha-
sized. Second, it acted as an existence proof that such a system could
be used as part of an on-line customer interaction and could save the
Bell System money.

Il. ARCHITECTURE OVERVIEW

The hardware/software distribution of function and data is sum-
marized in Fig. 1, while Table I summarizes the operational character-
istics of the network.

The function/data distribution was such that the system could be
partitioned into large complex-data “maxi” pieces and high-transac-
tion-volume/small simple-data “mini” pieces. (See Fig. 1.) They were
as follows:

(i) Line card maintenance (a host maxifunction). Copies of the
customer’s service and service history are maintained—a low-volume
but large-complex data base function.

(i) Trouble taking and tracking (a front-end minifunction). The
customer’s trouble is entered and subsequent repair tracked (via on-
line status and reports)—a high-volume but simple data base function.

(iii) Loop testing (a front-end minifunction). The loop is tested for
fault presence and location—a low-volume but complex algorithm
function.

(iv) Trouble history review (a host maxifunction). A 40-day history
of troubles is reviewed via “batch” reports for analysis of equipment
and personnel performance trends—a large sort-and-count function.

The LMOs transaction load follows the classic 80/20 rule. That is, 80
percent of the total transaction load is generated by a few high-use

FRONT END

o]
REPAIR SERVICE
U
50 kb = BUREAU
PDP* 11/70 \

CROSS CENTRALIZED

« LMOS FRONT END 2
« TRACKING — ::';J&'ERRISPI‘ESWCE
* MACHINES == BUREAU

IBM 370 PDP 11/34
DATA BASE FRONT END DATA SWITCH

HOST

MACHINE o]
50 kb I @5} Repair service
5 BUREAU
==
PDP 11/70 \
MECHANIZED
*REGISTERED TRADEMARK OF DIGITAL LOOP TEST
EQUIPMENT CORPORATION (MLT-1)

PDP 11/34

TEST CONTROLLER

Fig. 1—Automated repair service bureau architecture.

SYSTEM ARCHITECTURE 1117

Table I—ARSB data sheet: typical configuration serving five million
customer lines

Cross Front MLT Con-

Host Front End End troller
COMPUTERS
Number in system 1 7 2 40
Processor type IBM-370-303x PDP* 11/70 PDP 11/34 PDP 11/34
Main memory 4 megabytes 1 megabyte 1/4 megabyte 1/4 megabyte
(per machine)
Secondary storage 6,000 to 8,000 300 megabytes 0 0
(per machine) megabytes
TOTAL SYSTEM TRAFFIC
Busy hour trans- 17,000 28,000 12,000 12,000
actions
Daily transactions 175,000 80,000 60,000
OPERATIONAL PERFORMAN CE
Scll;le];lduled availa- 24 hr (1) 22 hr 24 hr 24 hr
ity
Operational 98.5% 99.5% 99.5% 99.5%
Mean time to re- 40 min 7 min 4 min 8 min
cover
SIZE OF SOFTWARE (LINES)
Batch 140,000 23,000 0 0
On-line 35,000 225,000 22,000 30,000
Operating system (2) 34,000 12,000 12,000
Utilities (2) 45,000 0 0
Total 175,000 327,000 34,000 42,000

* Registered trademark of Digital Equipment Corporation.

(1) On-Line 12 to 18 hours (depending on Boc). Available for batch processing all
other times.

(2) IBM Multiple Virtual System and Information Management System.

transaction types (about 20 percent of all transaction types). These
characteristics were first verified during the MLR pilot operation and
justifies the distributed architecture of LMos which places the high-
use, simple data transactions on several front-end computers. The
projected cost of the distributed architecture was 30 percent less than
either an all-maxi or all-mini approach and allowed us to build one
standard system rather than two.

The best way to understand the distributed architecture is to trace
how a trouble is reported and repaired. This is as follows:

1. Enter trouble description—A customer calls a repair service
attendant at the Centralized Repair Service Answering Bureau
(crsaB).! The attendant enters the telephone number of the line in
trouble. The entered telephone number is switched by the cross front
end? to the front end® having the copy of the customer’s miniline card.
(The miniline card is roughly 10 percent the size of the full line card
which is kept in the host' IBM system; however, it contains enough
“critical” data to support trouble entry, as well as limited operations
when the host is “down.”) In the case of numeric telephone numbers,
a cross front end table is used to determine the proper front end. In
the case of nonnumeric circuit identifiers, the cross front end interro-
gates all front ends to determine which has the miniline card. After

1118 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

receiving the telephone number, the front end returns a description of
the customer’s line (and any existing trouble information) to the
attendant via the cross front end.

2. Test loop—Simultaneous with trouble entry, the front end initi-
ates a test of the line in trouble via the Mechanized Loop Testing
(MLT)? controller computer. When the MLT controller returns the test
results to the front end, roughly 25 seconds later, it routes them, again
via the cross front end, to the attendant. The attendant, now armed
with customer service information and test results, enters the trouble
description and an agreed-upon repair commitment time.

3. Route trouble description to RsB—This final trouble description
is sent via the cross front end back to the front end. The front end
then ships this trouble description to the host computer for combina-
tion with the full customer line record and associated trouble history.
This combined record is shipped via the front end, and perhaps cross
front end, to the RSB having repair responsibility. (If the host computer
is unavailable, the trouble description is combined with the miniline
record for the RsB.)

4. Repair trouble—While being repaired, the status of the trouble,
e.g., tested, is entered into the front end. In this way, trouble repair
can be tracked by the bureau management using on-line reports, can
be relayed to the customer, and can be analyzed after trouble clearance.

5. Post repair analysis—After repair, a description of the closed
trouble is entered and sent to the host computer for a 40-day running
historical file used for analysis of various components of the repair
process. The resultant reports that are generated by the trouble report
evaluation analysis tool (TREAT)® are routed from the host computer
to the rSB (optionally via the front ends or cross front end).

While the repair process is taking place, the customer line records
are being updated either manually or automatically from data received
over the BocC service order distribution network on the host computer.
Complete copies of the miniline record for all changed line records are
sent to the front ends the night after the change is entered into the
host computer. A night-time versus day-time update was chosen to
off-load the front ends and the 50-kb lines connecting the host to the
front ends (see Fig. 1).

Il. MAJOR DESIGN DECISIONS

There were, in effect, two levels of ARSB architecture-design deci-
sions: (i) those affecting the overall system (discussed in this section),
and (ii) those affecting an individual component of the system, e.g.,
the front end (discussed in the later sections). The decisions that
affected the overall system had one of two motivations—either trying

SYSTEM ARCHITECTURE 1119

to satisfy the end users operational objectives or trying to satisfy our
development objectives. The interplay between what should be done
and how it could be done is the most exciting and yet exasperating
experience for the designer. If either perspective—the user or the
developer—gets out of hand, the end system will surely fail.

The major user and developer issues and lessons will be discussed in
the following sections.

3.1 User issues—don't forget the end user will rely on and supplement
your product

The major user issues which impacted the architecture evolved
around the entry level skills of the end user, the desire to install the
system quickly, and the high efficiency of the existing manual repair
process. These factors all interrelated to lead to the following deci-
sions:

(i) The System would not be based on a pure data base—
don’t make the machine enforce what the field won’t.

After much interaction with the operating companies who wanted,
initially, to have the software enforce a pure data base, i.e., reject a
line record with machine detectable inconsistencies (e.g., a cable
assigned to two telephone numbers), we decided that it was better to
put the line record in the data base with its known errors than not to
put it in until the errors were resolved. Known errors are, of course,
flagged for future resolution. This decision was contrary to that being
made by the facility assignment systems, e.g., COSMOS and BISCUS/
FACS which assign loop facilities to provide service. We could not
afford the difference in the cost of conversion—more than 6 to 1 for
each customer record. Further, the end user of the system, repair
people, historically had been able to use impure data for repair oper-
ations and would not tolerate the expense of trying to keep it purer
than it had been in the past, though there would be tools to do this.
(We have since found that repair does not in fact, keep the data pure,
nor is it necessary.)

(if) High-volume operations—do what you can, don’t do
everything.

The RSB operation is essentially a high-volume repetitive job
wherein a 100,000-line RSB will process 500 troubles a day. The majority
of these troubles is in residence and simple business services. This gave
us the opportunity to save money by leaving the hard cases out of the
system, both in the data base and in the automated testing. A human
being handles these relatively low-frequency, very complex cases.
Thus, the system could and can be viewed as the high-volume mech-
anized adjunct to the human being. The decision was: do not try to do
everything; let the human augment the machine (and conversely!).

1120 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

(iii) Part of the on-line customer flow—sit in the end user’s
Jjob and view availability from that perspective, for example,
98.5 percent availability is 2'» hours down time a week!

The system is an adjunct to the daily customer interaction process.
Thus, we had to ensure that high availability was provided for parts of
the system that were used for daily interactions between BocC personnel
and their customers. Further, these operations had to have a relatively
predictable response time. Thus, we allowed no algorithm which had
high run time variance, otherwise customer contact would be unpre-
dictable. Also, we learned that the Boc user can manually augment
missing features and, thus, will tolerate, though not happily, their
absence; however, they will not, and should not, tolerate bad perform-
ance or availability.

As mentioned before, in the operations support world, mean-time-
to-repair is much more crucial than average uptime. (Two hours down
Monday morning is intolerable.) A rapid mean-time-to-repair allows
less stable software to be introduced to the field. The result of this
issue was a front end and cross front-end hardware configuration which
had at least one passive backup unit for each two on-line units. This
backup hardware could be switched on-line via a network switch and
disk switches. Also, a very fast data base recovery system was built,
(less than two minutes recovery time for all but the head crash).

3.2 Developer issues—manage complexity

The development decisions were all motivated toward reducing
development complexity. All the major design decisions were oriented
towards decoupling the development of the subcomponents. (An ex-
tension of this theme was not to make any changes in the IBM
software for the front-end system to work.) We partitioned the software
tasks into pieces which could be done by teams of three to five people
for development efficiency and risk containment. Further, by uncou-
pling the development activities from each other, the companies could
decide on the order of installation for the various pieces of the system;
however, there was a natural and commonly followed installation
sequence of TREAT,® host, front end, cross front end, and MLT. It is
important to note, however, that the overall architecture and devel-
opment approach was for an integrated system which could be devel-
oped in phases as compared to stand-alone pieces which could, some-
how, be forced to fit together.

The resultant major decisions to allow this decoupling were as
follows:

(i) Duplicate data to simplify distributed processing—re-
duce risk by using known technology.

We decided that no single computing activity would be dependent

SYSTEM ARCHITECTURE 1121

on the on-line interaction between computers. That is, we did not want
a single user transaction to have to get data from more than one
machine. We did not know how to solve the data base locking,
consistency, and data base recovery problems that accompanied that
form of operation and so we avoided it. (For example, we did not want
to solve the clean-up problem resulting from transaction A on machine
1 locking data base B on machine 2, updating it, going down, and
simultaneously having the line go down.) Instead, we duplicated a
small amount of data across machines in a master (host data base)/
slave (front end) relationship to support the transaction activities.
(i{) Communications design—do the riskiest first.

The most complex design problem—though we did not know it at
the time—was the distributed communications network. For MLR, the
PDP 11/20 communications software we wrote handled solely the
synchronous terminals (not the printers!) in a stand-alone fashion (i.e.,
we did not have a full pilot plant).

Our initial design was quite simple. We decided that to each sending
computer, the receiving computer would look like a TELETYPE*
teleprinter 40/4 controller. The IBM host computer thought that the
DEC front-end computer was a pair of 3270 controllers, one with 32
printers and one with 32 crRTs. The CRTs were used as “virtual”
terminals by the PDP computer and were assigned or coupled to a
real terminal when it used an IBM resident transaction. In this way,
the IBM transactions did not have to be tested for use with the front
end and no special work had to be done in the front end when an IBM
transaction changed or was added.

Two of the “virtual” cRTs were used to effect the batch data transfers
between machines. That is, the miniline cards, for example, were
blocked into crT-like messages and were sent to one of these two CRTs.

The handling of printers and front-end-to-host messages almost
killed the project. The early strategy had four parts:

(a) By mapping the printers on the front end to one of the “32 on
the 50-kb line,” the host system would do all the spooling for Host
generated messages.

(b) To reduce spooling logic, the front end would separately spool
its output for the printers. The front end would control actual printing
by either “unspooling” its messages or control passing through of the
host messages.

(c) To simplify the software, no messages from the front end to the
host would be spooled to disk. Rather, as these messages were created,
they were put in a core buffer for transmission to the host.

(d) When the host was “attached” to a printer or cRT, all terminal

* Registered trademark of Teletype Corporation.

1122 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

and printer status messages would be passed directly from the front
end to the host.

The first two decisions were good ones—the last two were somewhat
less than optimal. By not spooling to disk, we implicitly counted on
predictable bandwidth to the host, i.e., the core buffers could fill up on
the front end and stop the system. Further, by sending the status
directly to the host, sometimes it would take the whole 50-kb line
down because, for example, it thought a bad printer was on the line,
i.e., we confused network and terminal control. These two design
problems took 3 to 6 months to fix, generated user dissatisfaction, and
“work-arounds” that complicated the communications manager de-
sign. The major lesson was that we tried to schedule the development
of something that neither we (nor anybody else) had done before.

(iii) Operational decoupling—reduce the need for organiza-
tions to communicate in the field.

We decided that the basic operations of the host and front end had
to be viewed by the computer operations personnel as though, for all
practical purposes, the other system did not exist. For example, if a
data base recovery took place on one system, then an operator (or
software) would not have to initiate one on the other. This decision
actually simplified the overall final design but was hard to implement
as we built a variety of ad hoc message synchronization schemes and
(over the years!) found holes in them.

We shall next discuss the architectures of the individual subsystems
or components.

IV. HOST DESIGN

The design of the host software was driven by two major issues—
the use of the IBM support software and the largeness of the data
bases (several billion bytes on line). The decisions were as follows:

(i) Use PL/I and only simple features of IMS—avoid local
optimization and use of complex features.

PL/I was chosen for its relative development efficiency. The other
feasible alternatives of COBOL and Assembly were rejected because
of their awkwardness or resulting code complexity. Further, as far as
we could tell, we suffered little to no performance impact by choosing
PL/I over Assembly.

The Information Management System (1Ms) was used to create
simple hierarchical data bases. We avoided using any new IMS pro-
gramming feature for approximately two years after it was announced.
By placing these restrictions on the use of iMs, we made sure that the
feature had been debugged and we substantially improved the overall
system field reliability and performance, as well as easing our internal
training problems.

SYSTEM ARCHITECTURE 1123

(if) Data base size—big data bases have lots of inertia.

The projected size of the data bases (many billion bytes) resulted in
two major design decisions. First, a series of inverted files were created
from the line card file so that data could be indexed and retrieved
other than by telephone number. Without these indices, the query of
telephone numbers by cable pair, for example, would take hours. These
files included a cable file, office equipment file, as well as three other
small files. Each of the programs which updated the line card file also
updated these inverted files. (A common, but poor practice of the
computer science community at that time was allowing individual
programmer access to the indices. Data base structure and indices
should be hidden from the programmer by access routines.)

Given the need to reorganize data bases, take image copies, and
recover them, care had to be taken to split a potentially large single
data base into several logically smaller parts. While we recognized this
for the line card data bases, unfortunately we did not for the cable
data base. The cable data base became exceedingly large in one of the
“rural” Bocs, which had extensive cable networks, and several 3350
disk drives were required. Reorganizing, recovering, and loading this
one data base soon became the pacing item of the host computer
operations.

(iii) Performance prediction— “off-line” not "on-line” will get
you.

The performance prediction for the host computer was simple for
the real-time day and surprisingly complex for the night time, off-
line batch operations. The transaction processing in an IMS system
inevitably is cpU limited. (The majority of the cpPU cost is due to 1/0
processing; however, the cpPu, not the channels or disks, saturates
first.) Thus, all we had to do was to estimate the cpPU utilization of the
on-line transactions. Since we had the MLR system in New York for a
model, we estimated the performance of the distributed system by
removing the load of those transactions which would migrate to the
front end. The only problem that we ran into was that as the system
matured at a BOc, terminals accessing the data base for its review
spread like wild fire. As experience with the system grew at Bocs, this
extra use added an additional 20 percent to 30 percent load to the
repair-only predicted load.

The nighttime load prediction had two problems. First, our MLR
model experience was in Manhattan which was, at the time, having
very little, if not negative, growth. As the system spread to the
expanding areas, the need to do massive rearrangements of the data
base for area transfers, major cable throws, etc., added what was to us
an unexpected load. Most importantly however, we did not leave
enough time for operator or machine error. In effect, we had planned

1124 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

the operational evening too tightly. T'o meet the original load projec-
tions, we had to redo some of the programs so that they could run
during the real-time day and in effect cut down the need for “off-line”
time. The only real lesson here is that one really needs to understand
all the environments of the end system, including the variants of the
offered load and the realities of how big machines operate and are
operated.

V. FRONT-END DESIGN

5.1 The operating system—there is no such thing as a simple operating
system

The front-end system was to be, in effect, a transaction processor.
The first design decision was related to whether we should use what at
that time was a rather new operating system from Murray Hill—
UNIX* program operating system—or build our own. Because of the
need for a robust file system, high-performance interprocess commu-
nications, and the need to handle forty-eight 4.8-kb synchronous
communications lines, we decided to build our own. It is still not clear
whether this was our best or worst decision. It was best from the
viewpoint that subsequently evolving the UNIX program operating
system to handle the high-performance, high-availability, synchro-
nous-terminal-driven, transaction-processing application has been
most complex. It was the worst in that we might have been able to
substantially modify the UNIX program operating system to satisfy
our needs and in the process would have had earlier access to C
language and the UNIX software development environment. (Two
years into the development, we moved our development environment
to the UNIX program operating system and started to use C as the
programming language of choice. Later, (see Ref. 3), we decided to
modify UNIX software, given our experience with the special-purpose
operating system.) The other impact was that, as all operating system
developers are, we were plagued with the never-ending minor utilities
for operational and maintenance ease, e.g., the utility to do system file
transfer.

The other major design features of the front end were all oriented
towards high predictable performance and low mean-time-to-repair.

5.2 Design for availability—(It's easy if you include it in the design from
the beginning.)

The low mean-time-to-repair was achieved by providing a standby
* UNIX is a trademark of Bell Laboratories.

SYSTEM ARCHITECTURE 1125

processor, extra peripherals, and a rapid software recovery system.
The recovery system was based on

(a) Using the communications terminals for message recovery—a
message was processed in its entirety, one in and one out. The terminal
held the input message until completion. If the system went down, the
operator would re-enter the message.

(b) Keeping preupdate copies of a transaction’s intended updates
on disk to roll back the data base in case of error.

(c) Keeping a log tape of all before and after data base copies which
were used to reconstruct the data base in case of a head crash.

This rather simple design resulted in a mean-time-to-repair of ap-
proximately two minutes for all but the head crash which would take
approximately an hour. During the hour recovery, a simple back-up
system was given to the user so that troubles and statuses could be
entered for journaling on tape. This journaled information would then
be read into the system when it was brought on-line so that the
bureaus would not have to do any special manual catch-up work.

5.3 Performance—(Keep the model simple and worry about it from the
start.)

The performance design was based on assuming the system would
be designed to be single-threaded, i.e., once a transaction started, no
other would run. This solved the data set locking problem, simplified
recovery, and seemed like a reasonable approach given that at that
time we only had two disks. Given this and using an application load
model from the New York Telephone Company (which remained
relatively invariant across other companies), we projected what the
single thread load would be at peak busy hour. Before announcing
system capacity, we designed each transaction and counted their disk
accesses. Since the transactions were all simple, their elapsed time was
directly related to the number of disk accesses. We then sized every
other component of the system, the 4.8-kb lines, the 50-kb line, and
the core buffers for holding transaction input, so that they would not
be a limiting resource. Simple single server and multiserver queuing
equations were used for the sizing.

The system algorithms were then designed to drive this single-server
queue, i.e., the transaction stream. For example, the priorities for
polling the terminals were such that once work came into the system,
the polling priority would be lowered so that the transaction would
run to completion. The major performance tuning was in handling the
50-kb line to the host and the communications buffers in the front end.
These tuning needs were driven by all the idiosyncrasies of handling
the bisynchronous protocol in an environment with noisy and failing
lines.

1126 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

VI. 11/34 MLT CONTROLLER DESIGN—Reexamine your architectural
decisions under change.

The 11/34 MLT controller originally supported a special-purpose
terminal which is no longer used in the system. This terminal, the
Status Entry Device, was specially designed and built to be used to
enter numeric status information into the system. Originally, it was
used in the MLR system and was viewed by the computer as a TELE-
TYPE crt. On changing to the IBM 3270, we decided to use an 11/10
to simulate an IBM 3270 controller and to co-locate it with the Status
Entry Devices. Once the 11/10 was at the bureau, it seemed natural to
use it for controlling the loop tests. (The 11/10 was replaced later with
the 11/34.) The building of the special terminals was a well-motivated
detour. They were built because normal terminals were too big to use
with the test desk and were too expensive. However, their production
volume was never enough to allow cost reductions; thus, they did not
track the cost reductions in the terminal field, but more importantly,
the tester ultimately needed a full-feature terminal as the ARSB system
grew in feature.

Once we decided to co-locate the 11/34 in the bureau, its design was
actually very simple. For reliability, it had to have no moving periph-
erals. However, while it was appropriate to have a separate computer
for driving the loop testing system, the 11/34 was probably not a good
design choice. A better choice, both in cost and later development and
deployment flexibility might have been to have a separate PDP 11/70
computer for testing as compared to several 11/34’s. We recognized
this too late in the development/deployment cycle.

Vil. CROSS FRONT END—Geography is a bad division.

The cross front end was the last major addition to the system.
Though we had recognized the potential need for such a system in the
large cities, it represented a nicety and not a necessity. The design
guidelines for the cross front end were identical to that for the MLT
controller, with one addition—all cross front end tables had to be
automatically derivable from the front ends. We could not stand the
thought of the operator difficulty, then error, and then our repair, of
having to keep the systems in constant synchronization. The perform-
ance approaches for the cross front end were almost identical to the
front ends. The only exception was in assuring that one heavily loaded,
or failing, front end did not use up all the buffers in the cross front end
and, thus, jeopardize access to the other front ends.

Though the cross front end did the job, it was the early warning
signal for the need to redo the ARSB architecture. Until the cross front
end arrived, the system was completely hierarchical serving a smaller,
self-contained geographic entity. The cross front end, in effect, re-

SYSTEM ARCHITECTURE 1127

sponded to the desire of the Bocs to avoid the need to organize their
operations according to this rather rigid computer-imposed geographic
view. In several installations, the cross front end use grew beyond its
original design intent of serving just the CRSABSs to serving coin bureaus,
and special business bureaus. This growing need led to the second
architecture for the ARsB which is described in Ref. 3.

VIIl. MAJOR LESSONS

Some of the lessons already described and one or two others deserve
special mention as follows:

8.1 Time scales and tolerance to change

The LMOs system, from its inception to its full Bell System penetra-
tion, will take 13 years to complete. There is no way that any operations
systems designer is 13 years smart. Thus, the early architecture must
be very carefully examined to determine impact of Boc organizational
change, changing data needs, etc. The issue of performance was very
significant to the first generation of the ARsB. This issue of flexibility
versus performance will have to be balanced exceedingly carefully in
succeeding generations of the system.

8.2 Data view

The host system was designed from a functional view point, i.e., a
conversion system, an automated line record update system, an on-line
system etc. This view did not recognize that the most complex and
unyielding issue was the large and unwieldy data base. Future systems
should take a more data-centered view and build for example, a cable
system, a customer service record system, etc. This should be done
because it is hard to evolve mechanisms which allow easy minor
changes of the basic view of the data base.

8.3 Data synchronization

The growing use of the LMOs data base resulted in our having to
synchronize it with many other systems. We found this to be an almost
impossible task unless the synchronization was done using self-con-
tained groups of information, e.g., a full miniline record. Even then,
minor differences in item definition (it took 6 to 9 months to resolve
cable/pair status definition between two systems) would lead to terri-
ble confusion. The only lesson is that if at all possible, do not duplicate
data; however, if you have to, synchronize it in very big blocks.

8.4 Modularity—planned and achieved

Perhaps the major advantage of the distributed architecture was
that it enforced modularity on the system. It seems that only physical

1128 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

boundaries, either different machines or 16-bit address space or time
slots, enforce that modularity after the early designers leave.

8.5 Models and pilot plants

The major lesson towards building a predictable architecture and
system is to build a pilot plant first. Make that pilot plant exercise the
technical risk and use it to gather data for the performance versus
flexibility equation.

IX. ACKNOWLEDGMENTS

A system can have an architecture only after someone conceives the
need for it. M. W. Bowker of Bell Laboratories deserves credit for that
vision. Major contributors to the architecture were L. S. Dickert, J. M.
Hunt, III, D. S. Watson, D. L. Kessell, S. G. Glover, D. Lloyd, S.
Hensdale, and E. Mays.

REFERENCES

L M. W. Bowker et al., “Automated Repair Service Bureau: Evolution,” B.S.T.J., this
issue.

2. J. P. Holtman, “Automated Repair Service Bureau: The Cross Front End: The
Context-Sensitive Switch,” B.S.T'.J., this issue.

3. S. G. Chappell, F. H. Henig, and D. S. Watson, “Automated Repair Service Bureau:
The Front-End System,” B.S.T.J., this issue.

4. C. M. Franklin and J. F. Vogler, “Automated Repair Service Bureau: Data Base
System,” B.S.T.J., this issue.

5. 0. B. Dale, T. W. Robinson, and E. J. Theriot, “Automated Repair Service Bureau:
Mechanized Loop Testing Design,” B.S.T.J., this issue.

6. S. P. Rhodes and L. S. Dickert, “Automated Repair Service Bureau: The Trouble

Report Evaluation and Analysis Tool,” B.S.T.J., this issue.

SYSTEM ARCHITECTURE 1129

