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Complex software systems can be built from components, where a
component is a software entity that performs one type of function in
a general, usually table-driven, way. If the components are defined
well and a standard interface is provided between them, the resulting
product is flexible. It is easy to understand and easy to change. The
performance of the system is a function of that of the components.
The new Loop Maintenance Operations System Front End (LM0Os-2)
is a transaction processing system developed in this way. The com-
ponents, described in this article, are a mask handler, a data vali-
dator, a database management system and a transaction-oriented
filing system. Transactions are written in a high-level language
designed for the purpose. The LMOs-2 system runs on the UNIX*
operating system. The desired flexibility properties have been realized
and have produced important benefits in the course of LMOs-2 devel-
opment. Moreover, with considerable attention to the performance
characteristics of the components, a system has been produced which
is as fast and efficient as its predecessor, coded mostly in assembly
language.

I. INTRODUCTION

The software systems developed in the past for the Automated
Repair Service Bureau (ARsB) have been well suited to the application.
By almost any measure—performance, availability, protection of the
database—they are excellent systems. Their major drawback is inflex-

* UNIX is a trademark of Bell Laboratories.
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ibility—a fault shared with many systems of their generation, partic-
ularly production systems built for major applications.

The Loop Maintenance Operations System (LMOS) front end (FE)
was handcrafted for the ARsB application. The Bell Operating System
(Bos) was built to the requirements of LMOs, as was the Bos Filing
System (Fs). The original application code was written in PDP*
MACRO-11 assembly language. Application programs access and man-
age data files themselves, calling on Fs only for direct operations on
data blocks. As a result, database changes ripple through the applica-
tion code, making change expensive and error prone. Another conse-
quence of making LMo0s very application-specific is that there has been
little spin-off of LMOs technology to other projects. This is unfortunate,
for LMos has been an extremely successful product.

During the past decade (but for practical purposes after the LMOSs
FE system was built and deployed), the UNIX operating system was
developed, bringing with it new software development tools and new
notions of software flexibility and transferability.! Several years ago,
the UNIX operating system supplanted DEC’s DOS operating system
in our development environment and we began to write new programs
in C. The Bos continued to be our production operating system.

It was not enough to change the development environment, though
it helped. Costs incurred in modifying the FE, extrapolated into an
environment of increasingly rapid change, indicated that an entirely
new approach would be necessary. The course we followed in LMOs-2
was inspired in part by the UNIX operating system and represents a
step forward in software development technology. It is expected to be
cost-effective for LMos and, unlike previous LMOs development work,
should have significant side benefits for other Bell System software
projects.

The approach, described more fully in the next section, is to build
the software system from components, taking care that the compo-
nents are sufficiently general in function and that they interface neatly
together. We avoid the temptation to handcraft another LMos. Not
that the temptation isn’t there, for our objective is to buy flexibility
without paying in performance or in any other way.

We think we have partitioned the system into components in such
a way that the partitioning itself causes no loss of efficiency. We then
have only to worry about the performance of the individual compo-
nents. The challenge, for all components, is to be both general and
efficient (either property by itself is easy). This was relatively straight-
forward for some components (the mask handler and the data valida-

* Registered trademark of Digital Equipment Corporation.
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tor), and extremely difficult for others (the database management
system and the filing system).

Il. DEVELOPING SOFTWARE FROM COMPONENTS

The ability to adapt a system to a rapidly changing environment is
related to an ability to build totally new, though similar, systems with
relative ease. The difference in capabilities required of an LMOS system
at points in time ten years apart might be quite significant. If we can
really make LMoOS tolerant to change, we should be able to use the
same approaches to build new systems.

Our approach is to develop the capability to build “LMos-like”
systems and, in the process, make Lmos itself flexible.

One of the keys to this approach is modularity. However, we seek
not just to achieve modularity for LMos, but to identify for a class of
systems a set of basic, application-independent, functions. For each
function a software component is built, if it does not already exist
somewhere.

Another significant factor is generality. Our components are script-
driven. Each is configured for a specific application by coding the
specifications for that application in a special-purpose language. For
example, the data validator is configured by coding the validation
conditions (which look much like expressions where the variables are
data field names) in a validation language.

Finally, we have a standardized format for passing data between
components. This guarantees that the output of any component is in
a form suitable for input to another component. Hence, many different
arrangements of components are possible. Once the software compo-
nents are on the shelf, it should be possible to build new systems, or
change an existing one, rather easily.

Ultimately, we hope that building a software system will be similar
to building a house: you start not by designing everything from scratch,
but by looking through catalogs of windows, kitchen cabinets, heating
systems, etc. You keep costs down, improve quality, and shorten the
completion time by limiting on-site construction to building what you
can’t find ready-made, and to installing what you got from the catalogs.

1Il. COMPONENTS OF A TRANSACTION PROCESSING MACHINE

In our model of a transaction processor, there is a collection of input
cathode ray tube (CRT) terminals at which operators enter transactions.
The processor supports a predefined set of transaction types. For each
transaction type there is input data, entered on a mask by the operator,
and processing by the system, which involves validation, database
access, and (sometimes) updates. The output may be a report, directed
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to a printer or to a CRT, or just an indication to the operator that the
desired function has been performed.

We can now identify some of the general-purpose components for
transaction processing systems: a mask handler, which is easily pro-
grammable to produce input and output masks of arbritrary design,
and which manages data flow to and from the CRTs; a data validator,
which is capable of taking a set of data (e.g., input data for a transac-
tion) and testing it against a corresponding set of validation conditions;
and a database manager, which provides flexible yet efficient access to
the system’s database. With these components, and another compo-
nent specific to the transaction to provide control and do any special
processing required, we have nearly enough to implement many simple
transaction types. The transaction model is this: the named mask,
with input data, is on the screen when the SEND key is pushed,
initiating processing. The mask handler routes the data to the validator
for input validation. If valid, the data are sent to the transaction-
specific component, which determines the rest of the execution se-
quence. That may involve local processing, as well as data transfer to
and from the database manager and further validation. Finally, output
data will be returned to the mask handler to be put up on the operator’s
screen or at a printer.

Note that the transaction is served by a number of components,
including one that is tailored to it. The standardized component-to-
component interface completes the component model of transactions.

IV. COMPONENT INTERFACE

The flow of data between components varies with each transaction.
To allow flexibility in the order in which components are invoked and
in the passing of data between them, there is a standard mechanism
for invoking components, embodied in a subroutine called invoke, and
a standard representation for data, called a packet.

4.1 Packets

A packet is an abstract data type that can represent a data record
in which the fields are referenced by their names (as opposed to their
positions within the record). Conceptually, a packet is a set of pairs of
field names and field values; for example,

TN 201-3862773
NAME Marc
ADDRESS 1D 301A Whippany.

Operations are provided to initialize a packet, change the value for a
named field, and get the value of a named field, among other things.
Field values are null-terminated strings. The data structures underly-
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ing the packet implementation are not accessible to the user and do
not need to be. All manipulation of data in packets is done using the
packet operations. Packets provide a natural, easy-to-use mechanism
for expressing and interpreting fielded data.

By standardizing on a data representation for all components, we
allow the output from one component to be fed into another component
without translation or reformatting. Also, common utilities, such as
trace routines, can be used on any component.

4.2 Component invocation

All components have the same interface, a subroutine call with three
arguments: the name of the component to be invoked, the packet to be
operated on, and a flag indicating whether the caller is to wait for
completion of the operation or not. The input data and the output
data are in the same packet. This permits the use of a particularly
efficient data transmission technique using memory shared between
the calling and called components. For example, the Database Man-
agement System (DBMS) component is called from another component
by

invoke (“DBMS”, pkt, WAIT);.

This sends the packet pointed to by pkt to the component named
pBMS. The packet contains fields that indicate to bBMS the operation,
file name, key, and also the name-value pairs for the database fields
involved in the access. For a “retrieve,” for example, the names of
fields for which data are desired would be present in the offered packet.
The pBMS returns the packet with the values filled in.

V. TRANSACTION SPECIFICATION LANGUAGE*

The Transaction Specification Language (TsL) is a high-level pro-
© gramming language that includes the C language as a proper subset.
The “non-C” features of TSL are intended to facilitate writing the
transactions of LM0s-2 and similar applications. In particular, trans-
actions written in TSL are easier to write, modify, maintain, and
understand than the same programs written in C.

The key features of TSL are as follows:
® A packet data type, and operators for manipulating packets.
® String operators (e.g., concatenation).
® An operator for pattern matching.
® Statements to facilitate the use of the DBMS.

In the following, we describe the “non-C” features of this version of
rsL. We assume that the reader is familiar with C and its conventions.”

* The Transaction Specification Language (TSL) was designed and implemented by
J. W. Hunt. This section was adopted from his TSL user’s manual.
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5.1 Declaration types

In addition to the basic C-declaration types, TSL provides three new
declaration types: packet, field, and view. Variables using the packet
declaration type name instances of the abstract data type discussed in
Section IV. The field declaration type is used to declare the names of
accessed packet fields. Aggregates of field names are declared using
the view declaration type.

5.2 Operators

Two binary operators are available in TSL that are not available in
C: the concatenation operator (//) and the regular expression operator
(matches). The language also provides an additional interpretation of
the “.” operator which is used in C to reference members of a structure.

5.2.1 Concatenation

The concatenation operator requires both operands to be pointers
to a null-terminated sequence of characters. The value of the expres-
sion

a//b

is a pointer to a null-terminated sequence of characters consisting of
the nonnull characters pointed to by a followed by the characters
pointed to by b. This operator is simply an abbreviation for the strcat
function of C.

5.2.2 Regular expression matching

Transaction programmers are often interested in finding out whether
a string is a representative of some set of strings. The matches operator
provides a general facility for doing just that. As with the concatenation
operator, the matches operator requires both operands to be pointers
to a null-terminated sequence of characters. The regular expression
(the second operand of the matches operator) is a shorthand for
specifying a set of strings. The value of the expression

a matches regx

is nonzero if the string pointed to by a is a member of the set of strings
specified by the regular expression regx.

The regular expressions recognized by TSL are similar to those used
in the UNIX text editor. That is, “.” matches any character, “$”
matches the end of a string, “[xyz]” matches “x”, “y”, or “2”, and so
on.

5.2.3 Referencing fields of a packet
Suppose pkt is a pointer to a packet and LRTN is a declared field
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name. The term
pkt.LRTN

represents the value of the LRTN field in the packet pkt. If the term
appears to the left of the assignment operator, the result is to change
the value of the LRTN field in pkt. For example,

pkt. LRTN = “210” // “3863000";

changes the value of the LRTN field to “2013863000.” If the term
pkt. LRTN appears to the right of the assignment operator, the result
is the value of LRTN, which is a pointer to the null-terminated
sequence of characters stored as the field value.

5.3 Statements

The data-type packet plays a central role in the code written by a
transaction programmer. For example, every transaction in LMOs-2
accepts a single input, a pointer to a packet. This packet is created by
the mask handler (see next section). Transaction programmers also
use packets to send information back and forth between other proc-
esses in the system. Thus, most of the “non-C” TsL statements provide
convenient mechanisms for manipulating the values stored in a packet.
In the following, examples from LMOs are used to help describe TsL
statements, but keep in mind that these statements are useful in any
application that must manipulate packets.

5.3.1 Creating a view for a database call

When retrieving information from a file using the DBMS (see Section
VIII), one is required to send DBMs a packet that has all of the fields
of the view to be retrieved in the packet. The pBMs forms the
intersection of the fields of the view corresponding to a record of the
file being queried and the fields in the packet, and returns the values
of the fields in this intersection. Therefore, the first time that a retrieve
request is made for any particular file, the transaction programmer
must make sure that all the relevant fields are in the packet that was
sent to DBMS. At worst, this would entail a separate statement to
initialize each field of the view to be retrieved.

The TSL statement
make pkt a uif view

changes the value of each field of the view uif in packet pkt to the null
string. If the packet is then used in a retrieve request t«: the DBMS, the
fields that were listed in the definition of view uif will be retrieved.

5.3.2 Copying the fields of a view
There are statements that permit transfer of fields of a given view
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from one packet to another and from a packet to and from temporary
storage.

5.3.3 A variant of the ‘switch’’ statement

In addition to the switch statement of C, TSL provides a similar
statement called rswich which allows the programmer to affect flow of
control based on the value of a null-terminated character string.

5.4 Experience with TSL

Transaction Specific Language has been used to code all of the
transactions for LM0s-2. There are 53 transactions, averaging 425 lines
of TsL code. While our evaluation is subjective, we feel that, in
comparison to the old assembly language transaction programs, and
even in comparison to a few transactions that had been written in
straight C, the TSL programs are smaller, more easily written, faster to
debug, and more readable. Furthermore, since the facilities of TSL are
so well suited to the programming of transactions, there has been no
significant loss of efficiency.

VI. MASK HANDLER*

The Loop Maintenance Operations System uses a fill-in-the-
blank approach for transaction entry. The terminal operator initiates
a transaction by first requesting the appropriate mask (for example,
“/FOR TE” requests the trouble-entry mask). The mask that is
displayed resembles a paper form: there are blanks to be filled in, and
“preprinted” labels. The labels are protected; that is, the operator
cannot overtype them. After the operator fills in the blanks, he or she
submits the mask by pressing the SEND key. If the transaction has a
result to be displayed, another mask (possibly with more blanks to be
filled in) is displayed. Otherwise, the operator can clear the original
mask and reuse it.

As we said in Section IV, LM0s-2 uses a standard data format, the
packet, internally. The mask handler, thus, has two translation duties:
When a mask is entered, it gets the data from the terminal in a format
native to the terminal (a Teletype® TTY 40/4 or an IBM 3270 terminal)
and builds a packet. On output it takes a packet and builds a mask,
again in the format native to the terminal. Not only does this trans-
lation hide messy details of the terminal from the rest of the system,
but it also allows different terminals to be used without affecting any
module other than the mask handler itself. In fact, we have a version
of the mask handler that works on simple time-sharing terminals.

* The mask handler was designed and implemented by D. A. Rosenthal.
* Registered trademark of Teletype Corporation.
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These terminals are inefficient for production use, but they are inval-
uable for debugging. Once a transaction works with the time-sharing
terminal, it also works with the Teletype 40/4 terminal, because its
interface with the mask handler is absolutely identical in both cases.

Recall that a packet consists of named fields. When the data comes
in from the terminal, the fields are not named—they are simply
sequenced in the same order that they were in on the mask. To build
a packet, then, the mask handler must know what transaction’s mask
is on the screen, and, for that mask, what the names of the fields are.
This information appears in a mask table. The mask table also specifies
display attributes for each field that determine how the mask is to
appear on the screen. This information is used when the mask is
output.

The mask table contains one specification for each mask. The
following is a sample mask specification:

_TE CLEAR
1 1 pam “TE”
skip “TN”
{16} unm TN
1 30 skip “RSA
{3} uam RSA
4 1 skip “DESCRIPTION”

{30} uam DESCP.

The first line names the mask “_TE” and specifies that the screen
is to be cleared before the mask is displayed. The underscore before
“TE” means that this mask is to be used in response to a form request
(“/FOR TE”) rather than for entry of the TE transaction (which
probably will follow the form request, as soon as the form has been
filled out).

Each line of the rest of the specification describes a mask field (not
to be confused with a packet field). Columns 2 and 3 are used for x-
and y-coordinates or for horizontal distances. Column 4 contains screen
attributes. Column 5 contains either a literal to be displayed or the
name of a packet field to receive some data.

The second line, then, specifies that the letters “TE” are to appear
in row 1 of the mask, in positions 2 and 3. Position 1 is reserved for the
attribute, “pam,” which specifies that the letters “TE” are to be
protected and returned when the mask is sent. The third line has no
coordinates, so the letters “TN” go in the next available positions,
which are 5 and 6. Position 4 holds the attribute, “skip” which means
that the letters are to be displayed but not returned to the computer.
The fourth line specifies an unprotected field 16 positions long, so it
occupies positions 8 through 23. When the mask is sent, data typed
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into this field by the operator will be inserted into the packet under
the name TN. The remaining lines specify labels and unprotected
fields for RSA and DESCP. When displayed, the “_TE” mask would
appear like this:

TE TN RSA

DESCRIPTION.
After the operator fills out the mask, it might look like this:
TE TN 2013861234 RSA 26

DESCRIPTION.

When the SEND key is pressed, the screen is read and a buffer
consisting of terminal-specific control codes and data is sent to the
mask handler. It sees that the first field is “TE” and looks in the mask
table for a specification of the TE mask (which is similar to the “__TE”
mask described earlier). It builds a packet that looks (conceptually)
like this:

XACT TE

DVC Tié

TN 2013861234
RSA  26.

The first two fields, XACT and DVC, were not specified in the mask
table, but are standard fields used by the mask handler for the
transaction name and terminal device name, respectively. The device
name is used later to send data back to the same terminal that entered
this mask.

Since the value of XACT field is “TE,” the mask handler sends the
packet to the TE program (written in TSL), where the processing
specific to the TE transaction is performed.

It so happens that the TE transaction ends by displaying a TR mask
with information about the customer whose telephone number is 201-
386-1234. To display this mask, the TSL program changes the value of
the XACT field to “TR” in the packet:

XACT TR

DVC Tié

TN 2013861234
RSA  26.
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It then reinvokes the mask handler by calling “invoke™: (see Section
Iv.)

invoke(“MASK”, pkt, NOWAIT);.

The mask handler finds the specification for the TR mask in the
mask table, uses the data in the packet to build a buffer containing the
appropriate terminal-specific control codes, and sends the buffer to
device T16. Processing of this transaction then terminates.

The operator, meanwhile, has observed a delay of a few seconds
after pressing SEND, and then sees the TR mask with the customer’s
information that he or she requested. After adding some information
by filling in blanks on the TR form (description of the trouble, time
when the customer will be at home, etc.), the operator presses SEND
again, and the cycle repeats—this time for a TR transaction.

VIl. VALIDATOR

The data validator® takes a single packet, subjects it to various tests
specified in a special-purpose validation language, and returns the
same packet augmented with an error code for each test that failed. In
LMOS, the validator is called by the mask handler once for each
incoming mask. If an error is detected, the code is translated to a short
English message by table lookup, the message is displayed at the
bottom of the CRT screen, and the transaction is terminated. If the
data has no errors, the packet is passed on to the appropriate trans-
action-processing component. Thus, each transaction programmer
may assume that the input is a valid packet.

By convention, the field VALCODE is used by the validator to
return error codes. So, for example, if the validator receives the packet

NAME Mary Smith
ADDR 123 Main St
TN 2913861234

it might return the packet

NAME Mary Smith
ADDR 123 Main St
TN 2913861234
VALCODE tnerr.

The code “tnerr” indicates that the value of the TN field failed its
validation test (291 is an invalid area code).

The mask handler, upon receiving the packet returned by the
validator, determines whether any errors were detected by checking
for the presence of the VALCODE field. In this example, it translates
the code “tnerr” to, say, “Invalid area code,” and displays the message.
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Presumably, the operator will correct the TN field on the mask (the
old mask values would still be on the screen) and then press the SEND
key. This re-entered transaction would be an entirely new transaction;
the system would not, and need not, remember the previous, failed
attempt to enter the transaction.

The validation criteria for a particular application (e.g., LMOS) are
specified in a table which configures the validator for that application.
The configuration process involves compiling the validation table with
the validation compiler, which produces intermediate code that is
interpreted by the validation machine at execution time. Fig. 1 illus-
trates this architecture.

What makes the validator general-purpose is that all application
knowledge is contained in the validation table, so the validator may be
used for different applications just by changing the table.

The validation table consists of two columns. The first is an expres-
sion, involving field names, number and string constants, and opera-
tors, that defines a validation condition. The second column contains
an error code that is generated if the validation condition is false. For
example:

NAME % “[A-Za-z] {4,25}" badname
ADDR !=*” badaddr
SAL > 10000 & SAL < 75000 badsal.

The first condition requires the value of the NAME field to match
the pattern within quotes. The pattern matches if the value consists of
between 4 and 25 alphabetic characters. If it does not match, the error
code “badname” is generated. The second condition just requires the
ADDR field to be present (that is, not equal to the null string). The
third condition requires the value of the SAL field to be in the range
10,000 to 75,000—supposedly, anything else is an unreasonable salary.

In the case of the last condition, it would be better to check that

VALIDATION VALIDATION INTERMEDIATE
TABLE COMPILER CODE

CONFIGURATION TIME
EXECUTION TIME

VALIDATION
MACHINE

INPUT PACKET WITH
PACKET ERROR CODES

MASK

CRT=—" L ANDLER

Fig. 1—Validator architecture.
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Fig. 2—ANSI/X3/SPARC database architecture.

SAL is numeric before checking its range. To do this, one may indent
a condition under another condition:

SAL % “[0-9]{1,6}" badsall
SAL > 10000 & SAL < 75000 badsal2.

Now error code “badsall” is generated if SAL is not from 1 to 6
digits. The indented range check is performed only if the first test
passes; if SAL is out of range, error code “badsal2” is generated.

About two dozen operators and built-in functions are provided to
code validation conditions. The reader is referred to Ref. 3 for further
details.

Vill. DATABASE MANAGEMENT SYSTEM*

The pBMS is packaged as a component and communicates with
other components via packets, as illustrated in the example of Section
IV. The packet interface is natural, as nearly all the data in the
transaction processor’s database are fielded. Other properties of the
pBMS that are critical to its usefulness are its flexibility and efficiency.
These aspects are treated in this section. The DBMS design is described
in detail in Ref. 4.

8.1 Structural model

The pBMS is an implementation of the three-level ANSI/X3/SPARC
model.® (See Fig. 2.) There is an internal view of the data, expressed
in terms of constructs that naturally describe the layout of data on the
storage medium: hash files, linked lists, trees, etc. The conceptual view
provides a canonical application and an implementation-independent
model of the data of the enterprise. The external views provide the
interfaces to the application programs. They may be structurally
different from each other and from the conceptual view, and they may

* The pBMs was designed by T. C. Chiang and implemented by Chiang and A.
Weinstein.
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change over time with the applications. The only requirement is that
it must be possible to map them all from the conceptual view. Of
course, one of the external views may coincide with the conceptual
view.

The ability to define multiple external views is nice—and in one case
we found it essential. The first version of the DBMs was retrofitted into
existing front-end software that had had only a low-level filing system.
That pBMs provided a relational “new view” of a major file, with
additional fields, for several new transactions. It was necessary to do
this without changing the preponderance of existing software. There-
fore, an “old view” was provided for the old transactions. The old view
duplicates the data format presented by the filing system. The retrofit
was a success. The system is now running at more than a hundred
LMOS sites.

The LM0s-2 DBMS presents several external views as a matter of
convenience for different types of transactions. Another advantage of
the multilevel model is that the internal representation of data can be
changed relatively easily without impacting the external views. It is
just a matter of changing mappings. In fact, fairly extensive internal
database redesign will be done eventually for LMOs-2.

8.2 The entity-relationship model

At each level in the ANSI/X3/SPARC structure there is a data
model. The external views may support several data models, as re-
quired by the application: relational, hierarchical, ad hoc, or whatever.
We use the Entity-Relationship (E-R) model at the conceptual level.

In the E-R model there are “things,” and relationships between
things. The entities are represented by entries in a file. Files are
connected by named “associations” in our version of E-r. Each instance
of an association is a relationship (implemented via pointers or physical
contiguity) between one or more items in one file and one or more in
the associated file. The associations have properties, including cardi-
nality (1-to-1, one-to-many, many-to-many), and update constraints.

The associations provide an easy way to express the update rela-
tionships that are to be maintained automatically by the pBMS. They
provide a mechanism for navigation through the database. What is of
most benefit is that they allow information to be reflected to the user
about relationships between items in separate files. This makes signif-
icant performance gains possible. Data Manipulation Language com-
mands take association name as an argument, and allow the pBMs to
use information picked up in previous database accesses to eliminate
index searches and, in some cases, to satisfy a data request without
going to disk.

In a system like LMOS, where there are many interfile relationships,
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the savings made possible by proper use of the associations may be
significant. Analysis of busy-hour data for LMos shows that nearly 50
percent fewer disk accesses will be required using the association data
than would be necessary for a pure relational model in which each file
were accessed independently. (In the old LMos, transactions had direct
access to pointers everywhere, the system was tuned for performance
over a number of years, and there was no data model. Our problem
has been to fit a semantically consistent data model to LM0s without
sacrificing performance. Qur E-R-based system and the old LMOS are
equivalent in the number of disk accesses required.)

8.2 Scope of application

The Lmos-2 front end is a medium-sized record-based transaction
processing system. The database is in excess of 300 megabytes, orga-
nized into 14 external files with 10 associations. External records range
in size from a few tens to a few hundred bytes. Internal records may be
thousands of bytes long.

The pBMS and the filing system (described below) run on version 4.0
of the UNIX operating system, modified somewhat to meet the per-
formance objectives.

1X. THE C FILING SYSTEM*

The UNIX file system is a flexible and useful tool. It is not particu-
larly well suited, however, to production transaction processing sys-
tems for which efficiency, protection of database consistency, and
quick recovery from system crashes are critically important.

Therefore, we have developed a new filing system, the C filing
system (cFs). This is a component, interfacing with DBMs and other
subsystems requiring access to data in secondary storage. The CFs
internal files are stored contiguously, minimizing the number of disk
accesses required. Data are transferred across the CFs interface using
our version 4.0 UNIX operating system’s shared-memory facilities,
another factor that improves efficiency. Multiple copies of cFs may be
run, so that disk 1/0 may be overlapped.

9.1 The role of CFS in protecting database consistency

Database consistency is defined by a possibly large set of integrity
constraints that often, in a complex system, are not formally expressed.
The closest we get to a comprehensive statement of them is the set of
audit/edit programs that is run against the database to find and correct
inconsistencies. Inconsistencies may take the form of incorrect pointer

* The C Filing System was designed and implemented by D. H. Carter.
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relationships, incorrect assignment status, failure of sums to balance,
etc.

Because database updates are done one at a time, and because
typically there are relationships between updates, the database cannot
be consistent at every point in time. We can and do, however, identify
groups of updates such that if the database is consistent before the
group, it will also be consistent after all the updates have been made.
These groups correspond to the transactions processed by the system.
We can define the transaction, in fact, as the unit of database consist-
ency. Care must be taken by the transaction designer to ensure that
this is indeed the case.

Database inconsistency can arise in the following ways:

(i) In the event of a software crash, transactions may be left partly
done. Inconsistency results if some, but not all, of the updates for a
transaction are implemented.

(it) If a database must be reconstructed, updates associated with
transactions that had not been completed as of the catastrophe cannot
be redone, for the same reason.

(iiz) If transactions are run in parallel, with their database accesses
interleaved, database states that could not have been developed by
any serial execution of transactions may arise. These may be incon-
sistent. If we can guarantee that all database states are equivalent to
states that would be produced by some serial execution of transactions,
we achieve database consistency.

The cFs provides capability to recover from hardware and software
failures and preserves consistency in doing so. It also provides concur-
rency control: data accesses of transactions executing in parallel are
interleaved in such a way that serializability is guaranteed.

9.1.1 Concurrency control mechanism

Locks are applied at the block level by cFs. (The block is the unit of
physical data access.) The cFs has “share” locks, which allow other
readers, and “exclusive” locks, used when writing. Locks are applied
when needed, on behalf of a transaction, and are held until the
transaction is complete. This locking policy guarantees serializable
transactions.

9.1.2 Logging and recovery

To protect database consistency in the face of system hardware and
software failures, cFs delays updating the “real” copy of the file until
the transaction signals, via a “commit” message, that it has issued all
its update requests and is ready to have them implemented. Until the
commit signal is received, updates are held in cFs buffers, tagged by
transaction ID. Upon receiving “commit,” the logging subsystem gath-
ers all updates for the transaction into a large buffer and writes the
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buffer to the logging area on disk. If this atomic write is successful, the
transaction is considered completed. Writes to the individual files must
still be made, and locks are held until these are complete.

The overhead of this logging approach is minimal: one additional
write per transaction. Recovery is simple if there has been no data-
base damage. Transactions which have not committed have written
nothing to the database. They simply disappear. Transactions which
have committed but have not completed disk writes must have them
re-applied from the logging area. The recovery process takes less than
five minutes.

The strategy for recovering damaged databases involves periodic
full copy of the database—daily for LMos—and logging to tape of all
committed updates. The database is reconstructed by applying the log
tapes to the most recent backup copy. This may take an hour or two
depending upon time elapsed since the backup copy was made.

X. EARLY FIELD EXPERIENCE

The Lm0s-2 system, built with the components described in the
preceding sections, went into field trial on October 16, 1980, with
Michigan Bell Telephone Company. Development of the application
and the components had proceeded in parallel over the preceding 15
months. The staffing was split roughly two-to-one between component
and application development.

The development experience had met our expectations. With vali-
dation, mask handling, and database services provided by special
components, and with the high-level TsL language and the simple
packet interface, transactions were small, easy to write, and easy to
debug. The reduction in lines of source was 7 to 1. Programmers who
had experience implementing and maintaining the LMOs-1 transactions
found the difference particularly striking. Even inexperienced pro-
grammers were able to build working transactions in a very short
period of time. One, in his first programming assignment, wrote six
transactions in four months.

Success or failure, however, would be determined by behavior of the
system in the field. How would LMOs-2 compare in reliability and
performance with its predecessor?

The reliability question was answered quickly and positively. On the
first day of operation the system suffered five “fatals” (i.e., errors
causing interruption of processing.) By the end of the first week, it was
getting through an entire day without a fatal; by the end of the first
month, its availability surpassed that of some of Michigan Bell Tele-
phone Company’s LM0s-1 systems. This compared favorably with the
LMos-1 trial experience, in which months passed before the system
could process through the day without interruption.

LMOS SOFTWARE 1193



Problems that did surface in LM0s-2 were almost always fixed within
a day, sometimes within hours. The ability to find and fix problems
quickly is due at least in part to the component-based system design.

As we indicated earlier in the article, performance of LM0s-2 was a
major concern. Our objective was to add flexibility to the system with
minimal sacrifice of performance. At the time the trial began, the load
presented by the application—a new system serving a single repair
bureau—was small: on the order of 300 to 500 trouble processing
transactions in the busy hour. Laboratory load testing showed the
system to be capable of processing 800 to 1000 transactions per hour
at that time. The objective—the standard set by LMo0s-1—was 4000
transactions per hour. In the seven months that have elapsed between
the field trial cutover and the time of this writing, significant efficiency
improvements have been made. The LmM0s-2 system now processes
more than 4000 transactions per hour in load tests. (The trial appli-
cation has grown during the same interval and now presents a busy-
hour load of 2800 transactions per hour.) Performance of LM0s-2 is
approximately as good now as that of its predecessor.

The flexibility of LM0s-2 has served us well in management of the
project and of the trial. One example: Much care was taken to ensure
that in the early days of the trial the LM0s-2 and Lmos-1 databases
were compatible, so that in the event of user-affecting problems at the
trial site it would be possible to convert back to an LMos-1 system
within minutes. (This option was used several times: it maintained
LMOS availability and gave us additional time to solve problems.)

To add new features to LM0s-2, a database conversion was performed
in May and new versions were introduced for about 30 modules. Quick
convertibility was given up at this point.

It is obviously desirable to give new standard installations of LMOs-
2 a similar initial period during which reversion to LM0s-1 is possible.
One way of doing that is to maintain the first versions of all the
software used in the trial and use them in initial LM0s-2 installations.
Fortunately, the generality of our component interface allows us to
install all of the latest versions, except for the pBMS, atop the LM0Os-1
database. The resulting system is functionally equivalent to LM0s-1
and can be backed out to it quickly. The new LMo0s-2 features become
available when the data conversion is performed and the DBMS re-
placed. We have the best of both worlds: easy convertibility in the
early days of an installation, without the need to maintain two versions
of the software.

XI. CONCLUSION

We have the beginnings of a catalog of components out of which
“Lmos-like” transaction processing systems can be built. The compo-
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nents include a mask handler, a data validator, a database management
system, and a filing system. There is a standard interface—packets—
between components, and a language for programming transactions
that fits the component model. Because the set of systems which we
wish to build includes some (like LMos) that place a premium on
performance, availability, and integrity of the database, the database
manager and filing system are designed with efficiency and robustness,
as well as flexibility, in mind.

The first system to be built from our components is the LMOs-2 FE,
which has been field tested since October, 1980, with very promising
results.
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