Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 6, July-August 1982
Printed in U.S.A.

Automated Repair Service Bureau:

Cable Repair Administrative System

By P. S. BOGGS and J. R. MASHEY
(Manuscript received July 13, 1981)

The Cable Repair Administrative System (CRAS) is a recent addi-
tion to the Automated Repair Service Bureau (ARSB) that helps extend
ARSB usage beyond Repair Service Bureaus into the Outside Plant
Maintenance organization. The cRAS system helps this organization
to schedule repair forces efficiently and to locate the trouble-prone
outside plant facilities that are most in need of rehabilitation. This
paper includes an analysis of the unusual features of CRAS, and
comments on its development under rapidly changing circumstances.

I. INTRODUCTION

The CRAS system helps Outside Plant Maintenance (0sPM) managers
to identify people and plant items that need attention on a priority
basis. For example, CRAS helps managers schedule repair forces effi-
ciently and locate organizational trouble spots in the complex process
of osP repair. The cRAs system also helps locate those cables or
terminals that, over periods of time, cause an excessive number of
customer troubles or especially high repair costs. Thus, repair money
can be directed where it is most effective.

This article gives the background for cras and describes its goals,
usage, and architecture. It also comments on the design approach used,
unusual features included, and lessons learned from its development.

Il. HISTORY AND STATUS

For several years, both AT&T and the Bell Operating Companies
(Bocs) wanted a system that combined and improved on the cable
trouble analysis features of the Computerized Cable Upkeep Analysis
Program (ccuap) and the manual Cable Repair Force Management

1275

Plan (crRFMP). The ccuaP system was designed to help determine the
nature and location of cable troubles, but lacked flexibility. Also, it
could not accurately account for the hours worked on troubles because
self-reporting was used, rather than payroll records. Trouble counts
were also provided through self-reporting, rather than by obtaining
the counts from LmM0s. The manual cRFMP was used to forecast trouble
loads and the repair force needed to handle those loads. It required a
large manual effort to collect and analyze data, and had problems like
those of ccUAP in providing accuracy. These major limitations are
overcome in CRAS through the cRAs/LM0s/Mechanized Time Report-
ing interfaces described later. The goal of crRAS was to replace the
“pieces” with a complete, integrated system. Thus, CRAS provides a
complete cable trouble and expense data collection system that has
enough detailed data to associate “hours spent” with specific type of
trouble, specific part of plant, and specific work forces.

After initial functional requirements were issued in mid-1978, the
New England Telephone and Telegraph Company was chosen to field
test the system. Some work on crAS architecture was done during the
second half of 1978. In January 1979, software development started,
with six software developers, a systems engineer, and a human per-
formance engineer. Given strong pressure to build crAs quickly, an
ambitious development schedule was used to allow the field trial to
begin July, 1979; writing and testing much of the software was sched-
uled for later phases of the trial. The trial was completed successfully
in July, 1980, with users who were quite happy at that point. The
system’s economics appeared sound, and it was well documented and
well packaged. The first standard version of cRAs was installed at
Southwestern Bell Telephone Company in February, 1981.

This brief history shows that it was possible to build a usable system
in a short time span, i.e., two years from starting to write code until a
standard installation. Following a description of CRAS and its environ-
ment, later sections offer a retrospective on the development process,
for it did not happen as smoothly as the speed of implementation
might indicate.

lll. BACKGROUND
3.1 Customer troubles and cable trouble tickets

For a Repair Service Bureau (rsB), the customer trouble report is
the entity that is tracked (by LMos) and later analyzed (by TREAT).
For an osp maintenance organization, the corresponding entity is the
Cable Trouble Ticket (cTT), which is generally a more complex entity
than a customer trouble. For example, suppose that a problem causes
two customers’ cable pairs to be crossed. The repair of this problem is
considered to be one case of work, even though it involves several

1276 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

customers, and may even involve work at several locations. In addition,
more organizations are likely to be involved in the repair of an osp
problem. Not only must an RSB handle the problem in the first place,
but sometimes station repair craft persons may be dispatched, and
then determine that osP repair craft must become involved. As an
extreme, but real example, if a contractor cuts a cable, tens or hundreds
of customers may be out of service, and many people may work on its
repair. The repair work would still be described in one CTT.

The RSB is primarily organized to handle customer troubles, which
exist because they affect customer service. The osPM organization
handles this type of work when cable is involved, tracking each piece
of work as a Service Affecting (sa) cTT. Unlike the RSB, the 0sPM
organization handles an additional type of work, termed Nonservice
Affecting (Nsa) or routine. The NsA work should be done sometime,
even though it does not immediately affect service. Sometimes a craft
person may do enough work to restore service, create a temporary
closure that will need later work, then go on to the next sa problem.
In other cases, people notice problems in cables or terminals that have
not been reported as customer troubles, but are likely to cause prob-
lems later. In any case, the 0SPM organization maintains a list of such
“programmable work” that can be used to fill slack periods. As shown
in Fig. 1, a complete sa CTT needs the following data:

(i) Data from each associated customer trouble, such as the num-
ber of trouble reports, circuit number, cable, pair, etc., all of which
CRAS obtains automatically from LMos. Before CRAS, these data were
gathered manually from LMOS reports.

(i) Force data associated with the cTT, such as hours worked,
account charged (such as Aerial Cable or Underground), craft persons
who did the work, what day(s) they worked, etc. The crAas system
obtains these data automatically from the local Mechanized Time
Reporting (MTR) system. Before CRas, these data were gathered man-
ually via discussions with the craft person.

SA CTT NSA CTT
(MASK ENTRY) (MASK ENTRY)
HOURS HOURS
CUSTOMER (MTR) (MTR)
TROUBLE(S)
(LMOS) HOURS HOURS
(MTR) (MTR)
. . L]
. [] L]

L] . L]

Fig. 1—Components of sa and NSA CTTs.

CABLE REPAIR ADMINISTRATION 1277

(Zit) Data manually entered to complete the cTT, in¢luding trouble
location, source of the trouble report, type of work, repair performed,
etc. These data are obtained from the craft person.

An NsA cTT needs only items (i) and (iiZ), since it has no customer
troubles. The cRAS combines these pieces by a key that consists of the
Cable Trouble Ticket Number (cTTN) and a Wire Center (wc) identi-
fication. Much of the crAs design exists to assure that these different
pieces of data are matched together, and that errors cause as few
problems as possible.

3.2 Relationship to LCAMOS

The cras system is one module of three that will together comprise
the Loop Cable Administration and Maintenance Operations System
(Lcamos). In the future, the Lcamos tracker module will be used to (z)
track individual troubles (cTTs) that are osp-related, (ii) correlate
multiple individual troubles into a related trouble and track this item
(as a crr), and (iii) transmit data on completed cTTs to cras for
further analysis.

In addition, the predictor module of Lcamos will be used to analyze
switching machine messages and predict likely cable problems before
they are reported, i.e., it will help identify NsA troubles before they
turn into sA troubles.

Although cras is the “back end” of the LcAMOS system, it is being
introduced first, for several reasons:

(i) It improves, integrates, and replaces several existing systems
or manual plans, i.e., cCUAP and CRFMP.

(it) Its financial benefits are high and quickly identifiable, because
it eliminates a great deal of clerical effort. Benefits from improved
management of OSP repair are also expected, although they are less
easy to quantify.

(iti) The rLcamos tracker will be built on LMos front end (FE)
computers, whose software has been evolving rapidly over the last few
years [see Ref. 1, part VI]. The software is now flexible enough to
support the effective construction of the tracker.

IV. WORK FLOW AND INPUT FOR CRAS
4.1 Workflow with LMOS and CRAS

In the LmOs environment, a trouble report is received at a central
location by a Repair Service Attendant (Rsa) who inputs the report to
LMoOS through a cathode ray tube (crT) terminal. The trouble report
becomes part of the Basic Output Report (BoR) that is transmitted to
the rsB that is responsible for coordinating maintenance on the af-
fected customer line. The BOR also contains information on past
troubles on the affected line, commitment time, a number at which

1278 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

the customer can be reached, and the results of an automatic verifi-
cation test on the line. The trouble is screened at the RSB and routed
to the work center that should take responsibility for correcting the
problem. The 0sP repair craft are managed from a center that may be
co-located with an RSB or may be a separate center that serves several
rsBs. This center is currently called a Maintenance Center (Mc). If the
trouble should be routed to the Mc, the RSB sends a BOR to the Mc,
using the LMos Request Basic Output Report (RBOR) transaction, and
a Cable Trouble Ticket Number (cTTN) is assigned to it. After service
has been restored by the mMc, the trouble must be removed from LMOS
and the cTT data supplied to CRAS.

In the 1.MOS environment, a customer trouble report is closed out by
a Final Status Transaction (FST) at the CRT terminal. In the LMos/
CRAS environment, if an 0sP trouble is being closed, the person who
closes the trouble is automatically reminded that cTT information is
required. A Service-Affecting (scTT) mask may be requested and
displayed on the cRT to receive information on the location and cause
of the trouble.

The close-out procedure described has the advantage of encouraging
individuals in work groups other than 0spP maintenance to enter the
necessary CTT information in the cRAs/LMos database. This is impor-
tant because not all 0sp repair work is actually done by ospM forces,
and yet, 0SPM management needs to know where such repair work is
being done to permit effective analysis.

Information on routine or NSA problems is also supplied to CRAS.
The data entry procedure is similar to that for sA troubles, except an
NSA (NcTT) mask is requested and displayed in place of the scTT mask.

4.2 Interaction of CRAS and MTR

Each Boc has built a computerized time reporting system that
collects all data on time charged to various work activities, then
supplies that data for payroll computation and for other systems.
Mechanized Time Reporting (MTR) is the generic name for these time
reporting systems, which differ from company to company. Mecha-
nized Time Reporting supplies the hours expended on various osp
activities to CRAS, to ensure accurate records with minimal input.

All craft technicians, including members of installation, business,
coin and residence repair, construction, and other groups charging
time to 0SP repair (“R”) accounts, must have a cTTN for each trouble
case. All such hours are accumulated from craft persons’ time reports
and supplied to the MTR system.

The information derived from MTR provides data on the number of
trouble cases and on the number of hours expended per trouble case.

Several LMOS/MTR/CRAS edit procedures provide users with discrep-

CABLE REPAIR ADMINISTRATION 1279

ancy reports that identify most input errors. These reports enable the
user to correct errors before they are propagated through the system
and to prevent similar input errors from being repeated.

V. CRAS ARCHITECTURE AND DATA FLOWS
5.1 The LMOS front end and host computers

Figures 2 and 3 display the hardware architecture of cRAs and major
data flows. Both Mcs and RsSBs use CRTS connected to an LMOS FE
computer, which handles some transactions directly (such as the FsT)
and passes others through to the LMos host. The crRaAs sA and NSA cTT
entry transactions are of the latter type. Each adds one record to the
corresponding CRAS host database (sacTT and NsacTT). Host batch
programs obtain customer trouble data from the Lm0s Trouble History
(TH) database,” and through several steps, attach their data to the
corresponding sA CTT records. The MTR data are read and processed

on the host also.
BOR, RBOR, ETC. > %

INFORMATION LMOS
MANAGEMENT PRINTER
SYSTEM LINK

SA
NSA
WORK
LMOS
FE PDP* 11/70

NCTT, SCTT

u;%% FST, EST, nsop'—_‘%

LMOS HOST-370

e
MERGE IS
PART OF
PROGRAM

TROUBLE
HISTORY

RJE LINK TO

DIGITAL EQUIPMENT CORPORATION
CRAS VAX* 11/780

*REGISTERED TRADEMARK OF l

NA

Fig. 2—The cras use of FE and host computers.

1280 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

CRAS AC-VAX 11/780 § ¥~ RJE LINK TO LMOS HOST

__H.

MMC

ERRMTR

REPORT
GENERATOR
",fﬂ”” CRAS
ANALYSIS
CENTER
DEFERRED)
WORK

Fig. 3—The cras administrative computer.

ERRUNK ERRMMC |

5.2 The CRAS administrative computer

All the data from the previous stage is passed across a Remote Job
Entry (rJE) link to another system, called the cRAS Administrative
Computer (Ac). See Fig. 3. The ac is a vax-11/780 that runs under the
UNIX* operating system. Most of the CRAS capabilities are provided
by the ac. These include matching of MTR data to cTT data, production
of all reports, control of all cras host jobs, on-line documentation
support, and all system administration. The Ac is accessed by dial-up
terminals, most frequently by Mc analysts, but also by other managers
and clerks.

Figure 3 shows the databases used on the Ac. The cTT database has
“good” cTTs, both sA and Nsa, from which most trouble analysis
reports are generated. Here, a “good” cTT at least possesses a legal
wire center number.

The UNTRANS database includes cTTs that are “stuck” on the host,
either because they contain illegal wire center numbers or because
they are sA CTTs waiting to accumulate LMOS customer troubles. It also
includes L.MOS customer troubles not yet matched to cTTs. If many
unmatched LMOS troubles are shown, cTTs are being entered incor-
rectly, very late, or not at all. The UNTRANS database contains images
of two virtual databases (SCTUNK and NCTUNK) and a real one (TH

* Trademark of Bell Telephone Laboratories.

CABLE REPAIR ADMINISTRATION 1281

EXTRACT), all of whose primary copies reside on the host. The data are
copied to the Ac to aid the error reporting and correction process.

The MTR database contains hours data not yet matched into the cTT
database. This data recirculates until it is matched correctly or ages
enough that it is unlikely to ever match. The crAs system aids
matching by assuming that a cTTN is correct, but that someone
specified a wire center found within the organizational boundary, but
not the correct wire center. For some reason, this error turned out to
be the most common one found, not the more expectable ones, such as
cTTN digit transposition or omission.

The mMmc database contains 0SPM employees’ payroll data that
cannot be attached to cTTs. These include items like vacation, sick
time, nonpaid absence, and any other data that are necessary to have
a complete picture of 0SPM employee’s use of time.

Several databases (ERROTH, ERRUNK, and ERRMMC) hold MTR data
known to be in error, categorized in ways to identify the sources of
error. For example, CRAS maintains lists of organizational responsibility
codes whose time records should be examined. If a time record appears
that contains such a code, it is saved, even if it contains an unknown
wire center or an improper CTTN. This assures the 0sPM manager that
even incorrect data entry by any relevant organization can be detected.

The cras system uses lists of employees, organizations, and wire
center numbers to scan MTR data and save relevant records. Anything
that does not match one of these lists is discarded immediately. Some
spurious matches occur from data entered by parts of a Boc that do
not yet have cras. These are kept long enough to make sure that the
tables are correct, then they are discarded also.

5.3 Design commentary

The cras architecture is more complex than one might wish. Some
of the complex matching procedures are only temporary, because they
will be eliminated with the arrival of the LcaAmos tracker (Section 3.2).
The Ac database complexity arises from trying to make sense of data
that arrives in no guaranteed order, and that may have errors that
cannot be mechanically corrected. The cras system did not originally
support the error databases. These databases seldom contain much
data, so that people often do not bother using fix-up procedures to
empty them. However, they must exist, if only to permit detection of
consistent sources of errors, and to provide confidence that time
records are being saved properly.

A host-only architecture was kept as an alternative until late in
the design process. The separate AC design was chosen for several
reasons:

() It permitted a faster schedule, since the UNIX system’s tool

1282 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

kit and environment fit the problem well. Database requirements fit
the UNIX system’s hierarchical file system well. The low ratio of
updates-to-accesses permitted simple approaches to reliability that fit
into a standard UNIX environment. For example, in any given day,
only 2-4 percent of the database files are likely to be updated.

(ii) It offered the flexibility of the UNIX system’s tools, which was
necessary to survive expected changes in requirements.

(iii) Rough economic estimates did not clearly favor either ap-
proach over the other.

VI. OBJECTIVES AND OUTPUTS OF CRAS
6.1 Objectives

Many systems exist mainly to keep an accurate, up-to-date database
from which any record can rapidly be retrieved. On the other hand,
CRAS is a decision support system, whose value lies not in supplying
records of data for immediate use, but in extracting relevant patterns
from masses of data to support effective decisions, e.g., by ranking
areas of plant by maintenance costs. It does a better job when it
provides the least output to isolate problems. The objective of CRAS is
to have managers use this information to improve service results,
ensure good performance, and reduce cost.

6.2 The CRAS reports

The cras system provides about 40 reports, split into the five
categories described below.

6.2.1 Outside plant trouble analysis reports

The cras osP trouble analysis reports are directed at the following:
(i) Identification of locations with high customer report rates.
(it) Identification of areas with high maintenance costs.
(iii) Identification of all sA and NsA 0sP troubles by geographic
location, type of trouble, type of work, and average clearance rate.
(iv) Identification, by work group, of average time-to-restore ser-
vice.

6.2.2 Force management analysis reports

The cras force management reports are designed to provide mea-
surements of such things as:

(i) Individual craft performance for the osp maintenance organi-
zation in terms of hours expended per cable trouble case, percentage
of trouble found, and types of work accomplished.

(i) Performance results in terms of hours per trouble report by all
groups—OSP maintenance, construction, business, coin and residence
repair, installation, or others charging time to osp “R” accounts.

CABLE REPAIR ADMINISTRATION 1283

(iif) Identification of hours, including overtime, and cases where
two or more people worked on the same trouble assignment.

(iv) Identification of hours expended and resultant performance by
repair category and report source.

6.2.3 Deferred work reports

Deferred work is a listing of NsaA tasks that have been identified or
started but have not yet been completed. These tasks can be the result
of partially completed assignments, such as temporary closures, ter-
minal replacements, etc., or potential problems that have been noticed
by Boc employees. The cras deferred work reports are designed to
provide the following:

(i) A temporary closure log that summarizes temporary closure
activities for a given period of time, usually one month.

(ii) A listing of NsA maintenance tasks that can be completed on a
scheduled basis.

6.2.4 Budget reports

This category of reports assists management in budgeting and sched-
uling tasks by providing (i) a budget report that provides an analysis
of the hours expended, by type of work, and (if) a report that allows
managers to determine work schedules by analyzing work loads in
terms of days of the week and times of day.

6.2.5 Administrative reports

The crAs administrative reports are used to monitor and correct
databases. They display the following types of information:

(i) Database completion summary, which shows the level of da-
tabase completeness, i.e., what fraction of the cTTs have acquired MTR
hours and LMoOs trouble records.

(if) Missing geographic identifiers (low-level identifiers, which
must be added to cTTs by map lookups, and sometimes must be added
much later than original cTT entry time).

(iii) Incomplete cTTs and unmatched LMoOS troubles, used for da-
tabase fixup.

(iv) Invalid tickets, i.e., those whose data are correct according to
LMOS or MTR, but that contain errors noticeable to crRAs, which has
tighter error checking.

(v) Miscellaneous administrative databases, such as employee lists,
organizational hierarchies, etc.

(vi) The LMOs host run summary, which shows data flows between
LMOS host and the Ac.

1284 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

6.2.6 Miscellaneous features

The reports are all implemented as shell procedures, which use both
existing tools (especially sort, awk for report computation, and nroff
for formating) and those newly written for cras. A powerful report
compiler exists to select and display cTTs according to complex criteria.

Many reports include statistics on the completeness of their own
input data. This is a necessity in an environment where it is too
expensive to get perfect data, but where people want to know just how
complete the data are. Thus, crAs is able to provide good decision
support from partial data.

VIl. FEATURES OF CRAS AND ITS DEVELOPMENT

7.1 Team approach with computer assistance

The cras development has always attempted to include an inte-
grated team of systems engineers, human performance engineers,
software developers, managers, and end users. With rare exceptions,
everyone (including many who had not used the UNIX system before)
has used the machine-enhanced communication facilities provided by
the UNIX system. Strong efforts have been made to use the system to
provide leverage for human effort, not only in generation and control
of code and documentation, but in multisite communication, explora-
tory requirements analysis, and product distribution.

The structure of the software was strongly influenced by the nature
of the personnel involved. No single person had all the knowledge
necessary to do the project. The software development supervisor was
both newly-promoted and new to the arRsB. Only one member of the
original development group had any UNIX system experience; several
" members had neither host nor UNIX system experience; and a few
had no software implementation experience at all. Much of crRAs was
built by managers who were on sabbaticals to learn software develop-
ment. Some new person always had to be brought on board. Thus, the
software structure had to consist of small, easily understood, relatively
independent modules. In support of the educational function, people
were taught to read each other’s code, to steal it when possible, and to
trade it back and forth as appropriate. Thus, while there was always
individual responsibility for code, there was seldom individual owner-
ship in any restrictive sense. UNIX system tools were used to keep
track of the activity and automate drudgery so that people could get
on with the job.

7.2 Tools
When attempting to build a project quickly, under conditions of

CABLE REPAIR ADMINISTRATION 1285

change and uncertainty, use of tools and other existing code is a
necessity, if only because any prudent project manager avoids unnec-
essary risk. The nature of the cRAS AcC permitted the use of the
standard version of the UNIX system, so that expensive operating
system changes could be avoided. Existing UNIX system tools were
used heavily, to the point that most of the system’s visible function is
provided by the UNIX system’s command language programs (shell
procedures). Code sizes in the first issue of cRAS were as follows:

Lines Type
16K PL/I
10K C
15K Shell
6K Miscellaneous
33K Documentation

Some of these figures are misleading, since heavy use is made of
program generators that operate on the source code stored above to
produce the compilable source code. For example, CRAS includes a
package of generators for PL/I access routines that are used to simplify
the use of the host’s Information Management System database sys-
tem. Some product code and most development procedures were
adapted from previous projects.

Tool benefits included cheapness of construction, speed of imple-
mentation, ability to demonstrate function quickly, and the chance to
cope with surprises.

7.3 Data

From the beginning, cRAs development used a simple data dictionary
system, which consisted of a text file of data item descriptions, plus
several shell procedures for its manipulation. The dictionary was used
to generate PL/I, C, and deliverable documentation. Use of a complex
data dictionary system appeared unnecessary; use of some data
dictionary from the beginning has proved invaluable.

The craAs Ac stores data in “packet” format, which has also been
used in the new LMOS FE software. A packet is an abstract data type,
which represents a collection of self-identifying data items. For cRAS,
the benefits of packet use were as follows:

(i) It was easy to add fields, because programs that do not need
the new fields need not be recompiled.
(it) Storage was saved when fields varied greatly in length, or were
missing entirely; cRAS has numerous such fields.

(zit) It was easy to write general tools to process packets.

When stored on disk, each crAs packet is represented as a line of
text ended by a new line. All but the largest crRAs packets can be

1286 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

manipulated directly by many UNIX system tools (such as sort, for
example). This was especially helpful in the early stages of develop-
ment, since occasionally used functions could rely on the existing tool
kit, rather than requiring expensive development. For example, the
UNIX text editor was often used as a database patching utility.

7.4 Documentation and planning

The CRAS system provides on-line documentation that includes an
unusual degree of automation from development through distribution
to end usage. It also provides an advance planning system whereby
BOC users may dial a UNIX system, look at preliminary documentation,
try out report retrieval on a test database, and use hardware sizing
programs. This work is reported in detail elsewhere in this issue.’

VIIl. DESIGN ISSUES AND PHILOSOPHY

The following discussion highlights some of the design issues faced
during the implementation of CRAs.

8.1 Relationships with other systems

The CRAS system was required to interface with both the LmMos host
and MTR. Previous systems have used self-reporting for both customer
trouble counts and payroll hours. For the sake of accuracy, CRAS was
required to obtain these data items from their true sources. In addition
to the new CRAS software, CRAS implementation required a few changes
to the LMOS FE, new input edits, and other software in MTR. The CRAS
system also provides data to the Loop Activity Tracking Information
System (LATIS). It is well known that any system interface must be
examined for potential problems.

As a system designed to improve, integrate, and replace existing
systems, CRAS was subject to some constraints regarding compatibility
with existing systems. Because of the sensitivity of some of the cras
data, upon which people’s performance ratings may depend, people
must retain confidence in the outputs of cRas. They assure themselves
of its accuracy by comparing its outputs with those of other systems.
Thus, CRAS was subject to constraints such as the following:

() When counting customer troubles, it should be consistent with
TREAT.

(ii) When counting cable troubles, it should be consistent with
ccuAP and should be able to produce all existing CCUAP reports.

(ii) When counting hours worked, it should be consistent with MTR
internal reports and with the methods of the cRFMP.

(iv) All its own reports should be consistent.

These constraints represented great potential for surprise, especially

where the counting rules of different systems were imprecisely speci-

CABLE REPAIR ADMINISTRATION 1287

fied. Even worse, some of the rules were inherently inconsistent. The
CRAS system was the first to try to put these particular pieces of data
together, so the task of discovering the problems fell on it.

8.2 Data asynchronism

As noted earlier, a CTT contains up to three kinds of data (cTT mask,
customer troubles from LMoSs, and hours from MTR). Data validation
would be helped if these pieces of data arrived in a consistent order.
Unfortunately, every possible arrival sequence can happen in practice.
The crTs are usually entered during the day, and customer troubles
(closed by the LMOS FE’s FST transaction) are transmitted to the host
at night, and then can be attached to the crr. However, FsT is not
supposed to be used until the customer has been notified, which
implies that some customer trouble records straggle in over a period of
days. When there is an overload of customer troubles, CTTs are often
held and entered later, so that trouble records arrive before cTTs.
Depending on local policies, MTR records arrive before or after either
of the other pieces.

Even if a fixed sequence were provided by normal operations,
computer failures would certainly disrupt such a sequence. Thus, CRAS
must tolerate all arrival sequences, and it must be immune to machine
failures. It also must handle partial cTTs, as when a CTT never acquires
MTR hours because of coding errors. These issues were thoroughly
addressed and handled by the design.

Also addressed was the need for an unusual type of multisource
error detection, which depends on examination of groups of related
data to find patterns, rather than simple errors in individual items.
For example, it is difficult to know whether two identical cTTNs exist
because one is an extra (and can be deleted), or because one contains
a typing error (and should be edited to renumber it), without looking
at both together.

8.3 Change and uncertainty

During the period when CRAsS was being implemented, changes were
occurring and were expected to continue in the recommended organi-
zation of Bell System repair activities. Some of the change and
uncertainty arose from anticipated regulatory changes; other parts of
it came from attempts to improve the repair process; some arose in
the process of ARSB evolution.

The cRrAs system would often be required to deal with organizational
combinations that differed from Boc to Boc and changed over time.
When cRAs was started, independent Mcs were only starting to come
into existence, and did not exist at the field trial company.

All the above argued strongly for an emphasis on flexibility.

1288 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

8.4 Implementation speed and maintainability

For various reasons, CRAS needed to be built and deployed quickly.
Thus, there was pressure to get something working quickly. However,
the existence of change implied that rigid, unmaintainable software
would not survive.

8.5 Philosophy

Given the complex nature of the environment into which cras had
to fit, and the need to survive continual change, CRAs design strategy
assumed that perfect requirements would never be available. The
resulting philosophy included the following:

(i) Think small, for the complex environment will stretch even
small software into growth. Figures 2 and 3 offer a good example, since
several of the databases came into existence only during the field trial.

(ii) Build a system quickly, thus lessening personnel turnover and
requirements changes caused by change in the external environment.

(iii) Build a system that can be changed quickly.

(iv) Build a prototype, get it into the field, make it evolve, and
make requirements converge on reality. For cRras, it would not be
feasible to discard the prototype, so it had to evolve.

IX. LESSONS
9.1 Team approach and philosophy

The approach of using an integrated team, with strong machine
assistance, has worked well. In fact, the most troublesome areas have
been those where we could not integrate people or functions into the
environment shared by everyone else. For example, although docu-
mentation was an integral part of the system from the beginning, it
was much more difficult to merge training into the machine-supported
product.

The “small is beautiful” development philosophy worked well, in
that it helped produce a usable product quickly. It helped CRAS survive
the unusual amount of turmoil caused by major rearrangements of
every organization involved in cRAs development. The idea of getting
into the field quickly worked well, although the cRas field trial prob-
ably started about three months too early. We assumed that some
functions were needed to start the trial, and that others could be
developed as we continued. All of the former were ready at the start,
but some of the latter were actually needed earlier.

9.2 Systems engineering and human performance engineering

In a tools-based project that is moving quickly, it is important that
Systems Engineering does not “throw the requirements over the wall”

CABLE REPAIR ADMINISTRATION 1289

and then go do something else. The crAS software developers suffered
somewhat from not having enough systems engineers to try ideas with,
when building software prototypes. Eventually, more systems engi-
neering support was assigned to report to the development supervisor,
who was then acting as project manager. The resulting team synergism
yielded rapid solutions to problems, and a generally satisfying working
relationship.

When the software developers are using good tools, and when the
product structure is a tool-oriented one, the result implies that more
of the staff resources must be placed in Systems Engineering and
Human Performance Engineering. When it is easier to create software,
a higher percentage of effort must go into knowing what it should do,
not how to build it.

9.3 Other systems as data sources

If data are received from another system, and if the correctness of
that data is of only marginal importance to the other system, it should
be expected to contain many errors.

9.4 Complexity of environment

Organizations that have complex operations tend to evolve com-
plexes of computer systems to help them accomplish their work. Few
organizations have been able to foresee all contingencies and provide
totally integrated, comprehensive systems on a timely, cost-effective
basis. If something new is implemented as a stand-alone system, it is
irritating to its users because it almost invariably needs data from
another system, or needs to give data to another. Any new system
faces an increasing number of possible interfaces, compatibility con-
straints, and schedule interactions.

A particular “catch-22” exists in the area of schedules. Suppose
newly-planned system A needs data from already-deployed system B,
and the two are controlled by different organizations. If the developers
of A request changes in system B long in advance of possible deploy-
ment, they may face indifference, if only because the developers of B
probably have a long list of pending change requests anyway, and
cannot be sure that system A will actually ever work, or if it does work,
will arrive on schedule. On the other hand, if system A is far enough
along to obtain high priority from B, it may be too late to get enough
real data to use for testing A, especially where the crucial need is to
know the types and frequency of errors.

Another schedule difficulty arises when long lead times are required
to obtain changes in other systems or procedures. Sometimes a pro-
totype must be built quickly to discover problem areas in other systems
early enough that they can be changed in time to support a later

1290 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1982

production system. A major problem faced by CrRAs was the continual
discovery of inconsistencies among other systems.

Complexity problems also exist in the number of organizations who
own databases or systems and must be involved in planning of new
systems. It is well known that multiplicity of organizations contributes
to the difficulty of getting and keeping good requirements. They have
needs and perspectives that contain legitimate differences, and whose
relative priorities can be difficult to compare.

Such problems are hardly the property of any given organization,
but are ones to be faced by any new system. It is ironic that the earlier
and faster an organization computerizes, the more difficult will be the
planning and implementation of later systems.

X. CONCLUSION

We have described the design and development of a successful
operations system, whose history illustrates the problems to be over-
come when building software in a complex and rapidly changing
environment.

XI. ACKNOWLEDGMENTS

Many people contributed in the development of crRAs. We particu-
larly thank J. A. Bayer, T. R. Schiller, J. Burtoft, E. A. Overstreet,
and D. Kurshan (Systems Engineering), R. J. Glushko, G. T. Vesonder,
K. A. Wright. and J. E. Zielinski (Human Performance Engineering),
and M. Baade, W. F. Bauer, M. H. Bianchi, B. J. Beare, B. L. Cruse,
C. M. Franklin, S. D. Rhodes. J. H. Shoemake, and R. O. Sinclair
(Software Development). We are also grateful for the assistance of
AT&T (especially T. Ballen, D. Webster and W. Bassham), Western
Electric Company, and New England Telephone & Telegraph Com-

pany.

REFERENCES

1. S. G. Chappell et al., “Automated Repair Service Bureau: The Front-End System,”
B.S.T.J., this issue.

9. C. M. Franklin and J. F. Vogler, “Automated Repair Service Bureau: Database
System,” B.S.T.J., this issue.

3. R. J. Glushko and M. H. Bianchi, “Automated Repair Service Bureau: On-line
Documentation: Mechanizing Development, Delivery, and Use,” B.S.T.J., this
issue.

4. L. S. Dickert and S. P. Rhodes, “Automated Repair Service Bureau: The Trouble
Report Evaluation and Analysis Tool,” B.S.T.J., this issue.

CABLE REPAIR ADMINISTRATION 1291

