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To approximate functions of a single variable by using linear
interpolation is routine in empirical studies. Here, we consider ap-
proximating functions of several variables in a similar piecewise
linear manner. We focus on the nontrivial part of this technique,
which is that of choosing the appropriate “pieces” for the plecewise
linear approximation. Precisely, we seek to identify the best interpo-
lants to use at a point of interpolation. This is not an issue for
functions of a single variable, since the linear ordering of the number
line leaves us with no choice. For functions of several variables, we
propose several simple tools to help uncover undesirable choices. The
techniques presented are useful in the empirical study of quantita-
tively complex functional relationships whose qualitative behavior is
nevertheless known and simple. Response time relationships para-
metrized by workloads in computer performance modeling often fall
into this category, and an actual bivariate function of this type is
used to motivate the development.

I. INTRODUCTION

Linear approximation is a popular and economical way to gain
appreciation of the behavior of functional relationships. Especially in
higher dimensions, making sense out of a sample of data points in
terms of the underlying multivariate relationship is greatly facilitated
by some form of piecewise linear approximation. Such an approxima-
tion allows for estimation of the function at values not included in the
sample, sheds light on the activity of the function at selected neigh-
borhoods, and identifies regions where the relationship behaves inter-
estingly.

For the sake of concreteness let us consider a typical problem. A
simulation model of a computer system has been given. The workload
driving the system is described by two variables giving the respective
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percentages of two classes of users in the user population; there are
three classes of users altogether. The two variables, then, form a
bivariate parametrization of the workload. Six simulations were run,
and the resulting mean response times are shown below. (This response
time function will be denoted by A throughout this paper.)

h(60, 25) = 5.5
h(60,7) = 2.1
h(40, 30) = 1.2
h(40,7) = 1.0
h(20, 25) = 0.7
h(20, 15) = 0.7

It will be necessary to estimate the response times for many more
workloads than for the six simulations already run. Yet, it would be
inefficient to make a run for each possible parameter pair (x;, x2). It
would also not be necessary, given the qualitatively simple relationship
that generally exists between workloads and response times of com-
puter systems. In this particular case, the function is expected to be
monotone. Therefore, the six simulations not only give us the values
of the function at those six points, but also the values between and
around them, that is, at least approximately. For example, we could
safely assert that A(55, 10) should lie between 1.0 and 5.5. In fact, it
would be reasonable to estimate the range to be from 1.8 to 5.5. This
becomes obvious by plotting the six-parameter pairs used in the
simulations, plus the point P = (55, 10) on the (x,, x2) plane, as shown
in Fig. 1. The points A through F are labeled in the order in which
they were collected; point A is the oldest. Since the polygon with
corners A, D, B, and E bound the point (55, 10), it is reasonable to
deduce that the values of & at A, D, B, and E bound the value of A at
(55, 10). This gives the interval (1.0, 5.5). Furthermore, A(55, 7) may
be estimated as 1.8 by linear interpolation between A (40, 7) = 1.0 and
h(60, 7) = 2.1. Since A is increasing in both x; and x., A(55, 10) =
h(55, 7). This gives the sharper interval (1.8, 5.5).

As we will see, this approach can be continued until a numerical
estimate for h(55, 10) is reached. Two steps are required. The first
step identifies the data points that contain relevant information about
h(55, 10). For example, we have already rejected C and F as irrelevant
to P. This was simple and was done “by eye.” Finer methods need be
developed, however, to determine which one of A, B, D or E should be
further discarded. The major part of this paper, starting with Section
III, deals with this and related problems. The second step consists of
fitting a linear function over the data points chosen as a result of the
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Fig. 1—Data points for case study.

first step; the mechanics of linear fitting will be reviewed in Section II.
Together, the two steps produce the “best” way to fit the data points
in a piecewise linear way. The concluding recapitulation gives an
overview of the methodology in an iterative context.

Formulas used in our treatment are gathered in a sequence of
propositions. Since they are rather straightforward and our interest is
in their usage, only abbreviated arguments for their validity are
included. All calculations may be easily carried out on a computer.
Needed, aside from basic arithmetic, are routines to define and manip-
ulate matrices, perform matrix multiplications and inversions, take
determinants, and find eigenvectors of symmetric matrices. Compu-
tations for our examples have been carried out with relatively short
programs in the S statistical package.'

Our proposed approach is not meant to replace the standard practice
of fitting a single, global functional relationship to the data. The two
procedures reveal different aspects of the data. Function fitting, being
inherently global, is well suited for capturing the overall behavior of
the relationship. This we hope to complement with the piecewise
linear approach, which, being inherently local, is better suited for
pinpointing places where interesting things happen to the function.
This is especially relevant for iterative empirical studies, where it is
useful to know where the function is active in the parameter space so
that further experiments can be fruitfully specified.

Il. THE BASIC INTERPOLATION

Linear interpolation for functions of a single variable is usually
taught in high school in terms of such notions as similar triangles and
slopes. For the purpose of generalization to higher dimensions, an
alternative, though algebraically equivalent, viewpoint is preferred.
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Specifically, let f(x1) = y1, f(x2) = ¥, and x; < x < x». It can be shown
that the usual linear interpolation gives the estimate

a1 + az)ys,
where a; and «: satisfy
a)x) + axxe = X,
a+a=1,
a, az >0,

In other words, to estimate f(x) for some x in the interval x; < x,,
express x as a convex combination (weighted average) of x; and x.,
then estimate f(x) as the same convex combination of f(x;) and f(x:).
Notations: As usual, R" is the set of n-dimensional real column vectors,
Also standard is the use of the prime notation for matrix transposition,
as in M. If the jth column of matrix M is m;, we write M =
(m,, ---, my). The length of a vector v = (v1, ---, v.)’ is denoted by

Ivll=vi+--- +0vi).

For any x € R", let x* € R™*" denote

()

i.e., the vector consisting of x followed by the singleton 1. If fis a
function, f denotes its approximation by linear interpolation.

A higher dimensional analogue of having the points x;, x; generate
an interval in one dimension is having points x;, Xz, X3 generate a
triangle in two dimensions and having x;, X2, X3, X4 generate a pyramid
in three dimensions. Just as we require that an interval in one dimen-
sion should not shrink to a point, we require that a triangle
should contain area on a plane rather than reduce to a line segment,
and that a pyramid should contain volume in solid space rather than
collapse onto some plane. In general, we are concerned with the convex
hull of (n + 1) points x;, - - -, X,+1 € R", subject to the condition that
these points do not lie in some lower (<n) dimensional hyperplane.
The matrix formulation of this geometric requirement is that the linear
transformation X given by

X = (X1 — Xn+1, ***, Xn — Xn+1)

should have the trivial kernel, or, by the rank-nullity theorem, satisfy
det(X) # 0.

Definition: An n-dimensional pyramid is the convex hull of a set of
(n + 1) vectors {x;, +++, Xx+1} C R” such that

det(X: — Xns1, *++, Xn — Xns1) # 0.
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The points x; are called its vertices, and any subset of n vertices forms
a face of the pyramid.

We will often call a set of points a pyramid, rather than a convex
hull generated by these points, as would be strictly correct; however,
this makes no difference since there is a one-to-one correspondence
between the set of vertices and the pyramid it generates.

Proposition 1: Let f: R" — R be a function of n variables. Let
{x1, +++, Xas1} C R™ be (ie., generate) an n-dimensional pyramid
containing x € R", and let f(x;) = y;. Then,

(i) X* = (x}, ---, Xh1) is an invertible (n + 1) X (n + 1) matrix,
and

(if) the estimate f(x) = (y1, =+ +, Yne1)(X*)7'x* is a higher dimen-
sional generalization of linear interpolation for a single variable.
Proof:

(i) If X* were not invertible, its columns would be linearly depend-
ent. Therefore, one of the vertices would be a convex (not necessarily
positive) combination of the n remaining vertices, implying that the n
+ 1 points lie in (n — 1)-dimensional hyperplane at most. This contra-
dicts the definition of a pyramid.

(ii) Let a = (X*)7'x* = (a1, *++, @ns1)". Since x* = X*a, it follows
from the star (*) definition that

X=mX;+ +++ + @n+1Xn+1,
@+ oo+ Qe = 1.

Thus, a expresses X as a convex combination of {Xi, +++, Xp+1}. Since
X is contained in the convex hull, a = 0. Hence, the linear interpolation
at x should be

f(x) =a1yr + -+ + Gn+1Yn+1,

which is as proposed.

In practice, we will not know whether x is contained in the convex
hull. Therefore, the vector of coefficients a should be explicitly com-
puted to check that a = 0. The use of the procedure with negative
components in a corresponds to linear extrapolation.

Example: Returning to the computer system response time function
h, we see from the (x1, x2) plot in the previous section that

wen-{(%). (%) ()}

forms a two-dimensional pyramid, or triangle, containing

p-(%).

MULTIVARIATE FUNCTIONS 1467



Alternatively, if plots are not feasible, as would be the case in higher
dimensions, we calculate

det(40—60 40-60

30-7 7- 7)=46°’£0’

checking that a noncollapsing pyramid is obtained, and

40 40 60\"" /55 0.13
a=(3 17 7 10 ]=(012 |=0,
1 1 1 1 0.75
checking that
55
10

is contained in the pyramid. Interpolation according to the formula

gives
0.13
(1.2 1.0 21)]0.12|=1.85.

0.75

wan={(%). (%) @)

is a pyramid containing
55
10/’

and interpolation using this pyramid gives

40 60 60\' /55
(1.0 21 55| 7 7 25 10 | = 2.39.
1 1 1 1

Similarly,

lll. THE SELECTION PROBLEM

We have just seen how two different choices of pyramids can lead to
two markedly different approximations. Taking the average and ap-

proximating
~ (55
(%)

by %(1.85 + 2.39) = 2.12 is not justified. An average is appropriate
when summarizing a batch of numbers that have been made different
by random error, since the averaging process “zeroes out” the random
errors. In our case, the difference between the two approximations
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does not arise from random error. One of the choices is better than the
other, and that is not a probabilistic phenomenon.

Another way to proceed is to put greater trust on closer interpolants
than on further ones and choose the pyramid yielding the least-
summed distance from its vertices to that point. Under this criterion,
the pyramid ADE should be preferred over ABE, since D is closer to
P than B is by nine units. Unfortunately, the notion of distance is not
invariant to the choice of scales on the axes, and the criterion becomes
sensitive to changes of units in the independent variables. The dis-
tance-type criteria have a further, more fundamental weakness, which
they share with, among others, the criterion of Lawson.”

As used by Akima® in his algorithm for bivariate smooth interpola-
tion, Lawson’s criterion triangulates the (x1, x2) plane in such a way
that minimum interior angles of triangles are maximized. The objective
is to set up as many “fat” triangles as possible. Under such “fatness-
type” criterion, ADE is again chosen over ABE, since ABE comes with
the companion triangle ABD, which is too “skinny.” An extremely
skinny triangle is undesirable for two reasons. First, its X* may be
numerically unstable to invert. Second, it biases the estimation along
a particular direction in the (x,, xz)-plane. (On the other hand, we will
see in Section VI that thoughtful biasing may be beneficial.) It is not
necessary, however, to make fatness an overall criterion just to avoid
such excesses.

The problem with these distance- and fatness-type criteria is that
only the configuration of the x variables is used in assessing pyramids.
(With the curve-fitting approach that uses Lagrangian and trigono-
metric polynomials,* even this information is not taken into account.)
This is an unnecessary restriction. Surely the values of the function at
the interpolants, the f(x)’s, have much to say on the adequacy of an
interpolation. Our basic working tool to tie x together with f(x) is the
notion of steepest ascent. Using it, we show that the correct pyramid
to choose is ABE, rather than the pyramid ADE, favored by both
criteria above. Incidentally, the ABE choice for (55, 10) was confirmed
empirically by an actual simulation run which gave the result
h(55, 10) = 1.74. Recall that interpolation with ABE gives 1.85,
representing a 6.3 percent error, while interpolation with ADE gives
2.39, representing a 37.4 percent error. The fact that the interpolation
overestimates could also have been predicted. See Section VII, where
assumptions underlying our approach are discussed.

IV. STEEPEST ASCENT

Equipped with the mechanics of basic interpolation, we may analyze
in detail the function’s interpolated behavior on a given pyramid. We
would like to know along which direction inside the pyramid the
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function increases, and how fast that increase is. Because of the
linearity of the interpolation, both questions have well-defined an-
swers. The geometric way to derive an answer is to slice the pyramid
into parallel “contour hyperplanes,” which are systems of hyperplanes
such that points on the same hyperplane have the same interpolated
values.

Example: Figure 2 shows some contour hyperplanes (contour lines in
two dimensions) corresponding to the pyramid (triangle) ABE. Points
along the downward-sloping lines take the same interpolated values as
labeled. Clearly, A increases most rapidly along the direction of the
arrow, which is perpendicular to the contour lines.

Since the contour hyperplanes are parallel, a single vector perpen-
dicular to all of them can be found. Actually, there will be many such
vectors, but they can only have one of two opposite directions, one for
increasing f and another for decreasing f. We agree to take the
increasing direction. Being perpendicular to the contour hyperplanes,
this direction has no component along which f does not increase.
Therefore, it is the direction along which 7 increases the fastest. We
define a unit vector in this direction to be the direction of steepest
ascent of the function fin the pyramid. The rate of steepest ascent is
the increase of f along the direction of steepest ascent per unit distance
traveled.

It remains to formulate these geometric notions in matrix terms.

Proposition 2: Let f: R" — R be a function of n variables, {x;, ---,
Xn+1} C R™ be a pyramid, f(x;) = y;, and X* = (x], -+, Xn41). Let

(@1, »++, @ne1) = (Y1, ++ oy Yo ) (X*)7L

(i) The direction of steepest ascent in {X;, ---, X,1} is (@i, ---,
au)/” (0.1, e, an)") and
(). The rate of steepest ascent in {xi, +++, Xn+1} i ||(@1, + -+, @)

*2

- X,

Fig. 2—Contour lines for ABE. Function increases in direction of arrow.
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Proof: By definition of (a1, .-+, @.+1), the interpolation fits the
function

f(xl) "-,In)=01x1+ v +anxn+ﬂn+]

on the pyramid {X, « -+, Xns1}.
To show (z), note that fa) = f(v) implies that (a, -++, @.)(u — v)
= 0. To show (ii), note that f((a:, - -+, a.)/|[(a1, -+, @x)|) —f(0) =

"((.h, B} aﬂ)“~
Example: Table I lists some directions and rates of steepest ascent
that we will use later.

V. A FIRST APPROACH: JUDGING BY FACES

Example: We are now ready to reject ADE in favor of ABE. Actually,
since ADE and BDE form a companion pair, we will reject them both.
This will be accomplished by analyzing the face DE. In Fig. 3, ADE
and BDE are shown along with their respective directions of steepest
ascent loosely placed about their centers. The two directions of steep-
est ascent make sense separately. Both show response time as an
increasing function of x, and x.. Together, however, they show that
DE is a ridge, i.e., h increases as DE is approached from either side.

Table |—Some directions and rates
of steepest ascent

Rate of
Direction of Steepest
Pyramid Steepest Ascent Ascent
ADE (0.29, 0.96)" 0.197
BDE (0.99, 0.05)’ 0.218
ABD (0.81, 0.58)" 0.323
ABE (0.98, 0.19)’ 0.059
B
Xy ‘
D
———
E A

Fig. 3—ADE and BDE with their directions of steepest ascent.
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Alternatively, a ridge indicates that A is not monotone along some
direction on the (x,, x2) plane. From our knowledge of A, no such ridge
should exist. The triangulation {ADE, BDE} incorrectly shows a ridge
because A (D) is inordinately large. The triangulation allows D to pull
up both triangles, causing their boundary to buckle. The correct way
to picture k is shown in Fig. 4. For low values of x, and x,, A grows
moderately (rate of steepest ascent = 0.059 on ABE), with x; being
mainly responsible for the increase. As x, and x; become large,
h explodes (rate of steepest ascent = 0.323 on ABD), and x: begins to
affect / seriously, although x, is still the major contributor. Because
of the piecewise linearity of interpolation, AB has become an acceler-
ating, refracting boundary but not a ridge. In Section VI, we will see
another reason why ADE is a poor choice.

Note that specific knowledge about 2 was invoked to make the
selection: We knew that response time as a function of workload had
no ridges. In general, linear interpolation of functions with known
major ridges, valleys, maxima, or minima should be avoided. An
exception may be made if we are able to sprinkle such tricky terrain
generously with further interpolants. Under finer resolution, the vol-
atile formations should diminish. Of course, even if a ridge does exist,
it is highly improbable that it should coincide with one of our faces.
Definition: A face is a bad face if there are two pyramids containing it,
and their directions of steepest ascent either both point towards it or
both point away from it.

Thus, we accept as likely those faces that may refract and/or
accelerate steepest ascent vectors, but we question faces that gather
or scatter them.

Matrix techniques are clearly needed to identify bad faces in higher
dimensions, where graphs are not feasible. It is enough to find a
technique to determine if a given steepest ascent approaches a given

B8

x|

Fig. 4—ABE and ABD with their directions of steepest ascent.
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face. Since approaching a face at 90 degrees is different from approach-
ing it at 0.0001 degree, the angle of approach is also of interest. Note
that knowledge of the angle alone does not tell us whether the ascent
approaches; the ascent may be located on either side of the face.

Proposition 3: Let a € R" be a steepest ascent for the pyramid
{(x1, --+, Xar1} C R™. Let {x), ---, X»} = F be the face of interest.
Define the n X (n — 1) matrix

X = (x — Xn, X2 — Xn, "'.xn—l—xn)-
Also define the n X n matrix
Y=(-X, a)=(X,— Xi, Xn — X2, +++, Xp — Xn-1, ).

(i) Let B= (B, +++, Bn) = Y ' (Xn — Xnn1). If 8, > 0, & approaches
F. If B. <0, a recedes from F. If Y is not invertible, a is parallel to F.

(ii) Let cos 8 = va'X(X'X) 'X"a. Then 6@ is the angle between a
and F.

Proof:

(i) The trick here is to pull the vertex X+ to the origin so that we
may examine the relationship between a, now sitting at the origin, and
F, now translated to {X) — Xa+1, +++ , X» — Xn+1}. For B as given above,
let m=pBifori=1,---,n—Lm=1—(m+ -+ + 7)) andt=
Bn. The reader may check that

n

ta =Y mi(Xi — Xn+1),

Y m=1.

=]
The interpretation of the sign of 8. follows from the trick just de-
scribed.

(ii) The trick is to translate the face to the origin by x.. We then
regress a against the translated face {X; — Xu, +++, Xn-1 — Xa } 50 that
its projection proj(a) onto the linear subspace spanned by the trans-
lated face may be found by the usual formula. Now take the inner
product between a and proj(a), bearing in mind that a is a unit vector.

Example: Using the formulas above, we find the DE is approached by
the direction of steepest ascent of BDE at 31 degrees, and DE is also
approached by the direction of steepest ascent of ADE at 39 degrees.
Thus, DE is a ridge.

VI. ANOTHER APPROACH: THE AXES CRITERION

Example: Let’s consider again the selection problem with the response
time function y = A (x, x2), but this time we consider the complemen-
tary pair of triangles ABD and BDE, shown in Fig. 5. While neither
triangle is very skinny, we could roughly identify directions along
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which they stretch out. For example, ADB stretches out in some
direction along AB, which is quite perpendicular to its direction of
steepest ascent. BDE, on the other hand, stretches somewhat along
DE, which is not at all perpendicular to its direction of steepest ascent.
This difference affords another basis for selection. Let’s exaggerate
somewhat and give the two triangles more definitive and mutually
perpendicular directions of stretch; we also assume that the “direction
of steepest ascent of the function” (a vague notion), denoted by a, is
perpendicular to the stretch of ABD. The situation is shown in Fig. 6.
We may now rotate the configuration to new axes (x{, x3) so that the
pair of triangles stretch in directions parallel to the new axes, as in Fig.
7. Because of our assumption, a becomes parallel to xi. This means
that x5 has no effect on y, so we may plot y as a function of x! alone.

X3 [

- X,

a, = ASCENT IN ABD
a, = ASCENT IN BDE

Fig. 5—Triangles ABD and BDE with directions of steepest ascent.

*24

X

Fig. 6—ABD and BDE stretched in mutually perpendicular directions.
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Since a points along x1, y is an increasing function of x1. If y is a linear
function of x}, it will also be a linear function of (x1, x2), in which case
it doesn’t matter which triangle we select. Both will give perfect fit.
However, for h, we must protect ourselves against nonlinearity. We
actually know that A is concave downwards as a function of x1. (If A
is concave upwards, the same argument below holds.) The elimination
of x4 leads to the (x1, y) plot given in Fig. 8. Clearly, ABD hugs the
function much better than BDE. By stretching linearly far along the
direction of ascent, BDE loses touch of the underlying, nonlinear
function. Here is the second reason why ABE is a better choice than
ADE.

The moral is that triangles perpendicular to their directions of
steepest ascent give better estimates. The same is true in higher
dimensions, although in higher dimensions it is not appropriate to talk
about the direction of stretch of a pyramid because a pyramid may
stretch in several directions at once. In three dimensions, for example,

’ E/\p

Fig. 7—Rotation of Fig. 6.

s
y=hix')

'
hd|

Fig. 8—Elimination of x2.
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a solid pyramid may stretch out in one single direction, as in a needle-
like pyramid, or in two directions, as in a pancake-like pyramid.
Therefore, we will appeal to the notion of the axes of a pyramid—the
system of coordinates that best aligns with the vertices of the pyramid,
such that the first coordinate aligns with the furthest stretch of the
pyramid, - .-, the last coordinate aligns with the shortest stretch of
the pyramid. The coordinates (x], x%) found above by rotation are an
informal, visual example. Formally, it is necessary to define “best
alignment.” For convenience, we will define it in terms of least-squared
distances. Then, we may use the principal component technique from
multivariate statistical analysis.

Definition: Let {x;, +++, Xp+1} C R" be a pyramid with mean vector
1
i=n+1 (X1 + +++ + Xn41).
Define the n X (n + 1) matrices
X=(x, +++, Xns+1), X=(% +,X).

Define the n X n covariance matrix

V=%(X—f{)(x—1—()’.

Let vy, -+ -, v, be the eigenvectors of V with eigenvalues A\, = ... =
An. (That is, Vv; = A;v;.) Then v, is the first axis of the pyramid, v is
the second axis of the pyramid, - - -, v, is the last axis.

The eigenvalue A; tells us how far the pyramid stretches along v;.
Thus, a four-dimensional pyramid with eigenvalues 1000 = 10 = 10 =
10 stretches out mainly along v,, while a four-dimensional pyramid
with eigenvalues 1000 = 500 = 10 = 10 stretches mainly along v, and
vz, with the stretch along v, being significantly larger than the stretch
along v,. A pyramid with identical eigenvalues does not stretch in any
direction and is “fat.” The eigenvalues cannot be 0 for pyramids.

The use of the axes vy, -- -, v, in evaluating a pyramid is as follows:
if a is its direction of steepest ascent, then the ideal pyramid
{x1, - -+, Xn+1} satisfies

a’v1 =0

a'va,—; =0.

Thus, its first (n — 1) axes are perpendicular to the direction of steepest
ascent, leaving the last axis, the direction of shortest stretch of the
pyramid, to coincide with its direction of steepest ascent. When com-
paring less-than-ideal pyramids, we choose the one where |a’v;| is close
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to 0 for as many of the first vy, -+, v;» as possible. Note that a'v; is
the cosine of the angle between a and v..

Example: Using the formulas given above, Table II has been com-
pleted. Note that v, and v; are mutually perpendicular, as they must
be. From the relatively high ratios of A;/A;, it follows that all four
triangles have fairly prominent major (first) axes, i.e., they stretch
along some distinct direction. ABD and ABE form the narrower pair
of triangles. By comparing |a’v|, it follows that ADE and BDE tend
to stretch along their respective directions of steepest ascent, while
ABD and ABE are more perpendicular to their respective steepest
ascents. Therefore, we chose the triangulation {ABD, ABE} over the
triangulation {ADE, BDE}.

VIl. ASSUMPTIONS

Now we spell out some assumptions about the underlying function
that are relevant to the validity of our linear interpolation.

The foremost assumption is that the function is reasonably smooth
with respect to the mesh of the interpolants. Without such basic
optimism, which is buttressed by the prerogative of adding further
interpolants to refine the mesh, systematic investigation could not
proceed. As described in Ref. 6: “The experimenter is like a person
attempting to map the depth of the sea by making soundings at a
limited number of places. - - - mapping a surface resembling a nest of
stalagmites or the back of a porcupine would be impossible - - since
characteristics of the surface at one point would not be related to
characteristics elsewhere.” Under the smoothness assumption, the axis
analysis presented in Section VI is valid, since it simply recommends,
in quantitative terms, the prudence of spacing out the interpolants
only where the function appears to behave uneventfully.

The face criterion of Section V applies when the function is mono-
tone, in addition to being smooth. (Monotonicity as defined here is
more stringent than what is usually required.)

Definition: A multivariate function f: R” — R is monotone if one of
the following holds for any x, y € R™

(i) For all o, B € (0, 1), @ > B — flax + (1 - a)y) = f(Bx +
(1= B)y), or

Table Il—Axes analysis for typical problem

Trian- Steepest As- Eigenvalues
gle cent a Eigenvectors v, vz As Az a'v

ADE (0.29, 0.96)' (—0.78, —0.63)’, ( 0.63, —0.78)" 182.0, 59.3 —0.83
BDE (0.99, 0.05)' {-0.65, —0.76)", ( 0.76, —0.65)' 183.7, 96.0 —0.68
(

ABD (0.81, 0.58)’ 0.68, —0.73)’, ( 0.73, 0.68)’ 233.4, 46.3 0.13
ABE (0.98, 0.19) —0.60, 0.80), (—0.80, —0.60)’ 234.5, 75.2 —0.44
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(i) Forall o, B € (0, 1), a > B8 — flex + (1 — a)y) = f(Bx +
(1-8)y).

That is, f either increases or decreases consistently along whichever
direction one travels in the x-space.

Often, specific knowledge of the function includes its monotonicity.
With our A, for example, it is unlikely that any direction should be
singled out along which & “rollercoasts.”

A further useful assumption is convexity (concavity).

Definition: A function f: R” — R is convex on a convex region A C R"
if forany x,y € A and « € (0, 1),

flax + (1 — a)y) = of (x) + (1 = a) f(y).
The function f is concave if
flax + (1 — a)y) 2 af(x) + (1 — a) f(y).
If fis convex on the region A, the interpolated function f satisfies
f(x) =f(x) (xE€A).

(Similarly, if f is concave, we have f = f'.) Hence, knowledge of the
convexity (concavity) of f permits the conclusion that the interpolated
approximations are the upper (lower) bounds to the true values of f.
Since h appears to be convex on the hexagon ABCDEF, the response
time estimates obtained from linear interpolation are likely to be
worst-case estimates. This agrees with actual data:

h(55, 10) = 1.74 = 1.85 = A (55, 10).

Proposition 4: Let ||a| be the rate of steepest ascent in pyramid P =
{X1, +++, Xn+1} CR". Let r, ---, r; be the rates of steepest ascent in
all pyramids that share some face F with P such that a recedes from
F. Similarly, let s;, ---, s; be the rates of steepest ascent in all
pyramids sharing some face with P that is approached by a. Then, for

monotone f:
(z) It is consistent with the convexity of f on P that

r, e, ri=|al|l= s, -, 850
(zz) It is consistent with the concavity of fon P that
ry .-, riz|alz sy, ., S5
Example: It follows from Fig. 9 that # is likely to be convex on ABE,
since 0.025 < 0.059 < 0.323.

Vill. MORE ON THE SECOND APPROACH: A GLOBAL METRIC

Selecting the “best” system of pyramids was straightforward in our
example with ABE and ADE, since the number of triangles was few
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Fig. 9—Convexity of A.

and there was no trade-off between the two systems. When comparing
systems of pyramids involving possibly dozens of pyramids each, and
when each system contains both “good” and “bad” pyramids, individ-
ual assessments of pyramids must be combined into an overall measure
to facilitate the comparison. A combined, global measure of the opti-
mality of a system of pyramids is also necessary for the application of
our procedure on a computer. We now derive such a metric under the
principles discussed in Section VL.

Definition: Let P = {x1, -+, Xa41} C R" be a pyramid with associated

steepest ascent vector a. Let A, = --- = A, > 0 be the eigenvalues
derived from P as in Section VI, and let v, - - -, v, be the correspond-
ing eigenvectors. Define
E )\;|a’vf1
m(P) ="
XA

=1

In the above expression, m (P) is intended to measure the departure of
P from optimality. From the weighted-average form of its definition,
it follows that a large value of m (P) is caused by large values of |a'v|
for the larger values of A;. Equivalently, it implies alignment of the
major axes of P along a. An optimal P, of course, will do the opposite:
As seen in Section VI, it will align its least-significant axes along a.

Definition: Let {Pi, -+, Pn} be a system of pyramids. Let Vol(P))
denote the volume of P;. [Recall that Vol({xi, ---, Xa+1}) =
det({x], -+ -, Xn1})/n!; see (Ref. 7, p. 331).] Define
M({Py, -+, Pn}) =¥ Vol(P))m(P)).
=1

J
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The expression M ({P,, ++-, Pn}) is the proposed overall metric of the
departure of the system {Pi, ---, P,} from optimality. It sums the
nonoptimality of each of its constituent pyramids, giving greater weight
to the more voluminous pyramids. Note that it is not necessary to
normalize M by the sum

E Vol(Fy),
J=1

since two comparable systems of pyramids will cover the same total
volume.

Example: Applying the definitions above,
m(ADE) = (182.0%*0.83 + 59.3*0.56)/(182.0 + 0.56) = 0.765,

60 60 40
Vol(ADE) =det| 7 25 7| =180.
1 1 1

m(BDE) = 069, Vol(BDE) = 230.
M({ADE, BDE}) = 297.42;

m(ABD) = 0269,  Vol(ABD) = 180.

m(ABE) = 0492, Vol(ABE) = 230.
M({ABD, ABE}) = 161.85.

Since M({ABD, ABE}) < M({ADE, BDE}), our calculation with the
metric M agrees with our earlier conclusion that {ABD, ABE} is the
preferred triangulation over {ADE, BDE}.

IX. BUILDING PYRAMIDS

One practical issue remains. In actual empirical studies, vertices
become available one by one, and except when the first pyramid is
formed, the pyramid building process is always applied to an existing
system of pyramids. Especially in higher dimensions, we need an
efficient and consistent method to incorporate new vertices into old
systems of pyramids.

Example: Suppose the vertices A, B, C, D in our computer performance
example have been satisfactorily triangulated, and E appears as a new
vertex, as shown in Fig. 10. What new triangulations are generated so
that they may be compared? If the new vertex is inside some triangle
[e.g., H = (55, 10) inside ABE], then an obvious reasonable answer
exists (e.g., replace ABE by HBE, AHE, and ABH). In higher dimen-
sions, the procedure is just as simple, so hereafter we will only consider
new vertices not in the convex hull of the old vertices. We should
specify that we start out with a minimal cover, that is, we start out
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Fig. 10—Adding a new vertex to a system of pyramids.

from a system of pyramids containing the convex hull of the old points
(“cover”) in such a way that any point is in the interior of at most one
pyramid (“minimal”). For example, if triangle BCD were added to the
triangulation above, we would no longer have a minimal cover, since
some points close to B would be inside two triangles. We would also
like to end up with a minimal cover after incorporating the new point
E. By going from minimal cover to minimal cover, the method we
develop could be used again when a new vertex (e.g., F') comes around.
For the sake of consistency, we do not want to add any pyramid
implicitly rejected by the minimal cover we started out with, such as
BCD. We call new covers satisfying this desideratum consistent. The
appropriate building block for the new system of pyramids turns out
to be faces.

Definition: Let {xi, ---, Xx} C R" be the set of vertices from the
starting minimal cover, and let p be a point outside its convex hull. A
new face is the convex hull of {p,x;,, ---,x;_,} for any sequence 1 =
1< -+ < i, = K such that:

(i) row rank of (x; — p, -+-,%;,, —p)=n—1,and

(i) no x; (j # i1, *+++, Ln1), is in the convex hull of {p, x;, ---,
X _, ] -

Condition (i) ensures that the new face does not collapse to some
<(n — 1) dimensional surface. It may be checked by counting the
nonzero eigenvalues of the covariance matrix (see Section VI). Con-
dition (iZ) rules out pathologies such as face DE’ in the two-dimen-
sional case pictured in Fig. 11. (AE’, of course, is legitimate.)
Proposition 5: Let F, be the set of old faces in the starting minimal
cover, and N be the set of new faces. If S is any consistent minimal
cover for the new convex hull whose set of faces is denoted by F, then

(z) Fis a subset of Fo U N,
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Fig. 11—The pathological triangle ADE’.

(i) Any two faces from F do not intersect at interior points (though
they may met at boundaries), and

(iii) Fis a maximal set satisfying (i) and (if), i.e., any face not in F
either is not in F; U N or meets some face from F at interior points.
Proof: Check that the faces from any minimal cover must satisfy (ii).

Thus, assuming that we can enumerate all sets of faces satisfying (i)
through (¢if), we may proceed to reconstruct minimal covers from
these sets, and Proposition 5 tells us that we would have captured all
the consistent new minimal covers we want this way. Incidentally,
Proposition 5 does not rule out the possibility that we may catch more
than the new minimal covers or that some sets of faces may not be
reconstructible into new minimal covers. These situations are dealt
with by the converse to Proposition 5, which remains to be proven.
Therefore, we should guard ourselves against the first possibility and
not be surprised at the second.

The construction of all sets satisfying (i) to (i) can be done neatly
along a downward-growing binary tree whose branches enumerate the
sets.

Example: Continuing the preceding example, it is clear that F, = {AB,
AC,AD, BC, BD} and N = {EA, EB, EC, ED}. Next, we list pairs of
faces from Fp, U N that meet at interior points in Table III. We now
grow our tree. The trunk of our tree contains those faces meeting no
others. Beyond that, we split the tree into two branches each time we
choose between a face and any one of the faces it meets. We extend
each branch as far as possible as long as it does not contain pairs of
intersecting faces. At the end of each branch we reconstruct a new
minimal cover from the faces listed on the branch; the result is
displayed in Fig. 12. Thus, the leftmost branch {AD, BC, BD, EA, EC,
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Table lll—Pairs of
intersecting faces for
typical problem
Face Meets Face(s)

AB ED
AC EB, ED
AD —
BC —
BD —
EA —
EB AC
EC —
ED AB, AC
AD
BC
BD
EA
EC
/AB \ ED
AC EB EB
% ABD, ACE, ABC } ABD, BCE, ABE } { ADE, BCE, BDE }
Fig. 12—Tree from new vertex E.

AB, AC) lists one of the possible sets of faces that contains as many
faces as possible without including two that intersect at interior points.
It is easy to see that the branch is an enumeration of all faces from the
triangulation {ABD, ACE, ABC}. The other two branches are ob-
tained similarly. Using the evaluation techniques from Sections V, VI,
and VIII, the triangulation reconstructed from the faces listed in the
middle branch was chosen.

The only step in this procedure, which is nontrivial in higher
dimensions, is the tabulation of pairs of faces that intersect at interior
points. Especially where there are many pairs of faces, making a pair-
by-pair determination can be cumbersome.

Notation: Let e; € R™ be the vector with 0 in every component except
the ith, where it is 1.

Proposition 6: Let F= (x1, --+, X}, G = {¥1, +++, ¥a} C R" be faces
from Fy U N. Choose any j such that (x; — X, -+, Xa1 — Xn, €) is
invertible, and let

p'(F) = en(X1 — Xn, -+, Xn1 — Xn, ;) € R".

(If F is a face, such j exists.) Similarly, define p’(G). Then F and G
have empty interior intersections if and only if either
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@) p'(F)x; p'(F)y.} or p'(F)x: >
max{p'(F)yi, -
@) pP'(G)y1 < min{p(G)X:, ---,
max{p'(G)xi, --+, p(G)Xxn}.
Proof: The clue is to recognize that p(F) is simply some vector
perpendicular to F and p’(F)y is the unscaled projection of y onto
p(F). Clearly, two faces have disjoint interiors if and only if the two
faces have disjoint projections along some direction perpendicular to
one of them.
Example: We leave the response time function 2 so that we may
illustrate application of Proposition 6 in three dimensions. We are
given six vertices in R? and we wish to determine how the 20 resulting
faces intersect in pairs.

() () (3
() - (3 (3

Table IV contains the results of the calculations according to Propo-
sition 6. The last column of the table, where filled, lists the pairs of
faces with disjoint interiors that have been identified. There are five
such pairs. For example, the first row shows, using a projection
perpendicular to ABC, that ABC and DEF do not meet, since 30 <
min{80, 60, 69}. Note that A, B, and C have the same projection, 30,
since the projection is perpendicular to ABC. Note also that BCD and
BCE yield the same rows on Table IV. This is because B, C, D, and E
lie on the same plane. By Proposition 6, the five other pairs of faces
must meet at interior points.

Because only six points were involved, each row in the table could
only be used to separate two three-pointed faces. If more points were
involved, more than one pair of faces could be found disjoint at once.
For example, if we had two additional points G and H, and the first
row read as in Table V, then the following pairs of faces may imme-
diately be identified as disjoint:

< min{p!(F)yls T,
, P'(F)yn}, or
p'(G)x.} or p(G)y: >

ABC,DEF  ABH,DEF  AHC,DEF
ABC,EFG  ABH, EFG AHC, EFG
ABC, DFG  ABH,DFG  AHC, DFG
ABC,DEG ABH,DEG AHC, DEG, ---

This method clearly beats having to test each pair separately.
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Table IV—Determining how 20 faces meet in pairs
Face F p(F)A p(F)B p'(F)C p(F)D pFE PpFF

ABC 30.0 30.0 30.0 80.0 60.0 69.0 ABC, DEF
ABD 175 17.5 5.0 17.5 —15.0 —6.0 ABD, CEF
ABE 24.0 24.0 18.0 50.0 24.0 33.0
ABF 22.2 222 14.4 41.0 13.2 22.2
ACD 30.0 5.0 30.0 30.0 85.0 6.9
ACE 30.0 60.0 30.0 140.0 30.0 69.0 ACE, BDF
ACF 13.3 0.0 6.7 0.0 0.0 6.0 ACF, BDE
ADE 22.1 12.9 14.3 22.1 221 21.9 ADE, BCF
ADF 22.2 12.8 14.4 22.2 22.6 22.2
AEF 22.2 13.2 14.4 23.0 22.2 22.2
BCD 20.0 10.0 10.0 10.0 10.0 9.0
BCE 20.0 10.0 10.0 10.0 10.0 9.0
BCF 20.3 10.5 10.5 11.8 11.3 10.5 ADE, BCF
BDE 20.0 10.0 10.0 10.0 10.0 9.0
BDF 20.1 9.7 10.2 9.7 11.1 9.7 ACE, BDF
BEF 20.4 11.4 10.8 14.0 114 114
CDE 20.0 10.0 10.0 10.0 10.0 9.0
CDF 20.3 9.9 10.5 10.5 119 10.5
CEF 20.3 11.3 10.5 13.3 10.5 10.5 ABD, CEF

DEF 23.0 14.0 16.0 27.0 27.0 27.0 ABC, DEF

Table V—Separating many pairs of faces simultaneously
Face F p'(F)A p(F)B p'(F)C p(F)D p(FE p'(F)F pF)G p'(FIH
ABC 30 30 30 80 60 69 70 25

.

X. RECAPITULATION

The cycle is now complete. We start out with some minimal cover—
possibly consisting of a single pyramid—on the x-space of some func-
tion y = f(x). The behavior of the function on the minimal cover may
be explored by linear interpolation as discussed in Section II. If further
information is subsequently found wanting, a new interpolant is cho-
sen, and a new data point is empirically acquired. Using the technique
from the preceding section, we are able to list all consistent ways to
extend the starting minimal cover into a new minimal cover that
incorporates the new interpolant. These new minimal covers should
be evaluated both in terms of their faces and in terms of the axes of
their pyramids. For either evaluation, the basic ingredient is the notion
of steepest ascent. Through this notion the values of the function at
the interpolants are taken into account. This distinguishes our ap-
proach from other schemes where only the x-space gets examined.
Eventually, a best new minimal cover is chosen, and we are ready,
once more, to interpolate and explore the function.
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