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A fractionally spaced equalizer is a nonrecursive adaptive filter
whose tap weights are spaced a fraction of a symbol interval apart.
Such an equalizer can significantly enhance modem performance in
the presence of severe linear distortion, when compared with a
conventional synchronous equalizer whose taps are spaced a symbol
interval apart. However, a digitally implemented, fractionally spaced
equalizer generally will exhibit long-term instability when the con-
ventional tap-adjustment algorithm is used. This occurs because, in
contrast to the synchronous equalizer, a fractionally spaced equalizer
generally will have many sets of tap values, which result in nearly
equal values of mean-squared error (mse). Some of these tap set-
tings—which invariably will be attained because of biases in the
digital tap-updating circuitry—are large enough to cause register
overflows and consequent performance deterioration. In this paper
we report how a simple modification in the tap-adjustment algorithm
provides a solution to the above problem. The modified tap-adjust-
ment algorithm prevents the buildup of large coefficient values by
systematically “leaking” or decreasing the magnitudes of all the
equalizer tap weights. For an experimental modem operating at 9.6
kb/s, it has been demonstrated that the tap-leakage adjustment
algorithm prevents the accumulation of large equalizer tap values,
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while permitting the full performance gain of a fractionally spaced
equalizer to be realized.

I. INTRODUCTION

Fractionally spaced equalizers (FsEs), which are nonrecursive,
tapped, delay-line adaptive filters, are currently receiving much atten-
tion'”” because of the significant performance advantage they provide
when compared with a conventional synchronous equalizer. Since an
FSE has the capability to adaptively realize the optimum linear re-
ceiver, it can greatly improve the performance of a modem in the
presence of severe linear distortion. More specifically, significant per-
formance improvements have been observed owing to the ability of an
FSE to compensate effectively for delay distortion at the limits of
private-line, voice-grade channel conditioning.? However, in laboratory
experiments with a digitally implemented FSE it was noticed that after
an extended period of operation some of the equalizer tap weights
would invariably become large, while the mean-squared error (mse)
remained at a satisfactory level. The taps generally would become so
large that one or more registers, which compute partial sums of the
equalizer output, would overflow, and the modem performance was
then substantially degraded. This phenomenon is a consequence of the
fact that an FsE, in contrast to a conventional synchronous equalizer,
generally has many sets of tap values that correspond to roughly the
same mse. Included in the set of tap values that correspond to the
minimum mse are some tap coefficients of relatively large magnitude.
These large tap values can be attained because of the cumulative effect
of noise or any bias in the digital circuitry that performs the equalizer
updating. Even though the value of the mse is satisfactory, some of
these tap values will be large enough to cause occasional overflow of
the partial sums computed to form the equalizer output. The purpose
of this paper is twofold: to elucidate why a fractionally spaced equalizer
has so many apparently “good” sets of tap values, and to indicate how
equalizer operation can be stabilized by simply modifying the conven-
tional estimated-gradient tap-adjustment algorithm.

The “almost unique” nature of the fractionally spaced equalizer
coefficients is discussed in Section II. In Section III we describe the
reasons for the occurrence of large tap values, and in Section IV a
modified adjustment algorithm, dubbed the tap-leakage algorithm, is
proposed to remedy the observed equalizer instability. The results of
laboratory experiments are reported in Section V.

Il. DOES A FRACTIONALLY SPACED EQUALIZER HAVE A UNIQUE
OPTIMUM SETTING?
2.1 Fractionally spaced equalizers

To answer the question posed by the title of this section, we refer to

the simplified baseband data transmission system shown in Fig. 1a.
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For the purposes of exploring the phenomenon of large-tap buildup,
this baseband model will suffice. Referring to the figure: {a.} are the
discrete-valued multilevel data symbols, 1/T is the symbol rate, p(t)
is the band-limited transmitter pulse (whose spectrum is shown in Fig.
1b), f(t) is the channel impulse response, and v(¢) is the additive
background noise. Note that the receiving filter output, r(t), is sampled
at the rate 1/7", and the samples are then passed through the tapped
delay-line equalizer (shown in Fig. 1c) having (2N + 1) delay elements
spaced T"(<T') seconds apart and weighting coefficients {c.}. The FSE
output

N
gnT)= Y ecarnT—mT), n=12 --- (1)
m=—N

is computed at the symbol rate and quantized (sliced) to provide the
data decision, d,. The transmitted pulse spectrum, shown in Fig. 1b,
generally will be band-limited to (1 + a)#/T radians/second where the
rolloff factor, «, varies between 0 and 1. An FsgE with tap spacing 7"
seconds will have a transfer function, Cr, (w), with period 2#/T", and,
as shown in Fig. 2, if 7' < T/(1 + a), the transfer function of the FSE
will span the entire spectral range of the transmitted signal. This
enables the equalizer to exert complete control over the amplitude and
delay distortion present in the region 0 < |w| < (1 + a)n/T. Conse-
quently, the FSE can compensate for these distortions directly, rather
than filtering the aliased (folded) spectrum, as is done by the conven-
tional equalizer.’ As an example of this feature, consider the ability of
the FsE to compensate for delay distortion by synthesizing the phase
characteristic conjugate to that of the received pulse. This operation
will leave the noise power at the equalizer output unchanged from the
received noise power. The conventional synchronous equalizer, be-
cause it has a transfer function that has period 27/T, can only equalize
the folded spectrum, i.e., the compensation characteristics on either
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Fig. 2—Transfer function of a fractionally spaced equalizer.
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side of m/T are restricted to be the conjugate of one another. If the
channel characteristics are such that the folded spectrum has a relative
null at a particular frequency, then the noise at the output of the
synchronous equalizer can be significantly enhanced and the perform-
ance degraded proportionately.

From Fig. 2 it should also be evident that when the noise becomes
vanishingly small, there is legitimate concern as to what function(s)
the equalizer will synthesize in the region, (1 + a)7/T < |w| < 27/T,
where there is no signal energy. It is known™® that for an infinitely
long equalizer the transfer characteristic that minimizes the mse is

CT; (w)= X (w) 2 ] lw|<—:2_;,rr

2
x X':m+l—%:| + No

!

where the asterisk denotes the complex conjugate, X () is the transfer
function of the received pulse,' x(¢), presented to the equalizer input,
and N, is the noise spectral density. As long as Ny # 0, the equalizer
function is zero whenever the received signal has no power; however,
as Ny — 0 the derivation of (2) is no longer valid, and, moreover, (2)
approaches 0/0 in the region (1 + a)7/T < |w| < #/T. Clearly, as the
noise vanishes, an infinitely long FSE can synthesize the required
channel characteristic in the region 0 < |w| < (1 + a)#/T, and an
arbitrary—and nonunique—characteristic in the remaining frequency
band. An interesting question, then, is what happens to the optimum
tap setting for a finite length FSE as the noise becomes vanishingly
small.

2

2.2 Uniqueness of solution for finite length FSE as the noise vanishes
The equalized mse is defined as

E = ([q(nT) — a.]*) = (e}, (3)

where the brackets denote the ensemble average with respect to the
data symbols and the noise, and e, is the equalizer output error, g(nT)
— a,, at t = nT. The mse is readily evaluated as the quadratic form

E =cAc — 2¢'x + (al), (4)

where the prime denotes the transposed vector, ¢’ is the tap vector
(c_n, =+, Co, *++, €n), X' is the truncated impulse-response vector
|x(NT"), ---, x(=NT’)|, and A is the channel-correlation matrix.
More specifically, the channel vector is given by

X = (Qnl'n), (5)
t Thus x(¢) is the convolution of the transmitter, channel, and receiver filters.
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where the received vector is given by r;, = |r(nT + NT”), .-. , r(nT),
r(nT — NT')|, and the A matrix is defined by

A = (rury). (6)

The klth element of the channel correlation matrix is given by

@

Au= Y x(mT - kT)x(mT — IT’) + ¢*6s-y, (7)
where o” is the noise variance and §; is the Kronecker delta. Note that
A is not a Toeplitz matrix, as it would be for a synchronous equalizer
(T" = T). If A is nonsingular then the optimum setting and the
corresponding minimum mse are obtained from (4) by differentiation,
and are given by

Copt = A—lx (8&)
Ep=1-xA"'x, (8b)

where (a:) is taken to be unity.

As seen from (7), the matrix A is the sum of two matrices, and as
will be evident from the discussion that follows, the channel-dependent
component of A is always positive semidefinite. Since the other com-
ponent of the channel-correlation matrix, o’], is positive definite, then
A will also be positive definite, and we can conclude that when there
is noise present, the optimum tap setting is unique.

We now consider the situation as the noise becomes vanishingly
small; clearly, the optimum tap setting will be unique if, and only if, A
is nonsingular. A sufficient condition for A to be nonsingular is the
nonvanishing of the quatratic form u’Au, for any nonzero test vector
u with components [«:]. Let us consider in detail this quadratic form,
which we write from (7) as:

N
wWAu= Y unAmnlin
mn=—N
N -
= ZEN Umttn Y, x(IT — nT)x(IT — mT")
mua=— l=—c0
o N 2
=Y [ Y umx(IT — mT’)] =0. 9)
l=—x | m=—N

The above inequality establishes the positive semidefinite nature of
the matrix A, and we see from (9) that u’Au can vanish only if*

* The authors gratefully acknowledge discussions with J. E. Mazo that led to this
development.
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N
Y unx(IT—mT')=0 [=0,+£1, %2, ---. (10)

m=—N

If we define the periodic Fourier transform

N
Ur@) = 3 ume™" T, |w|=

T
— 11
N T (11)

then we can proceed further by noting that

- - N : . dw
E u,,,x(lT — mT’) - E Um j X(w)ejwtiT—mT)_
m=—N m=—N - 27
o N
= j [ ¥ ume‘f“’“T'] X(w)e—MT@
—w Lm=—N 2

= J Uz (w) X(w)e T d—w
2m

= E J(2k+l]? UT,(w)X(w)e—jwle_w
k i 27

(2/(—1}?.

pvr(+7)

k27 o dw
R i) —JwIT ™~
X(w+ T):le o7 " (12)

=l a

ElE]

The right-hand side of (12) is recognized as the sample, at ¢ = IT, of a
function whose Fourier transform, Z.,(w), is contained in the brackets.
If (12) is to be zero for every value of /, then it must be that the Fourier
transform inside the integral vanishes completely, i.e.,

Zulw) = 3 Ur (w +kiT”) b'e (w +ki,1,f’) =0, o s% (13)
In Fig. 3a we show the situation when there is no excess bandwidth,
and since the sum, (13), reduces to one term, the only way for
Zeg(w) = 0 is for either X(w) = 0 or Ur(w) = 0. Since this implies that
Ur{w) = 0, it would violate the nonzero requirement on u. Thus, we
can conclude for this case that A is positive definite. A similar sketch
for the less than 100-percent excess bandwidth case is shown in Fig.
3b, where it is noted that only the 2 = 0, £1 terms contribute to the
sum, (13). However, in the nonrolloff region, |w| = (1 — a)n/T, only
the k& = 0 term influences the sum. For channels that do not vanish
over the entire nonrolloff region, it is clear that for Z.,(w) to vanish it
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Fig. 3—Sketches associated with eq. (13). (a) a=0. (b) 0 <a<1l. (c)a=1.

is required that Ur(w) vanish at least over the entire nonrolloff region.
Since Ur(w) is a finite-term Fourier series, it cannot vanish over an
interval without vanishing everywhere, which in turn would again
make u = 0. Note that if the channel vanished over a portion of the
nonrolloff region, then since Z.,(w) is a finite-term Fourier series, its
energy could not be totally concentrated in the region where there was
no channel energy. Thus, the solution still would be unique. It is worth
noting that in the extreme case of 100-percent excess bandwidth, Z.q(w)
can vanish. For example, in Fig. 3¢ we sketch the situation for a
constant X(w), and with Ur(w) = cos wT/2 it is apparent that
Zeq(w) = 0. Thus, for a finite-length FSE with an excess bandwidth of
less than 100 percent, we can conclude that even as the noise becomes
vanishingly small, the A matrix is nonsingular and there is a unique
optimum tap setting.

We digress for a moment to point out that for a finite-length
synchronous equalizer where 7' = T, (13) indicates that since
Ur(w + k27/T) = Ur(w), we can conclude that if the folded channel
spectrum does not vanish completely, then there is always a unique
tap setting.

lll. THE TAP-WANDERING PHENOMENON
3.1 Motivation, background, and infinite-precision considerations

We have shown that for a finite-length fractionally spaced equalizer
and the practical range of interest—where the excess bandwidth is on

the order of 10 to 50 percent—even with vanishingly small noise there
will always be a unique best tap setting. One issue of interest is the
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“closeness” (or ill-conditioning) of the A matrix to a singular matrix.
This is important for two reasons. First, the distribution of the eigen-
values of A, which is a measure of the ill-conditioning of the matrix,
influences the rate of convergence of the equalizer taps to their
optimum setting.'” Second, and more importantly, we observe, from
(4) that the contours of equal mse are elliptical, and the eccentricity of
these contours is directly related to the eigenvalue distribution. In the
appendix it is shown that for an infinitely long equalizer with T =
T/2, half the eigenvalues are zero; in Fig. 4 we illustrate some constant
mse contours for a finite-length T/2 equalizer, whose optimum tap
setting is denoted by cop.. Recall' that even with an infinite-precision
analog implementation, the use of a finite step-size in the conventional
estimated-gradient tap-adjustment algorithm results in a steady-state
mse that exceeds* E,,. This is depicted in Fig. 4, where the boldface
contour is the mse that can be attained with the chosen step-size.
Owing to the random component in the algorithm’s correction term,
the taps will wander along the constant mse contour, and there will be
a certain probability that the taps will become so large that one or
more registers will saturate! Thus, even in an analog implementation,
random tap wandering can, in principle, lead to degraded performance.

3.2 A model for tap drifting in digital equalizer

It has been observed in laboratory experiments with a digitally
implemented FsE, that under control of the conventional estimated-
gradient tap adjustment algorithm,'’

Cni1 = Cn — afenrs], n=123-:- (14)

the equalizer taps inevitably drift close to the shaded (large tap) region
of Fig. 4. In (14), ¢, is the tap vector at ¢ = nT, « is a positive value
called the step-size, which influences both the convergence rate of the
equalizer and the steady-state mse, and the brackets around e,r»
indicate that this increment is quantized to a specified number of bits.
The term [e,r,] will have a deterministic component proportional to
the desired gradient, and a random component owing to both the
manner in which the digital quantization is performed and the influ-
ence of the noise and data-dependent terms. Generally, [e.r,] will also
possess a deterministic component owing to bias inevitably present in
a digital implementation. A typical mechanism for such a bias is the
two’s complement type of quantizing characteristic shown in Fig. 5.
To quantify our discussion, we denote the bias by a time-invariant

* The mse E,py is achieved when the taps are at their optimum values, Cop.
tFor a synchronous equalizer the ellipses will not be very eccentric, and the tap
wandering will not do any damage.
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Fig. 4—Contours of equal mse and tap convergence.

vector, b, and model the adjustment algorithm as
Cn+1 = €, — ale.r, + b), (15)

where the bias vector has equal components, and b has a magnitude of
less than half a quantization interval. Equation (15) ignores, except for
the bias, the effect of limited precision on the algorithm.* Since it has
been observed in the laboratory that tap wandering results in a
systematic buildup of some tap values, the model expressed by (15)
should be useful in relating the magnitude of the bias to the other
system parameters. It is bias component that can drive, in a determin-
istic manner,' the tap vector towards the tap region corresponding to
large tap values. Since the equalizer output is formed as a series of
partial sums, of the form Y., ¢rn—m, it is clear that large-tap values can
lead either to an overflow of a partial sum or saturation of a tap. As
the taps grow, occasional register overflows begin to occur, resulting in
noise-like “hits” on the equalizer output. The occurrence of such a
“hit” is a function of the specific pattern of data samples contained in
the equalizer. Continued growth of the taps increases the frequency of
the “hits” as more data patterns can produce these events. The error
rate can become very high, relative to what constitutes acceptable
performance, but the frequency of occurrence of “hits” is still low

* Reference 10 discusses the effect of limited precision on the mse or an FsE in the
absence of a bias term. Note that the bias as “seen” by the taps is ab.
t As opposed to the random wandering associated with the self-noise of the algorithm.
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Fig. 5—Quantizing characteristic that produces a bias in the tap-adjustment algo-
rithm.

enough that the mse is almost unaffected. Growth continues until the
tap coefficients themselves begin to saturate. At this point severe
degradation occurs as the degrees of freedom of the system are reduced.
In fact, with an experimental digitally implemented FsE, with a symbol
rate of 2400 symbols/second, overflows typically begin to occur within
several minutes of operation. The overflows produce noise-like hits
and a degraded equalizer output.

3.3 The mean tap error and the mean-squared error

To assess the effects of the bias quantitatively we first define the
tap-error vector,

€, =Ch — copt, (16)

and then use the model described by (15) to write the tap-error
evolution as

€141 = € — alern + b). 17
The mse at the nth iteration,* E,, is given by
E, = Eop + (€,4€,). (18)
Our intent is to study the excess mse,
gn = (€nA€n), (19)

and the mean tap error vector, (€,), in the presence of the bias, b.

*In arriving at (18), we assume that iterations are infrequent enough so that
successive vectors {r.} are independent. In practice, adjustments are generally made at
the symbol rate, and the algorithm is observed to behave as if the {r,} were independent.
This phenomenon is discussed in Ref. 11.
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From (17) we have
(€ns1) = (€x) — a{enrsn) — ab = (I — ad){€,) — ab, (20)
and thus the steady-state mean tap error satisfies
() =A7b. (21)

If A; and p;, respectively, denote the ith eigenvalue and eigenvector of
A, then

X pib
(e) =% ——ph_ pi. (22)
-N i

Clearly, if there is a small eigenvalue whose eigenvector is not orthog-
onal to b, then the steady-state tap error can be quite large. It is
interesting to note that for a small number of taps, one would expect
that the eigenvalues not be small, i.e., the equalizer would not possess
enough degrees of freedom to realize a somewhat arbitrary transfer
function beyond the rolloff region. Consider the one-tap equalizer (or
automatic gain control) where A = (r?(nT)), and consequently

N b
€ =y
Thus, for a one-tap equalizer, the tap error is directly proportional to
the magnitude of the bias, and the buildup of a large tap value is
prohibited. However, in the limit as the number of taps becomes
infinite, it is shown in the appendix that with 7' = T/2, half the
eigenvalues are zero, while the other half tend to uniformly sample the
aliased (with respect to the symbol rate) squared magnitude of the
channel transfer function. Moreover, the eigenvectors corresponding
to the zero eigenvalues have most of their energy concentrated near
1/T Hz (and are thus close to being orthogonal to b), while the ith
eigenvector corresponding to the nonzero eigenvalues approaches a
sinusoid of radian frequency w; = i/N =/T. For practical, finite-length
equalizers, these limiting conditions will only be approximated, and
there will be small eigenvalues whose corresponding eigenvector is not
orthogonal to b. Consequently, (€) can become as large as the largest
ratio [p/b]/A;, and the steady-state tap error would then be biased
away from the optimum value.
We now discuss the effect of the bias term on the equalized mse,

En = Eop + (€hA€,), (24)

(23)

where the tap error evolves according to (17). In particular we will
examine the size of the residual mse,

gn = (€hLA€,). (25)
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An exact analysis (or tight bounds) of the behavior of g, is an extremely
difficult problem; however, by assuming that the sequence {r.} is
independent,'’ and that when the taps are at or near their optimum
settings, the squared output error is relatively insensitive to the trans-
mitted data pattern,* it is possible to establish simple, but useful,
relationships between the relevant system parameters. From (17) we
have that

Gn+1 = (€nrid€nn1) = ([€n — aler’ + ') ]A[€, — alexrn + b)]), (26)
and by using the above assumptions we have (see Ref. 10)
gner = [1 — 20X + &®Am(2N + 1)(r7)1gn

+ *Am(2N + 1) ((ri)Eop + b%), (27

where Ay is the maximum eigenvalue of A, and where

_ 1 N
A_ ;
=N l_E A (28)

is the average eigenvalue. Thus, the steady-state fluctuation about the

minimum mse is

aAu(2N + D[(r*(nT))Eop + b°]
2\ — aAm(2N + 1)(r*(nT))

[l

g (29)

To assess the effect of the bias on g., we note that the bias “seen”
by a tap component, ab, will be approximately 27%Crax, where B is the
number of bits used to represent the tap weights and Cmax is the
maximum tap value. If the equalized signal is assumed to have unity
power, then Cmax = 1/[(2N + 1)(r7)]"* and a is typically' on the
order of 1/|(2N + 1) (r2)|. Thus, &*/|r*(nT)| will be on the order of
2-28(9N + 1), and when the equalized output signal power is unity,
Eop is Toughly the inverse of the output signal-to-noise ratio. With
typical parameters like (2N + 1) = 60, B = 12, and E,, = 0.001, it is
clear that the effect of the bias on g.. is negligible. Thus, owing to the
quantizing bias, there can be, on the average, a buildup of one or more
large-tap weights, while the mse is relatively unaffected. In other
words, under the influence of a bias the taps would still remain on the
boldface mse contour of Fig. 4, but would spend most of the time near
the shaded region, and the system would be subject to random over-
flows, or hits. This phenomenon has been repeatedly observed exper-
imentally, and in the next section we will describe a very simple means
of controlling the tap wandering.

_* When the taps are at their optimum values, the error is known to be uncorrelated
with the received samples.
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IV. THE TAP-LEAKAGE EQUALIZER ADJUSTMENT ALGORITHM

As we have discussed in the previous section, some or all of the tap
weights in an FSE can reach unacceptably large values when the
conventional tap adjustment algorithm, (14), is used. A simple means
of controlling large-tap buildup is by minimizing either of the aug-
mented cost functions

N
i==N
N
L=E+u Y |al, (30b)
i=—N

where, as in (3), £ is the mse and p is a suitably chosen (small)
constant. The cost function .J; ascribes a quadratic penalty to the
magnitude of the tap vector, while J; provides a magnitude penalty,
i.e., the cost function is penalized whenever the tap vector builds up
excessively. Since the taps are to be adjusted adaptively, we cannot
interpret p as a Lagrange multiplier. The use of a Lagrange multiplier
would be appropriate if we were actually able to minimize ./ in a
deterministic manner by using the true gradient. However, since the
gradient of E with respect to e, Ac — X, is not available, we must
implement a stochastic algorithm analogous to (14). Thus, u must be
chosen beforehand by using some prior knowledge of the system
parameters.

4.1 Increased steady-state mse: true-gradient algorithm

As a preliminary calculation, let us first consider the degradation in
the minimum attainable steady-state mse caused by choosing ¢ to
minimize ./, instead of E. Note that, for the moment, we are neglecting
the bias and only assessing the increased mse caused by minimizing
the augmented cost function, /1, via the true-gradient algorithm. From
(4) we observe, for binary transmission, that the taps will attempt to
minimize the modified criterion:

Ji=¢c'(A +pl)e — 2¢'x + 1. (31)
=c¢'Be — 2¢'x + 1, (32)

where B = A + pul. The matrix B has the same eigenvectors as A,
while the eigenvalues of B are A + . Note that the contours of equal
values of .J are still ellipses but the maximum-to-minimum eigenvalue
ratio governing the tap wandering is now (Amax + 1)/ (Amin + ), where
Amax and Amin are the maximum and minimum eigenvalues of A,
respectively. Thus, by choosing p properly, the eccentricity can be
controlled, and the equalizer tap vector is now determined as if the
noise power were increased from o® to o® + p. Of course, the use of a
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tap vector selected on the basis of the pseudo-noise power, o + u, will
increase the steady-state mse.* Note that the steady-state tap vector
will now satisfy

Be=x
or
cw) =B 'x=(A+p])7x, (33)

where ¢(u) denotes the steady-state tap vector corresponding to the
chosen value of u. Thus, the minimum attainable mse is given by

E(u) = c¢'(wAc(p) — 2¢'(p)x + 1, (34)
and the increased mse, E(u) — Eop, is
E(p) — Eop. = [e(p) — con]’Ale(p) — Copt]. (35)
To make a more detailed evaluation of the increase in mse, we let
€(p) = e(p) — Copt (36)
denote the tap-error vector. Recalling the diagonalization
A= i_§N Apipi, (37

and the fact that inverse matrices have the same eigenvectors and
inverse eigenvalues, we find that

€(p) = c(p) — Cop =[(A+pI) ' —A7x

(L 1)
= L\ i x PiP:
-y ——pix-p.. (38)
i Ai(Al + #)

Substituting (38) into (35), and using the orthogonality property of
distinct eigenvectors, we find that

N
E@ — Ep=p> ¥ (p%)° (39)

1
i=-N N + )

Thus, to a first approximation, the increased mse grows only as the
square of the leakage parameter, y, while the eigenvalue distribution—
and the range in which the taps can wander—can be favorably altered,
in a significant manner, by using even a very small value of p.

* The fluctuation about the minimum mse, caused by the finite step size, will also be
examined.
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4.2 The adaptive tap-leakage algorithm

In a manner analogous to the commonly used estimated gradient
algorithm, the adaptive tap-leakage algorithms are constructed, from
(30a), by minimizing the augmented instantaneous squared error,
en + uchc,, and, from (30b), by minimizing e2 + u ¥X_x | c’|. The first
algorithm modifies the gradient by a term proportional to the tap
vector itself, giving the algorithm

Cn+1 = Cp — a[enrn + ].Lc,.]

= (1 — au)c, — ae,ry, (40a)

while the second algorithm is of the form

Crn+1 = Cp — a'(enrn + 113 sgn c,.,)

= Cp — L SgN Cp, — aepry, (40b)
where the sgn operation is applied individually to each component of
the tap vector. Note that from an implementation point of view, the
algorithm can be modified with almost no hardware change other than
applying a systematic decrement to the magnitude of each tap. The
second algorithm (40b) has the practical advantage that adjustments
will continue to be made no matter how small any tap weight becomes,
while the first algorithm has the “advantage” of analytical tractability.

Consider now the mean tap error when the leakage algorithm (40a)
is used. In the presence of digital bias, the algorithm is modeled as

Cn+1 = Cn — afern + b + peg]. (41)

Subtracting cop: from both sides of (41), and solving for the steady-
state average tap error we find

A+pu) b+ A+pul) pA7x

N N /
pP/b Pix
= —0p:+ T~ P
,-_Z_:N A+ Lo |‘=§N Ai(hi + ) P

(€)
(42)

The first term, on the right-hand side of (42), is similar to (22), but
note that the eigenvalues have been modified to eliminate the cata-
strophic effects that can accompany vanishingly small eigenvalues.
The second term, which is proportional to the leakage parameter, is
similar to (39), and represents the increased tap error caused by the
minimization of J; and not E. The leakage parameter, g, must be
chosen sufficiently large so that the first term is properly controlled in
magnitude, but not so large that the magnitude of the second term
becomes appreciable. In general, the choice of u is best done empiri-
cally, but if p is chosen to be in the range where Aminimum + g = g, then
equating the magnitude of the two terms in (42) gives
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N
Y (p/b)’

i=—N
-~

FES o =
X T
i==N 3

For any given channel, (43) can be evaluated, but as far as the average
tap error is concerned, it is sufficient to choose u in such a way that
the magnitude of (€) is within the nonshaded region of Fig. 4. From
(42), one reasonable choice is to make p roughly equal to the smallest
value of A; for which p/x is significantly larger than A;.

To assess the effect of the tap-leakage algorithm, (40a), on the
steady-state mse we recall eq. (18)

E,= Eopl + qn,

where Eop: is the minimum mse when both b and u are zero. From (41)
we can compute an approximation to the steady-state value, g=, in a
manner similar to the computation of (28). For the adaptive tap-
leakage algorithm we find that the fluctuation about the minimum
mse is

_ aAu[@N + 1)+ (r*(nT)) Eop + b'b] + 20ub'x + p*xX'A"'x
2N + p(1 — ) — a[Au(2N + 1)(r*(nT)) + p*] '

(44)

o

Obviously, (44) is very channel dependent, but when p is chosen on
the order of a small eigenvalue, then the fluctuation about the mini-
mum mse is a rather insensitive function of the leakage parameter,
while the magnitude of the mean tap error, (42), can be effectively
controlled by the proper choice of p.

In the next section we will discuss the results of laboratory experi-
ments that use the tap-leakage algorithm to control the potentially
unstable operation of a fractionally spaced equalizer.

V. LABORATORY EXPERIMENTS

For an experimental 9.6-kb/s data transmission system using 16-
point quadrature amplitude modulation, the tendency of the tap
coefficients of a digitally implemented equalizer with T/2 sample
spacing to drift is demonstrated by the waveforms of Figs. 6a and 6b.
These waveforms are analog representations of the values of one
component of a set of complex tap coefficients associated with data
samples taken T'(=1/2400) second apart. The equalizer is physically
constructed by using two conventional T-spaced interleaved struc-
tures, requiring four tap coefficient component distributions to totally
describe the state of the equalizer.

The equalizer goes through a conventional start-up procedure, ex-
cept that timing recovery and carrier phase adjustments are suppressed
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(b)

Fig. 6—Tap buildup as a function of time. (a) Three-minute intervals. (b) Five-minute
intervals.

so that the distribution of tap coefficients will not change through
interaction with either of these operations. The transmitted signal is
fed back to the receiver, after passing through appropriate attenuators,
thus avoiding any time varying channel characteristics, and assuring
a low noise environment.

The first trace of Fig. 6a illustrates the distribution of components
among the particular collection of coefficients immediately after start-
up. A single large negative component is noted, with all other compo-
nents relatively insignificant. The coefficients are updated in the usual
fashion, via (14), without the addition of a tap-leakage adjustment.
Subsequent traces in Fig. 6a are taken at 3-minute intervals. The
traces of Fig. 6b are a continuation of Fig. 6a with the separation in
time extended to five minutes. A clear pattern of buildup in the
amplitude of the taps, particularly those immediately preceding the
original dominant tap, is demonstrated. A similar compensatory
buildup occurs among those tap coefficient components not displayed,
such that the mse is essentially unchanged over the duration of the
test. This deterministic growth of tap amplitudes will eventually lead
to saturation of shift register accumulators used in forming the various
components of the equalizer passband outputs. The observed output
signal constellation will display frequent apparent noise-like hits of
large amplitude, and an unacceptable output error rate results.

The tap-coefficient components in the laboratory configuration are
stored in 24-bit shift registers. The 12 most significant bits are used in
the multiplication to form tap-product outputs. The remaining bits
were to average out the effects of tap updating, which is normally done
according to the rule

Cn+1 = Cn — alenry).

The components of the updating quantity —a(e.r,) are stored in 12-bit
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words which are added to the 20 most significant bits of the coefficients
during the normal steady-state mode of operation. To counteract bias
in the arithmetic, the updating is changed to the tap-leakage algorithm

Cp+1 = Cp — B sgNn Cn — a(enrn)1 (45)

where 8 = ap of (40b). In the experimental setup, a count of 1 is added
or subtracted to the 23rd most significant bit of each component of
each tap coefficient once each symbol interval. In steady-state opera-
tion, the 12-bit updating signal will typically show activity in a mini-
mum of the five least significant bits. In general, therefore, the leakage
term is quite small compared with the conventional updating term.

The effect of introducing this leakage is shown in the waveforms of
Fig. 7. The top trace shows the coefficient distribution 40 minutes after
initial start-up, at the time the leakage is enabled. Subsequent traces
were taken at 30-second intervals. Within two minutes the coefficient
components had been virtually restored to the state that existed
immediately after start-up.

The experimental arrangement allows the leakage to be scaled over
a wide range. Viewing the 24-bit coefficient as an integer, the leakage
increment can be made 2", r =0, 1, - -+ , 7 (r = 1 is the case displayed).
Since the coefficients are chosen to span an analog range of +4, this
corresponds to B as defined in (45) ranging from 27*' to 27", with 8 =
2% displayed. The value of « used in the experiment is a = 27'". It is
observed that 8 = 272, the lowest possible level of continuous leakage,
is adequate to suppress tap drift, indicating the extreme low level of
the system bias to which the FsE updating algorithm appears suscep-
tible.

The larger the value of 8 that is chosen, the more the leakage will
degrade the equalizer performance, although the degradation is negli-
gible for B less than 2717 In normal data-set operation, it is observed

-« TIME

TAP VALUES —a

Fig. 7—The effect of the tap-leakage algorithm (30-second intervals between traces).
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that a substantially rapid shift in the sampling epoch, which may occur
during the timing recovery operation, will greatly accelerate the
buildup of tap coefficients. The choice of 8 = 27" will allow rapid
response to this situation without perceivable performance degrada-
tion.

VI. CONCLUSIONS

Effective control of tap drifting for a fractionally spaced equalizer,
at a 9.6-kb/s data rate, has been demonstrated by employing the easily
implemented tap-leakage algorithm. The tap-leakage algorithm, or
some variation of it, might be appropriate for any digitally imple-
mented adaptive system that has too many degrees of freedom and
that exhibits coefficient wandering.

APPENDIX

Asymptotic Distribution of the Eigenvalues and Eigenvectors for
Synchronous and Fractionally Spaced Equalizers

In this appendix we describe the eigenvalues and eigenvectors of
infinitely long synchronous and fractionally spaced equalizers.

A.1 Synchronous equalizer

First we recall the eigenvalues and eigenvectors of an infinitely long
synchronous equalizer. From (7) we have the eigenvalue equation

N
12 Ap_1pi = Api, N=Ek=N, (46)
“ZN

where A is an eigenvalue and p’ = (p-n, -++, po, -+, pn) is the
associated eigenvector. As N — oo, taking the Fourier Transform of
both sides of (46) yields

™

AWPW) = Pw), o=z (47)
where
Aw) = '%}X(w+k—§,f) 2+ @
= | X |?+ & |o|< % (48)*

The only way for (47) to be satisfied [with P(w) # 0] is for P(w) to be
concentrated at a single frequency [unless A (w) has the same value at

* Recall that the Nyquist-equivalent spectrum X.q(w) is defined as Xu(w) =
Y X(w + k27/T).
*
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more than one frequency]. If we let

L
=NT
then the solution to (47) is
Ai = Alw)
—N=i=N
Pi(w) = 8(w — wi). (49)

Thus, for a synchronous equalizer the asymptotic (N — ) eigenvalues
uniformly sample the folded-channel plus noise spectrum, and the
eigenvectors are the corresponding sinusoids.

A.2 Fractionally Spaced Equalizer

Here the channel-correlation matrix, while symmetric, is not
Toeplitz; thus Fourier Transform techniques do not yield the eigen-
values and eigenvectors in the above short order. For convenience we
consider the noiseless situation, and the eigenvalue equation becomes

n
Y AT, IT)p(T’) = A\p(RT") —N<Ek<N, (50)
I=—N

where the channel-correlation matrix has elements

ART,IT) =3 x(mT — RT)x(mT — IT"). (1)

With 7% = T/2 and N — o we write (50) for even and odd values
of k

T T T T T

,?WHA(’*WE)P(‘E)*Eﬁ(’“?*ﬁ)ﬂ(‘a)
=)\p(k g),keven (562)

T .T T T . T T

,EHA(’BE'IE)”([E)+f§dA(k§'l§)p(l§)
=Ap (k g),kodd. (53)

Now (52) and (53) can be written respectively as

T T
Y AT, IT)p(IT) + ¥ ARRT, IT) + 3P (lT + E)
{ [

= Ap(kT), —o<k<o (b4)
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and

T T T T
;A(kT+E,lT)p(lT) +§:A(kT+_2-’ IT+—2-)p (IE)
=Ap (kT+—§), (55)

where both equations hold for all integer values of k2, and, more
importantly, the various component matrices are now all Toeplitz.* If
we let

feq(w)éX(w)—X(w—z—;)—X(w+2—;), ]wls% (56)

and

ﬁ(m)éP(w)—P(w%’r)—-P(w+?E), IwISE (57)

T T

then taking the synchronous Fourier Transform (i.e., with respect to
the T seconds sampling interval) of (54) and (55) gives

| Xeq(@) |?P(w) + Xeq(w) X2 (w)P(w) =AP(w) O0<]|w|=< (58)

Nl

and

Koo)X 2(@) P (@) + | Xeq(w) |2P (w) = AP (w). (59)
Note that p(kT + T/2) has the Fourier Transform

—jwz —~
e *P(w),

while the Transform of p(kT) is of course P(w). Arguing as we did for
the synchronous equalizer, we see that the ith eigenvectors P;(w) and
P,(w) must again be delta functions at w; = i/N 7/T. Upon setting the

determinant of the pair (58) and (59) to zero, we see that the eigen-
values satisfy

N = Nil | Xeq(@i) | + | Keql@i) |*] = 0, (60)
and thus for each value of w; there are two eigenvalues
Ai=0

2

Ai= |Xeq(w,') |2 + IXeq(w:') |2 = Z ‘X(wi + &) (61)
k

T

In contrast to the synchronous equalizer, half of the eigenvalues are

* For example, A (kT, IT + T/2) = ¥ x(mT — kT)x(mT — IT + T/2) = Ynx(nT)x|nT
+(k-DT+T/2|
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exactly zero, while the other half are samples of the aliased magnitude-
squared channel transfer function. Not surprisingly, the eigenvalues
are independent of the receiver sampling phase. Once the eigenvalues
are determined we can solve for the eigenvectors. The ith eigenvector
associated with the zero eigenvalue is

X (wi)e?T n even
T ) :
Di (n _) = jm.(n+l)’f' (62)
_X:q(wl')e 2 ’ n Odd)

while the eigenvector associated with the nonzero eigenvalue is

) ( T) X,,q(t..:.‘)e’"""""“,1 n even

=| - o m 4 (63)
" 2 ){eq(ﬁl\Ji)E‘r ( +2) T, n odd.

At this point we remark that when w; is not in the rolloff region then
Xeglwi) = Xeq(wg), and (63) describes a sinusoid of frequency w;, since
the even and odd portions of p;(n T/2) mesh together in a continuous
manner [i.e.,

pi(n T/2) = Xeq(wi)e™"T/?],

However, (62) describes a function that changes sign and oscillates
almost a full cycle in T seconds. Consequently, pi(n T/2), as given by
(62), will have most of its spectral energy concentrated near 1/7T Hz.
When w; is in the rolloff region, the frequency content of (62) and (63)
will differ somewhat from the above extreme cases but the general
results will still be as above.
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