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This paper poses an assignment problem with a nonlinear objective
function. It is formulated as an integer programming problem and a
graph model is used to determine its exact solution. Application of
the problem in long-range homing in telephone networks is also
discussed.

. INTRODUCTION

Consider a process in which at each stage an originating center
must be connected to exactly one of a set of terminating centers. The
originating center has a load and each terminating center has a
capacity. The originating center can be connected to a terminating
center only if the terminating center has enough capacity for its load.
The originating center’s load and the terminating centers’ capacities
vary with time (i.e., from one stage to another), but they are assumed
to be known at all times. The problem is to determine the optimal
connection configuration at each stage of time. The costs involved are
the transmission cost and the rearrangement cost. Both costs are
nonlinear functions of the originating center’s load. The transmission
cost is the cost of connection of the originating center to a terminating
center. The rearrangement cost is incurred if, in transition from one
stage to the next, the connection of the originating center to a termi-
nating center has to be changed because of insufficient capacity.

Such an assignment problem may be encountered in many applica-
tions. One important application arises in the design of hierarchical
telephone networks.'™ The process of connecting a switching center to
a center in the next level of hierarchy in the backbone route of such
networks is called homing. The problem of determining the optimal
homing configuration of a switching center over several stages during
a study period can be formulated as the above assignment problem.*
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In such a case the originating center could be an end office and the
terminating centers could be toll centers (i.e., switching centers in the
next level of hierarchy). The load of the originating center would then
correspond to the traffic volume of the end office and the capacities of
terminating centers would correspond to the switching capacities of
the toll centers. The transmission cost would be the cost of trunks
homing the end office on a toll center and the rearrangement cost
would correspond to the cost of changing the homing configuration.

In this paper a graph model will be developed for the above nonlinear
assignment problem. The solution to the problem will be converted to
determining a shortest path on this graph. The algorithm developed
for the solution is easily programmable on the digital computer.

Il. FORMULATION OF THE PROBLEM

Consider N stages of time indicated by ¢ = 1, 2, ... N. Let TC(t)
represent the set of available terminating centers at stage £. The
originating center OC must be connected to a terminating center TC;
in this set at stage ¢. Let

1 if OC homes on TC; € TC(t)
xx(t) =

0 otherwise.
Indicate the load of the originating center at stage ¢ by S(¢) and the
capacity of terminating center T'C; at stage ¢ by Ck(t). The costs and
the constraints of the problem can then be formulated as follows.

(1)

2.1 Cosis

The transmission cost per unit distance is assumed to be a nonlinear
function fof the originating center’s load, as shown in Fig. 1. It includes
a fixed cost that is independent of the originating center’s load. (In the
case of the homing problem in telephone networks, this fixed cost
would represent the eost of preparing for establishing a transmission
facility, e.g., laying a cable.) The fixed cost will be incurred only for a
new connection. For increasing the capacity of an existing connection,
only the incremental cost will be incurred.

Thus, the total transmission and rearrangement costs can be for-
mulated as

N

Y X {fIS@]— FIS( — D]x(t — 1)} xr(t)ds (2)
t=1 TC,EETC(t)
where S(0) = 0 and d is the distance between OC and TC.. Note that
S(¢) is known a priorifort=1,2, ..., N.
Equation (2) includes the rearrangement cost, i.e., the cost incurred
if in transition from one stage to the next the terminating center
assignment changes. However, if such a change occurs, the old con-
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Fig. 1—Transmission cost per unit distance as a function of the originating center’s
load.

nection will represent a saving in the cost that must be considered.
This saving is, in general, a nonlinear function of the rearranged load.
We call this function g[S(¢)], which is obtained empirically for each
application. Thus, eq. (2) must be modified as follows to represent the
total transmission and rearrangement costs

N
Y Y {fIS®)] - fIS(t = 1)]xe(t = 1)}xa(t)d

t=1 TC,eTC(t)
N-1

-2 X 1g[3(t)]|x,,(¢+ 1) — xx(2)]. (3)

=1 TC,ETC(t) 2

The reason for including the coefficient % in the second part of eq. (3)
is as follows. If in transition from one stage to the next the terminating
center assignment changes from T'C; to TCy, the absolute value term
will contribute 2 instead of 1 (1 for £ and 1 for £’).

2.2 Constraints

Since the originating center must be connected to exactly one
terminating center at each stage, we must have

Y x(t)=1 fort=1,2...,N. (4)

TC,ETC()

Also, the load of the originating center cannot exceed the capacity of
the terminating center to which it may be connected; thus
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S(t)xn(t) = Ci(t) for all TC, € TC(t),t=1,2,---,N. (5)

The problem can then be formulated as follows. Minimize the
objective function (3) subject to constraints (4), (5) and

x(t)=00r1 forell TC,E TC(t),t=1,2, ..., N. (6)

lil. A GRAPH MODEL FOR THE PROBLEM

The above problem is a nonlinear integer programming problem.®
For most practical applications this problem will have a considerable
number of variables and constraints. For example, for 10 stages and 8
terminating centers there will be 8 X 10 = 80 variables and 10 + 8 X
10 = 90 constraints in the problem. The nonlinearity of the cost
function and the large number of variables and constraints render the
available standard integer programming techniques (such as the
branch and bound method®) impractical for the solution of this prob-
lem. In this section a graph model will be developed for the problem,
which aids in obtaining an exact solution for it.

Define a matrix A whose rows and columns correspond to stages
and terminating centers, respectively. The (¢, 2) element of matrix A
is defined as

alt, k) = {1 if OC can be connected to T'Cy at stage ¢

0 otherwise.

(7)

Element a(f, 2) of matrix A can easily be obtained by determining
whether T'C,, € TC(t) has enough capacity for the originating center at
stage £. Hence, constraint (5) will be used in the construction of matrix
A. To incorporate constraint (4) and to perform the required minimi-
zation, define a directed graph® G whose nodes are elements 1 of matrix
A. The arcs of G connect node pairs in consecutive rows of A in the
direction that ¢ increases. Then each path in G that connects a node
in the first row of matrix A to a node in its last row forms a feasible
solution to the problem where each node (¢, k) of graph G included in
such a path corresponds to xx(¢) = 1. Note that since exactly one node
in each row of matrix A is included in such a path, constraint (4) will
be satisfied.

Costs will now be assigned to the nodes and the arcs of graph G in
such a way that the solution of the problem converts to solving a
shortest-path problem on G. The cost associated with a vertical arc in
graph G (i.e, an arc connecting a node pair in the same column of
matrix A) is zero. A cross arc of graph G (i.e., an arc connecting a node
pair in different columns of matrix A) from row ¢ to row £ + 1 has cost
—%g[S(t)]. Each node of graph G corresponding to terminating center
TC; and stage ¢ is assigned the cost { f[S(¢)] — F[S(t — 1)]xe(t — 1)} d;.
If the arc connecting the predecessor node of (¢, k) to it is a cross are,

1866 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1982



then the cost of node (¢, k) is f[S(¢)]dx. If the arc connecting the
predecessor node of (¢, k) to it is a vertical arc, then the cost of node
(¢, k) is { f[S(2)] — f[S(t — 1)]}dx. With these assignments, the costs
of the nodes and the arcs in graph G correspond, respectively, to the
first and the second parts in expression (3). Hence, to solve the
problem, a minimum cost path in graph G from nodes in the first row
to nodes in the last row of matrix A must be found.

IV. AN ALGORITHM FOR THE SOLUTION

Since graph G includes no cycles, a labeling method similar to that
used in the “shortest-path algorithm”® may be employed to determine
paths of minimum cost. Label each node in the first row of A by its
corresponding cost. The labels of nodes in the other rows of matrix A
will be determined according to the following rule:

Node label of its
Mi predecessor node
+ cost of the arc (8)
connecting them
+ proper node cost

Label of -
node (t, k) all predecessor nodes

where
f[S(¢)]d; if the arc
arriving at node (¢, k) is
proper node cost _ | acrossarc, )
of node (¢, k) {(FfIS(®)] — fIS(t — 1) ]}dr if

the arc arriving at node
(¢, k) is a vertical arc.

With the above labeling method, the label of each node will be the
minimum cost of path(s) in graph G connecting nodes in the first row
of matrix A to it. An optimal solution to the problem is obtained by
finding the node(s) with minimum label in the last row of matrix A
and determining its predecessor(s) from which the label was produced
and continuing to the first row of matrix A. Each node thus obtained
will then identify the proper terminating center assignment at the
corresponding stage.

The above method is essentially a forward dynamic programming
technique.” It can also handle the case where a terminating center has
been initially assigned to the originating center. In such a case, simply
adjoin a row on top of the first row of matrix A such that all its
elements are zero except the one corresponding to the initial termi-
nating center assigned to the originating center, which is 1. In that
case all paths in graph G will originate from this new node (and its
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Fig. 2—Load, capacities, and distances in the example for stages ¢ = 0 through ¢ = 3.

label can be assumed to be zero). Note that for cost calculation in such
a case, S(0) will have its actual value, not zero.

V. EXAMPLE

We will illustrate the above method by applying it to a problem
involving three stages, ¢ = 1, 2, 3, and four terminating centers 7'C;,
k =1, 2, 3, 4. Assume that initially (i.e., at ¢ = 0) terminating center
TC: has been assigned to the originating center. This is illustrated in
Fig. 2a where the load of the originating center and the capacities of
the terminating centers (in proper units) are indicated adjacent to
them. Also, the distance between the originating center and each
terminating center is indicated in Fig. 2a (i.e., di =6, d> = 3, ds = 4,
ds = 5 in proper units). Figures 2b, 2¢ and 2d show the originating
center’s load and the terminating centers’ capacities in stages 1, 2 and
3, respectively. Note that

S(0) = 20, S(1) = 24, S(2) = 32, S(3) = 38.

This configuration results in the matrix A shown in Fig. 3a. The
corresponding graph G in which nodes are distinguished by circles and
arcs are shown by directed links between the nodes is shown in Fig.
3b. Assume, for convenience, that the cost characteristic shown in Fig.
1 does not change with time and that
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Y TC1 TE:2 TC3
0 1 0
1 1 0
A=
1 0 1
0 1 0
(a)

(c)

Fig. 3—Construction of the optimal solution in the example. (a) The matrix. (b) The
aph with costs of arcs and nodes. (c) Node labels and the optimal path (in heavy
ines).

f(20) = 4, f(24) =7, f(32) = 11, f(38) = 13,
as indicated in Fig. 1. Also assume that
g(20) = 6, g(24) = 8, g(32) = 10.

From the above information the proper node costs can be calculated.
For example, for node (1,1) (corresponding to stage £ = 1 and termi-
nating center T'C;) the proper node cost is

fIS(M]dr = (7)(6) = 42,

and for node (1,2) (corresponding to stage ¢ = 1 and terminating center
TCs) it is
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{fISM)] - fISO)}d2 = (T - 4)(3) =

The costs of arcs and the proper node costs in graph G are written
adjacent to them in Fig. 3b. Note that all the vertical arcs have zero
cost and all the cross arcs from any stage to the next have the same
(negative) cost. The node labels obtained by the above procedure are
shown in Fig. 3c. The path distinguished by heavy lines in Fig. 3c is
the minimum-cost path corresponding to the optimal solution. Thus,
the optimal assignments are as follows:

stage | 0 ' 1 | 2 | 3
terminating
center TC, |TC, | TCs | TC:
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