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In this paper we consider a physical model in which a buffer
receives messages from a finite number of statistically independent
and identical information sources that asynchronously alternate
between exponentially distributed periods in the ‘on’ and ‘off states.
While on, a source transmits at a uniform rate. The buffer depletes
through an output channel with a given maximum rate of transmis-
sion. This model is useful for a data-handling switch in a computer
network. The equilibrium buffer distribution is described by a set of
differential equations, which are analyzed herein. The mathematical
results render trivial the computation of the distribution and its
moments and thus also the waiting time moments. The main result
explicitly gives all the system’s eigenvalues. While the insertion of
boundary conditions requires the solution of a matrix equation, even
this step is eliminated since the matrix inverse is given in closed
form. Finally, the simple expression given here for the asymptotic
behavior of buffer content is insightful, for purposes of design, and
numerically useful. Numerical results for a broad range of system
parameters are presented graphically.

I. INTRODUCTION
1.1 Physical model

A data-handling switch receives messages from many, say N, infor-
mation sources, which independently and asynchronously alternate
between the ‘on’ and ‘off’ state. The on periods as well as the off
periods are exponentially distributed for each source. These two dis-
tributions, while not necessarily identical, are common to all sources;

* Presently at the Department of Mathematics, University of California, Berkeley.
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also, the sources are mutually independent. Without loss of generality,
the unit of time is selected to be the average on period; with this unit
of time, the average off period is denoted by 1/A. Again, without loss
of generality, the unit of information is chosen to be the amount
generated by a source in an average on period. In these units an on
source transmits at the uniform rate of 1 unit of information per unit
of time. Thus, when r sources are on simultaneously, the instantaneous
receiving rate at the switch is 7. The switch stores or buffers the
incoming information that is in excess of the maximum transmission
rate, ¢, of an output channel. (Thus, c is also the ratio of the output
channel capacity to an on source’s transmission rate.)

As long as the buffer is not empty, the instantaneous rate of change
of the buffer content is r — ¢. Once the buffer is empty, it remains so
as long as r = ¢. We assume that the buffer is infinite and that the
following stability condition is satisfied:

NA

The left-hand side is the traffic intensity, p.

Discussions with A. G. Fraser' suggest that the above is a useful
model for a switch in a computer network. In such an application, the
output channel rate may be in the range from 5 kb/s to 56 kb/s. For
one specific source type, the slow terminals, the message rate may be
taken to be 300 b/s, which gives 16 2 and 186 % as the extreme values
of ¢. A representative value of A for this source type is 0.4, as computed
from the fact that A/(1 + A) is the long term on time fraction. The
stability condition is satisfied with N as large as 3.5c. Other sources,
such as screen terminals and computers, will have quite different
statistics. In the interests of generality, we have not placed any further
restrictions on the system parameters.

We first derive in a straightforward manner the set of differential
equations that governs the equilibrium buffer distribution. We obtain
a set of mathematical results that renders trivial the computation of
the distribution and its moments and thus also the waiting time
moments. The main result explicitly gives all the system’s eigenvalues.
This is achieved by using the generating function method. Insertion of
the boundary conditions in the differential equations requires the
solution of a matrix equation, which in many cases of practical interest
is dimensionally quite large. However, even this step is eliminated
since the matrix inverse is given in closed form. Finally, simple expres-
sions for the moments of the distribution and the asymptotic behavior
of buffer content are obtained.

The physical model described above is related to the model in our
primary reference, a powerful paper by L. Kosten.” Kosten’s model is
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a limiting case of our model with N — o, A\ — 0 in a manner so as to
give a finite traffic intensity, p. Also, pooling the instants of commence-
ment of the on periods of all the sources yields, by assumption, a
Poisson process. The above physical model and its variants have also
been proposed in other papers.**®

1.2 Motivations and discussion of results

Two broad questions supply most of our motivation. In this connec-
tion we acknowledge the benefit of several discussions with our col-
league A. G. Fraser. The first question concerns the right buffer size to
use for a predetermined number of sources and grade of service. The
other question, which is of operational significance, concerns the
selection of the maximum number of sources to be allowed in the
system, the reasoning being that the incremental source disproportion-
ately affects the grade of service for all the sources.

The study of these questions requires that the number of sources in
the system, N, be finite. We also examined the conventional belief that
the traffic intensity is a reliable indicator of overflow probabilities.

We would like to draw the reader’s attention to an important aspect
of our problem, namely, numerical stability. Underlying this problem
is the fact proven below that the set of linear differential equations
governing the behavior of the equilibrium probabilities [see eq. (8)]
has ‘unstable’ eigenvalues. (This is cause for calling the system of
equations ‘inherently unstable.’) Thus, if the boundary conditions are
such that any of these modes are excited, then the solution grows at
an exponential rate. In the mathematical model this does not happen.
However, the situation during computation is quite different. The
inevitable errors, no matter how small, incurred during numerical
integration are liable to excite the unstable modes and lead to solutions
that blow up.

The above observations apply as well when the Laplace transforms
of the equilibrium probabilities are available and are to be numerically
inverted. The boundedness of solutions is, in principle, obtained by
the exact cancellation of unstable factors in the numerator and denom-
inator of the transform. Of course, a straightforward numerical inver-
sion cannot be expected to preserve this feature.

Therefore, it appears inevitable that any method that counters the
inherent instability must depend on the a priori segregation of the
stable modes from the unstable modes. This in turn depends on the
availability of complete information on the eigenvalues and eigenvec-
tors—information that is generally costly to obtain. We compose the
solution to eq. (8) in the form

F(x)= Y Ae®, x=0, (2)

i:Rez;=0
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where the z;’s appearing above are a subset of the eigenvalues, and the
coefficient vectors {A;} depend on the boundary conditions and eigen-
vectors. While the problem of numerical stability does not arise when
the solution is computed in the above form, its effectiveness depends
on the efficiency of the computation of the eigenvalues and coefficient
vectors. An example of the efficiency achieved is that we are able to
obtain all the eigenvalues by solving only a set of quadratic equations.

We should mention that Kosten? is fully cognizant of the problem of
numerical stability. Kosten’s solution method consists of obtaining the
initial conditions and then numerically integrating the differential
equation while continually filtering away the component of the nu-
merical solution that exists in the span of the eigenvectors associated
with the unstable eigenvalues.

A noteworthy feature of our primary solution method is that it
manages to avoid requiring the numerical solution of matrix equations.
This is achieved by avoiding the direct procedure (see Section III)
which requires the solution of a dense set of |¢] + 1 linear algebraic
equations.’* Instead, we require the solution of a typically much larger
set of N — | c] linear algebraic equations which, however, we obtain in
closed form.

Numerical results are discussed in Section VI. We observe substan-
tial departures from Kosten’s results in cases where N is small. More
generally, we observe for identical traffic intensities, rather different
probabilities of overflow for different values of N. We graphically
demonstrate the quite acceptable quality of an approximation to the
overflow probabilities provided by a relatively simple asymptotic for-
mula. The formula states that, for x large, the probability of buffer
content exceeding x behaves as Ae ™", A some constant and

, 1=p)d+ A)
rA———n N (3)
The positive parameter r is thus, like traffic intensity, a predictor of
overflow probabilities. Small values of r may be associated with high
probabilities of overflow and low grades of service.

1.3 Mathematical model

If at time # the number of on sources equals i, two elementary events
can take place during the next interval At, i.e., a new source can start
or a source can turn off. Since the on and off periods are exponentially
distributed, the respective probabilities are (N — i)AAt and iAt. Com-
pound events have probabilities 0(At?). The probability of no change
is 1 — {(N = i)\ + i}At + 0(AL?).

* We let |c] denote the integer part of ¢. A tacit assumption is that ¢ < N, since
otherwise the buffer is always empty.
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Let Pi(¢, x),0<i=< N, t =0, x =0, be the probability that at time
t, i sources are on and the buffer content does not exceed x. Now,

Pi(t + At, x) = (N — (i — 1)}AAtPi-1(E, x) + (i + 1)AtPii(t, x)

+[1 = {(N = DA+ i}Af]P:{t, x — (i — c)At} + 0(At?). (4)
Passing to the limit At — 0:
apP; . aP; .
E"‘(l—(ﬁ')a—(N—l‘{'l)m_l

—{((N=DA+}Pi+ (i + DPirs. (5)

We are interested only in time-independent, equilibrium probabilities,
(6)

equilibrium probability that i sources are on

(x) A&
Fi(x) & and buffer content does not exceed x.

Therefore, we set dP;/at = 0 and obtain, for i € [0, N],
dF; . . .
(i —c) =" N=i+1DAFoi— (N— DA+ i}F:+ (i + 1)Fira, (7)

where the understanding is that F; = 0 if i is not in the stated interval.
In matrix notation,

d
D — F(x) = MF(x), x=0, (8)
dx
where D = diag {—¢,1—¢,2—¢, +++, N — ¢} and
A . -
N\ —{((N-DA+1) 2

(N—=DA —{((N—-2)A+ 2} 3

A -(A+(N-1)} N
A -N ]

Note that the initial conditions to the differential equations are as yet
unspecified. Considerations relating to their determination may be
found in Section III.
Let*
G(x) & Pr(buffer content > x) = 1 — 1'F(x), x =0 (9)

We refer to G (x) as the ‘probability of overflow beyond x’, or, loosely,
as just the ‘probability of overflow.” Also observe that

* We let 1 denote the vector with unity for all its components and prime denote
transposition.
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1 N\ |, .
E(m)=m(i))\, 0<i=N, (10)

since Fj(c) is the probability that i out of N sources are on simulta-
neously. Obviously,

N
¥, Fiw) = 1.
i=0

In the analysis to follow, we assume that ¢ is not an integer. (When
¢ is an integer, one of the differential equations in (7) degenerates to
an algebraic equation that may be used to eliminate one of the
unknown components of F.)

In Ref. 2 the elements of the matrix M below the diagonal are
identical, i.e., independent of row number, and the diagonal element is
accordingly adjusted to give column sum 0, as in (8).

The work of Arthurs and Shepp considers various models related to
the one considered here; the emphasis of their analysis is on obtaining
Laplace transforms of the probabilities.® Cohen’ obtains a broad range
of results for the case ¢ = 1.

Il. EIGENVALUES AND EIGENVECTORS
2.1 Computing the eigenvalues

Let z be some eigenvalue of D™'M and let ¢ be the associated right
eigenvector. That is,
zD¢ = M¢. (11)
Equation (11) is also

2i—c)pi=AN+1—i)dpin — {(N—= DA+ i}di + (L + L)is,
0=i=N. (12)

Let ®(x) denote the generating function of ¢, i.e.,
N
O(x) & ¥ ¢ix’. (13)

i=0

By multiplying (12) by x* and summing over i we expect to obtain an

equation in ®(x) and &’ (x) [for example, Y, ix'$p; = xP’(x)]. In fact,
®(x) ze— NA+ NAx

D(x) A+ (z+1-ANx—-1 (14)

In preparing to solve the differential equation, we define r, and r; to
be the distinct real roots, 7 > 0 > ry, of the quadratic in the denomi-
nator of the right-hand side, i.e.,

rn={—@E+1-A)+V(z+1=N2+4A}/2) (15a)
re={—(z+1—=2A) — V(z+1—MN?*+4\}/2\ (15b)
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Equation (14) may now be written as
(D’(x) _ C1 C2

Dx) x—r x—1o (16)
where the residues are computed to be
c=N-o¢ (17a)
o = ze Mi\:)\—tj)\f)\rl (17b)
The solution to (16) is
D(x) = (x — r)(x — )V, (18)

where, as in the rest of the paper, we have assumed ¢n = 1.

There is an observation on (18) to be made that is central to the
present derivation. Observe that by its definition in (13), ®(x) is a
polynomial in x of degree N. Since r; and r- are distinct, this is possible
if and only if ¢,, defined in (17b), is an integer in [0, N]. Denoting this
integer by k& we get

®(x) =(x—r)x—r)* K=0,1,...,N. (19)

If in (17b) we write & for ¢;, use (15) to substitute expressions for ry
and r; — ra, rearrange, and square, then we obtain the following family
of quadratics in the unknown eigenvalue z,

A(k)z*+ B(k)z+ C(k) =0, k=0,1,---,N
where,

A(k) & (N/2 = k)* — (N/2 = ¢)*

B(k) 4 2(1 —A)(N/2 - Ek)>*— N(1+ A)(N/2—¢) (20)
C(k) & —(1+N)*((N/2)* — (N/2 — k)?}.

We denote by z{*’ and z{’ the two roots associated with the kth
quadratic.

To recapitulate, we have shown that all the roots of the above family
of N + 1 quadratics are eigenvalues, as defined in (11). The reader will
find in the following section an enumeration of the properties of the
roots and eigenvalues.

We observe that the above argumernit takes the place of the argument
“@(x) should be an entire function of x”” employed by Kosten.?

2.2 Properties of the roots of the quadratics

The theorem below, which is presented in conjunction with Fig. 1,
is a collection of various properties of the roots.
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Alk)Z2+B (k) Z+C [K) Alk) 22 +B (k) Z+C (k)
[ 1 sk=0
k=0 /o, o

INCREASING INCREASING
k (k £N/2) k= )+ 1 / k (k < N/2)

(a) (b)

Fig. 1—Sketches of graphs of quadratics, N odd. If N is even, the quadratic for & =
N/2 has a repeated real root. (a) ¢ < N/2. (b} N/2<c.

Theorem
(i) The quadratics for k and k' are identical when N/2 — k =
k' — N/2.

(ii) For each k < N/2 the corresponding quadratic has two real
and simple roots. When N is even and k = N/2, the corresponding
quadratic has a real repeated root.

(iii) B <k=<=N/2= A(k")z" + B(k")z + C(k') > A(k)z* + B(k)z
+ C(k), Vz.

(iv) The roots of the quadratic corresponding to any k are distinct
from those of the quadratic corresponding to any k', provided k' <k
= N/2.

(v) Ignoring the multiplicities, there are N — | c] negative roots,
1 root at 0 and |c| positive roots. (If the inequality in the stability
condition is reversed, then there is 1 less negative root and 1 more
positive root.)

(vi) The set of eigenvalues coincide exactly with the set of roots of
the quadratics.

(vii) The largest negative eigenvalue is —(1 + A — NMA/c)/
(1= ¢/N). O
The proof of the theorem is given in the appendix.

We will employ the following convention for the eigenvalues:

EN—fe)1 <+ e <zi<zo<zn=0<zy 1< ¢+ < 2N (21)

With this convention, z; and zy— are roots of the kth quadratic, i.e.,
{2, zna) = (21,25}

Since we shall later require the stable or negative eigenvalues, let us
be explicit about their computation. Let N be first odd and employ the

notation zi*' < z¥’. The stable subset is given in braces.
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If c<N/2
2z = [-B(k) - vB(k) — 4A(R)C(R)]/2A(R),

O0=k=l|c]| (22a)
2% = [-B(k) ¥ VB*(k) — 4A(k)C(k)]/2A(k),
le] +1=k<N/2

and if N/2 <¢:
{(z{® = [-B(k) — VB*(k) — 4A(k)C(k)]/2A (%),
O0=k=N-[c]—-1}. (22b)

When N is even, the only change is that the set in (22a) is augmented
by —N(1 + A)/(N — 2¢), which is one of the repeated roots of the
quadratic associated with 2 = N/2.

2.3 Eigenvectors

We mention the procedure for obtaining the eigenvectors from the
eigenvalues. Given an eigenvalue 2, we compute in order, using (15)
and (17), the quantities r;, r2, and k. These are used in (19) to yield
the coefficients of the given polynomial and thus the eigenvector
coefficients. Therefore, for the ith component of the eigenvector*

k
¢i= (=D ¥ (f)(f: f) ri7rf™,  0=isN. (23)
J=0

Of particular subsequent interest are the eigenvectors ¢n and ¢,
corresponding respectively to the eigenvalues zyv = 0 and 2, = (1 +
A — NA/e)/(1 — e/N). The vector ¢y may either be obtained directly
or by noting that it is the appropriately normalized vector of equilib-
rium probabilities F(w) given in (10). Therefore,

1 )
¢N=F[11Ms ___,(I:r) Al: "':ANjI

N
and Ty = (I)\LA) . (24)

The vector ¢ is obtained by following the procedure mentioned in the
previous paragraph. We find that

n=1- r—l !
e "X Nje—7T

N
d(x) = {x + (H - 1)} ) (25)
c

* We let ¢ and ¢:, respectively, denote the ith eigenvector and the ith component
of the generic eigenvector.

k=N,
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Hence,

N—i
(¢o)i=(1‘.’)(§-1)  0=i=N (26)

i

o (MY

vom ().
This example serves to illustrate a noteworthy point: Recall that for a
specific 2 we may obtain an eigenvalue z using (20); for the same z we
may obtain %’ from (15) and (17), as outlined in the first paragraph of
this section. It may be that % s k’; however, it is always true that | N/
2 — k| =|N/2 — k’|. This should not be surprising in view of statement
(i) of the theorem, and it is due to the operations, including squaring,

that allow us to go from (15) and (17) to (20).

and

2.4 Lert eigenvectors
Sometimes, as in Section 3.3 below, not only the right, but also the
left, eigenvectors v,
z2¢D = yM (27)
are required to be known. It is reasonable to expect that the procedure
in Section 2.1 can be repeated to obtain the generating function of the
left eigenvectors, but we have not found this approach to be tractable.

However, the procedure outlined below may be used.
There is a diagonal matrix 7 that symmetrizes M, i.e.,

7 'M7 = (17'M7)". (28)

1/2
= {A" (I:r)} , 0=<i=N, (29)

where 7; is_the ith diagonal element of 7.

Define ¥ and ¢ to be the left and right eigenvectors obtained when
D is replaced by 7'Dt and M by 7 'Mr7. It is easy to see from the
defining relations that

¢=1'¢ and §=r1y (30)

Now notice the important fact that since 7 'Mr is symmetric, it has
identical left and right eigenvectors. Hence,

™ =¢

In fact,

or, component-wise,

A"(I:.T)\p;=¢g, 0<i<N. (31)

Thus, the left eigenvector may be obtained from the right eigenvector.
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Iil. THE SOLUTION

The solution to the differential equations in (8) with F(0) = f, can
be written as

_ N . \D,’Df
Fx) = 2 e 4y,

It is clear, however, that as only bounded solutions are allowed,

N—le|-1 ,“b‘er
F(x) = F() + o
(x) (o0) igo e S/DY;
where, according to our convention in (21), the z/s appearing in the
above expression are all negative. The term F () in (33) is identical to
the i = N term in (32). Recall that F() is already known, as shown in
eq. (10). With appropriate identification, (33) also may be written as
N—lel-1
F(x) =F() + Y e*“an;. (34)
i=0

bi. (32)

i, (33)

Our primary solution method developed below in Sections 3.1 and
3.2 depends on the explicit solution of the coefficients a; in the form
appearing in (34). In Section 3.3 we give a second, contrasting, method
in which the initial condition vector f is numerically solved and
substituted in (33).

3.1 A key property of the solution at the boundary x = 0

If the number of sources on at any time exceeds ¢, then the buffer
content increases and the buffer cannot stay empty. It follows that

Fi(0)=0, |le]+1=i=<N. (35)

By supplementing (35) with the tri-diagonal structure of the matrix
D'M we may make further deductions regarding the behavior of F(x)
when x is small. Observe that an application of D™'M on F(0) will
diminish by 1 the number of trailing elements that are zero, and that
each additional application will have the same effect until
(D'M)M-l”-'F(0) has only its last component equal to zero and
(D'M)ML!F(0) has none. Thus,

((D"'M)F(0)}; =0, le]+1+/=<i (36)

Now recollect that on account of the governing differential equations
for F(-) in (8),

F(0) = (D'M)’F(0). (37)
Thus, from (36) we find that
FP0) =0, le]+1+/j=<i, (38)

and, in particular, the following relation, which we shall find most
useful:
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F‘(\{)(O)=0’ ]=0, 1’..-,N—LCJ—1. (39)

Thus, not only is the event “all sources are on and buffer is empty” of
probability zero, as already is known from (35), but the growth of the
probability is also slow when the buffer content is small.

3.2 Procedure for obtaining the solution

We proceed to obtain the coefficients {a;} in the solution expression
(34). Recall that by convention {¢;}~ = 1, so that from (34) we find
that

A N N—leJ-1
= — % >
Frn(x) (1 T ;\) + '_);0 a.e’™, x=0. (40)

The above, taken with (39), implies the following set of equations:

N—|e]-1 ; A N .
¥ (zj)aj=_(m) 8siy, O0=<i=N-|c]-1. (41)

j=0

Equation (41) in matrix form is

A N
Va=—(1+A) e, (42)
where V; = (z)}, a = (as, @z, -+ , @n-1c1-1)’ and e = (1,0, .-+, 0)".

The key observation is that V is a Vandermonde matrix. Well known
results on such matrices allow us to solve (42) explicitly. Note that V
is nonsingular because the eigenvalues {z;} are distinct,’ as previously
established in the theorem (see Section 2.2). Therefore,

V]| = II (zi — ). (43)
O=i<j=N-[c|]-1

This formula, applied to the minors, which also are related to

Vandermonde matrices, gives

(A2 osisN-ta-1 W
%= 1+A i 2i—2z =J= ¢ '
i)

To summarize, the above procedure for obtaining the equilibrium
probabilities F(x) and the probability of overflow G(x) is based on
using the expressions

N-|[c]—-1

Fx) =F(») + Y e aid; (45)
=0
and
N—{c]-1
Gix)=—- Y e ai(l'd). (46)

i=0
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Only the stable eigenvalues appear in the above forms and they are
explicitly given in (22); {¢:} is obtained from the generating function
in (18) and the coefficients {a;} appear in (44). Note that 1'¢p = ®(1),
so that {¢;} need not be computed explicitly to compute G (x). F(») is
given in (10).

3.3 An alternative procedure for obtaining the solution

Under certain conditions the following procedure may be considered
a viable alternative to the one described above. Here we compute
F(0) = f and use it in the solution series (33).

Recall from (35) that only the leading |¢] + 1 elements of f are
nonzero and need to be computed. Precisely the same number of
equations are forthcoming by requiring of the initial conditions that
the [ ¢] unstable modes are not excited (compare with Kosten’s “illegal
eigenvalues”®) and that F(c) is normalized, i.e.,

YDf =0 i=N-1,N-2,... ,N—|¢]

NA .

In matrix form,
' = {f], 0) (48)

NA
and Af, ( c+1+A)e ,
where the coefficients in (47) multiplying the unknown f have been
arranged to form the matrix A in (48). We note parenthetically that A
is not sparse. The ([ c] + 1)-dimensional matrix equation in (48) has to
be solved.

Recall that our primary procedure in Section 3.2 and the one shown
above require solutions of matrix equations. However, in the former
case we were able to explicitly obtain the solution even though the
dimension there, N — |¢], is typically much greater. In the absence of
an explicit inverse for A, we expect the above procedure to be useful
only for small c.

IV. ASYMPTOTICS
4.1 Probability of overflow

Here we examine the behavior of G(x), the probability of overflow
beyond x, for large values of x. The asymptotic formulas obtained are
useful for the following reasons: As can be seen from the numerical
results in Section VI, they often describe the system behavior rather
well in all but the regions of lesser importance, where x is small; also,
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the analytic formulas are simple, even though they contain the essen-
tial information.

Since the form of the solution in (34) is a sum of exponential terms,
the departure of F(x) from F(w«) will be dominated by the exponential
with the largest exponent. Hence,*

F(x) — F() ~ aogoe™™ (49)
and
G(x) ~ —ao(l'do)e™™, (50)

where —r(=z) is the largest negative eigenvalue of D™'M. Using
statement (vii) of the theorem, we find that
_ (L+A—=NAe) (1+N(1—p)
1—¢/N 1—c¢/N
where in the latter, more suggestive form, p is the traffic intensity. The
coefficient ao and the eigenvector ¢ are given in (45) and (26).
Collecting terms, we find that

(51)

G(x) ~ p" NﬁﬁH Z L g (52)
* P -1 2i+r )

In the event that the alternative procedure given in Section 3.3 is
used, then the following asymptotic formula is more relevant.

G(x) ~ Ae

where

N - N 1 Lel —i)fi

A= ¢ P___ y e O (53
N-2c+¢/p cl1—p) N-c| AN(N/e—-1)

4.2 Limiting equations for an infinite number of sources

Here we bridge some of the results presented in this paper and
Kosten’s results. We will show that some of Kosten’s important expres-
sions are obtained by passing to the appropriate limit, namely,

N> o, A—>0 and NA=AX. (54)

(Our notation is close to Kosten’s with one notable exception: Ais
Kosten’s A.) The results obtained in the limit may be interpreted to be
applicable when the number of sources grows large and the fraction of
time that each source is on decreases in such a manner that the traffic
intensity approaches the fixed constant A/c.

In this section we follow Kosten and normalize the generating

* By a(x) ~ b(x) we mean that a(x)/b(x) - 1 as x — oo,
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function to yield ¢y = 1 (rather than, as in the rest of the paper, ¢n =

1), so that
£\ L\
O(x) = (1 - —) (1 — —) , (55)
I8t ra2

where r; and r; are as in (15). It may be shown that, in the limit (54)
rn—1/(z+1) (56)
ro— —N(z + 1)/X; (57)
and, furthermore, on using (55),
B(x) > (1 — x(1 + 2)}H (58)

which is Kosten’s expression for the generating function.
To establish another correspondence, observe that on substituting
(17b), the expression for r; and r; in (15), we obtain
_2e—= N\ + NA[—(z+ 1= )) + V(z + 1 — \)* + 4A]/2A
Jz+1-A7+4A '

The limit of the right-hand side may be obtained and found to give
Kosten’s key equation

k=z(cz+c—N/(z+ 1)~ (60)

The correspondence in the eigenvector components is particularly
illuminating, showing that

k —_— . . .
e 3 ()2 8) oo

j=0 \J i—J

k (59)

and, from (23), that

N 1\
=N Z (;) Ty (1 m z) ' o0

A final correspondence concerns the important rate parameter r
appearing in the asymptotic formulas in Section 4.1. We find that
_ (1+A)(1-p)
1—-¢/N
where 5 is simply the limiting traffic intensity A/c.
We should also mention that certain key results of this paper, such

as those pertaining to our primary solution method in Sections 3.1 and
3.2, have no parallel in Ref. 2.

—=1-p, (62)

V. MOMENTS

We give below expressions for the moments of the equilibrium buffer
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content, which allows for their easy computation once the elements of

the exponential series solution in (34) are available.
We observe that the nth moment

E(x") =J’ x"d {1'F(x)} =nJ’ x"'G(x)dx.
Q 0

Since
N—|el-1

Gx)=-— Y e*ai(l'p),

i=0
as we saw in eq. (46), we obtain

n n! Nl g (1'¢)
B =g & e

(63)

(64)

If the alternative procedure given in Section 3.3 is used to obtain

the solution, then (64) may again be used with the identification

_ uDf
UiD¢:

a;

VI. NUMERICAL RESULTS

(65)

In Figs. 2 through 5 we have held the source statistic A to a constant

0
A=04
1 c = 16.666

N\
< ASYMPTOTIC
FORMULA

-2
-3
-4

8 _ASYMPTOTIC

FORMULA
-7

LOG PROBABILITY OF OVERFLOW

4 8 12 16
BUFFER SIZE

20

Fig. 2—Probability of overflow vs buffer size with A and c constant. For N = 25, 30,

40, and 50, the traffic intensity p is 0.43, 0.51, 0.69, and 0.86, respectively.
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A=04
c=33.333

S~ _ASYMPTOTIC
FORMULA

-3
-4

-5

LOG PROBABILITY OF OVERFLOW

-7
i
] \
8l ASYMPTOTIC ™\
FORMULA
-9+
I | 1
-1% 4 8 12 16 20

BUFFER SIZE

Fig. 3—Probability of overflow vs buffer size with A and ¢ constant. For N = 65, 75,
85, and 100, the traffic intensity p is 0.56, 0.65, 0.73, and 0.83, respectively.

ASYMPTOTIC __
FORMULA

ASYMPTOTIC __ .~
FORMULA

LOG PROBABILITY OF OVERFLOW

8k
-y . <
~10 !

) 4 8 12 16 20

BUFFER SIZE

Fig. 4—Probability of overflow vs buffer size with A and ¢ constant. For N = 150, 175,
and 200, the traffic intensity p is 0.64, 0.75, and 0.86, respectively.
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-4

ASYMPTOTIC _ ~ 7~
FORMULA d

-6

LOG PROBABILITY OF OVERFLOW

—6
N =375
7k
"-...' *
ASYMPTOTIC _ —
-8 FORMULA -~
~
9 N = 350
—10 1 | ] | 1 1 1
a 8 12 16 20

BUFFER SIZE

Fig. 5—Probability of overflow vs buffer size with A and ¢ constant. For N = 350, 375,
and 400, the traffic intensity p = 0.75, 0.80, and 0.86, respectively.

TRAFFIC INTENSITY, p=05
c=15

LOG PROBABILITY OF OVERFLOW

-9 | | L ] [ [ ] | ]
0 4 8 12 16 20
BUFFER SIZE

Fig. 6—Probability of overflow vs buffer size with traffic intensity p and ¢ constant.
For N = 5, 10, 20, and 40, the parameter A is 0.18, 0.08, 0.04, and 0.02, respectively. The
curve for N = « is from Ref. 2.
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TRAFFIC INTENSITY p=0.75
c = 16.666

LOG PROBABILITY OF OVERFLOW

_9 | | | | | | | 1 I
0 4 8 12 16 20

BUFFER SIZE

Fig. 7—Probability of overflow vs buffer size with traffic intensity p and c constant.
For A = 0.6, 0.4, 0.2, and 0.15. The number of sources N = 33, 44, 75, and 96, respectively.

TRAFFIC INTENSITY p=0.75
c=133,333

LOG PROBABILITY OF OVERFLOW

BUFFER SIZE

Fig. 8—Probability of overflow vs buffer size with traffic intensity p and ¢ constant.
For A = 0.6, 04, 0.2, and 0.15, the number of sources N = 267, 350, 600, and 767,
respectively.

value, 0.4. Each figure has a distinctive value of ¢, the ratio of output
to input transmission rates. The four values of ¢ are chosen for the
cases where an on source transmits at 300 b/s and the output channel
rates are 5 kb/s, 10 kb/s, 20 kb/s, and 40 kb/s. These figures show
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ASYMPTOTIC RATE r=0.5
c = 16.666

LOG PROBABILITY OF OVERFLOW

-8

BUFFER SIZE

Fig. 9—Probability of overflow vs buffer size for constant asymptotic rate r [see eq.
(51)] and ¢. For p = 0.6, 0.65, 0.7, and 0.8, the number of sources N = 127, 85, 63, and 41,

respectively.

ASYMPTOTIC RATE r=05
1 c = 66.666

LOG PROBABILITY OF OVERFLOW

BUFFER SIZE

Fig. 10—Probability of overflow vs buffer size for constant asymptotic rate r and c.
For p = 0.6, 0.65, 0.7, and 0.8, the number of sources N = 507, 338, 253, and 164,
respectively.
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rather clearly the effect of incremental sources. For example, we see
from Fig. 2 that for a fixed grade of service as given by the probability
of overflow = 107°, a 33-percent increase in the number of sources from
30 to 40 requires about a 300-percent increase in buffer size from 2 to
8. Recall from the discussion in Section 1.1 that the unit of information,
and thus of the buffer as well, is the amount generated by one source
in the average on period.

Observe in Figs. 2 through 5 the generally acceptable quality of the
approximation to the probability of overflow provided by the asymp-
totic formula in eq. (52).

In each of Figs. 6 through 8 we have a constant traffic intensity, p,
and a constant ratio of transmission rates, ¢. Note in particular that
any two curves will have different source statistics A and different N.
The figures in this series illustrate the difference between the model
considered in this paper and Kosten’s limiting model. The figures also
demonstrate rather emphatically the limitations of using only the
traffic intensity as a predictor of overflow behavior. For example, in
Fig. 7 we see that for constant traffic intensity and buffer size = 20,
probability of overflow varies from about 10~* to about 107%, depending
on A.

In Figs. 9 and 10 we examine the proposition that the rate parameter

50

A=02
PROBABILITY OF OVERFLOW <1078

MINIMUM BUFFER SIZE

0
0.2 0.4 0.6 0.8 1
TRAFFIC INTENSITY P
Fig. 11—Minimum buffer size required to satisfy traffic intensity p with constrained
probability of overflow. The constant is A.
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50

A=04
| PROBABILITY OF OVERFLOW <1075

40

30 —

20 —

MINIMUM BUFFER SIZE
T

c= 8333—__
c= 16.666~ ~

N

- c= :':3.3337.\ N
c= 66.666~_ >

133.333 Y,
€=133.333~

10 p—

0.2 04 0.6 0.8 1
TRAFFIC INTENSITY P

Fig. 12—Minimum buffer size required to satisfy traffic intensity p with constrained
probability of overflow. The constant is A.

r, which gives the slopes of the curves obtained from the asymptotic
formula, is a useful single index of overflow behavior. Equations (3)
and (51) give r. The strength and limitations of the index are contrasted
in Figs. 9 and 10.

Figures 11 and 12 are motivated by the design problem in which it
is required to estimate the buffer size needed to meet various traffic
conditions with a specified grade of service and fixed source statistics.
The slackening requirements in the buffer size with increasing ¢, which
are observed in both figures, denote the economies of scale that stem
from using higher capacity output channels. In comparing Figs. 11 and
12 we observe that for the same traffic intensity, buffer requirements
are less stringent when A is greater, i.e., when the source type is on for
higher fractions of time.
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APPENDIX
Proof of Theorem

(i) Observe that A(k), B(k), and C(k), as given in eq. (20), depend
on k only through (N/2 — k)%

(ii) Roots are real if B%(k) — 44 (k)C(k) = 0, and distinct as well
if the expression is positive. View the expression as a function of
(N/2 — k)2 Observe that it is a quadratic in (N/2 — &)* and, further-
more, that it is concave since the leading coefficient of (N/2 — k)* is
4(1 = A)? — 4(1 + A)? < 0. Thus, the minimum of B*(k) — 4A(k)C (k)
for (N/2 — k)? in [0, (N/2)*] is at one of the corner points where the
respective values are 0 and positive.

(iif) We claim that

{A(R") — A(k)}z" + (B(k') — B(k)}z
+ {C(k") — C(k)} >0, Vz. (66)
To prove eq. (66) we need to observe that
AR —A(k) >0 (67)
and
(B(k') — B(k))? — 4{A (k') — A(R)}{C(k") — C(k)} <0. (68)

(iv) It follows immediately from (iit) that the graphs of the quad-
ratics are nonintersecting. See Fig. 1.
(v) We first consider ¢ < N/2 and later its opposite. Consider in
turnk=0,0<k=<c,andc<k=N/2
When £ = 0, it turns out that C (k) = 0, so that the quadratic reduces
to

A(0)z{z + B(0)/A(0)}. (69)
Hence
B(0) —(1+A— NA\/c)
o _ —_
zi A(0) 1—c/N (70)
and
2 =0. (71)
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Observe that the stability condition implies that z{” < 0; reversal of
the inequality in the stability condition gives z{” > 0.

Now consider 0 < 2 < ¢. Observe that A(k) > 0 and C(k) < 0, so
that z{¥ <0 < 2.

Finally, consider ¢ < £ < N/2. It is easy to see that A(k) < 0 and
C (k) < 0. We show below that B (k) < 0, from which it will follow that
2{? <0 and z¥’ < 0. If A = 1 then the defining expression for B (k) in
eq. (20) shows that B(k) < 0. If A < 1 then the following equivalent

expression shows that B (k) < 0:

N 2 N 2
B(R)=2(1-N) [(—2-—13) - (E_C) ]
_QC(E_C)(l_H_N"). (72)
2 c

The above completes the considerations related to ¢ < N/2.

For the opposite situation where N/2 < ¢, the case of 2 = 0 is
unchanged. For 0 < 2 < N — ¢, it is easy to see that A(k) > 0 and
C(k) <0, so that 2{¥ <0 < z{¥.

Now consider N — ¢ < £ < N/2. We show below that B (k) > 0 (note
the contrast with the situation for ¢ < N/2), which when taken with
A(k) <0 and C(k) < 0, which are easy to see, gives 0 < z{¥ < z{¥ If
A = 1 then the defining expression for B(k) in eq. (20) shows that
B(k) > 0. Assume now that 1 < A. Then,

2
Bk)=N@1d+A) (c-—%r)+2(1—}\) (%—k)

2
>N(1+A) (c—§)+2(1—}\) (c—%r)

=2c(c—ﬁ)(1—)\+ﬂ)>o. (73)
2 c

(vi) From our derivation of the quadratics it is clear that all roots
are eigenvalues of D™'M. As we have isolated exactly (N + 1) distinct
values for the roots, there cannot be an eigenvalue that is not one of
the roots.

(vii) It follows from (iii) and (v) that the largest negative eigenvalue
is a root of the quadratic corresponding to 2 = 0. The negative root in
this case is — (1 + A — NA/c)/(1 — ¢/N), as shown in eq. (70).
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