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This paper considers a class of constant-amplitude modulation
schemes with good spectral main lobe and tail behavior. Detection is
assumed to be coherent and the receiver is of offset-quadrature type,
i.e., minimum shift keying (MSK) type, consisting of a linear filter in
each quadrature arm followed by simple processing. Analytical error-
probability formulas are derived for various modulation schemes and
receiver filters for ideal diversity with maximal-ratio and selection
combining. Independent slow Rayleigh fading in Gaussian noise is
assumed and several numerical examples are given. Asymptotic
behavior of the error probability for large signal-to-noise ratios is
derived, and the relationship between the degree of smoothing in the
partial-response continuous-phase modulation and the asymptotic
error probability is shown for fading channels with and without
diversity.

I. INTRODUCTION

The transmission of information over radio channels with multiple
changing-propagation paths is subject to fading, i.e., random time
variations of the receiver signal strength. For digital transmission over
a fading channel, the time variations cause a varying error probability
for all types of digital-modulation methods.

The application of bandwidth-efficient constant-amplitude modula-
tion schemes to digital land-mobile radio has been considered in
several papers.'” Other investigations have shown that transmission

* This work was done while Mr. Sundberg was a consultant at Bell Laboratories.

1933



over such channels is subject to fading.%” In this paper we will consider
slow Rayleigh fading where the density function for the signal-to-noise
ratio (s/n) is

fn =g e, (1)

where I is the average signal-to-noise ratio. We define slow fading as
the time-varying s/n y, which is approximately constant over several
transmitted bits (symbols). It will be seen below that the type of
detectors considered for the modulation schemes in this paper operate
over at most that number of symbols.

By combining a number of channels with independent Rayleigh
fading, the density function for the resulting signal-to-noise ratio (1)
can be improved. This is called diversity. Thus, with decreased prob-
ability of very low signal-to-noise ratios, the average error probability
is improved by means of diversity.

This paper presents analytical, easy to use, bit-error probability
formulas for smoothed continuous-phase constant-amplitude modula-
tion with a simple coherent receiver and diversity. From these calcu-
lations we conclude that the increase in error probability owing to the
degree of smoothing is smaller for a fading channel than for a nonfading
channel. In Section IV we show an example of the difference between
quadriphase shift keying (QPskK) and the schemes 3RC and 4RC, which
depict smoothed constant-amplitude modulations with narrow spectral
main lobe and low spectral tails. The nonfading channel is approached
with large numbers of diversity branches. The fading channel is
approached with few branches of diversity. The gradual change from
the two extreme cases is readily apparent.

1.1 Probability of error

Coherent transmission is considered. For quadriphase shift keying,
4-psK (QPsK), there is a special case of the more general error-proba-
bility formula considered below. For qQpPsk and Binary Phase Shift
Keying, 2-psk (BPSK) the error probability for the Gaussian channel
with ideal transmission and optimal detection is

P(y) = Q(v2y), (2)

where y = E3/N, is the s/n (per information bit), E; is the energy per
information bit, and N, is the (one-sided) spectral density for the
additive white Gaussian noise. The function @(-) is the error function
associated with the normal distribution, i.e.,

Q(x)=\/% f e "2, (3)
TJx
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For the family of modulation schemes considered in this paper, the
error probability P(y) for the Gaussian channel is a linear sum of -
function terms. We obtain the average bit-error probability for the
fading case by averaging P(y) over the density function in eq. (1), i.e.,

P=J' f(Y)P(y)dy. (4)

The averaging is performed with different density functions for the
diversity cases below with different combiner strategies. The problem
dealt with in this paper is finding the average bit-error probability (4)
for the family of modulation schemes and diversity cases described
briefly below.

The solution to the error-probability averaging in (4) is of interest
in cellular systems with frequency reuse where cochannel interference
is the main interference source and where diversity is used to improve
the signal-to-noise density function.>*” When we consider so-called
time-division retransmission schemes, it is realistic to consider space
diversity with more than two diversity branches.* "’

1.2 Modulation schemes

Before we address the fading and diversity problems, we will give a
short description of the modulation schemes considered in this paper.
A family of binary constant-amplitude digital modulation schemes is
defined by the transmitted signal

S(t, a) = \/%cos[%fot + ol )], (5)

where E = E, is the symbol (bit-) energy, T is the symbol time, and f,
is the carrier frequency. The information-carrying phase is

o(t, @) =27h ¥ aiq(t —iT), (6)
where @ = -+ - @n-2, Gn-1, Qn, Qn+1, Gn+2... 18 a sequence of independent
binary symbols a; € {—1, +1} (we will consider only binary schemes
here) and A is the modulation index. The phase response is defined by

t
q(t) =f g(r)dr, (7)

where g(¢) is a time-limited pulse defining instantaneous frequency.''**

The above family of schemes is considered in this paper only for
modulation index A = 1/2. For this case, such modulation schemes as
minimum shift keying (MsK)—or fast frequency shift keying (FFsK),'
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tamed-frequency modulation (T¥m),” and Gaussian MSK (GMSK)**—are

contained in the family (5). Different modulation schemes are obtained
by changing the pulse shape g(¢). Thus, for MSK

0 t<0, t>T
g(t) = 1 (8)
o7 0=<t=T,

and for TFM>!?
8(t) = %[ go(t — T) + 2g.(t) + go(t + T)], 9

ogin () _ 7t 'n't_-rrtz, mt
S1n T TCOS T T sin T
) = .
T

The TFM pulse is infinite in time. Below we consider time-truncated

versions of the pulse (9).
Raised-cosine pulses of various lengths LT"'""? are also considered.

For this case
1 2mt
g(t) _ -22? [1 — COS (T)] O0=st=LT

0 otherwise.

(10)

(11)

The notation LRC denotes a raised-cosine pulse of length LT or a
modulation scheme (5), (6) based on the pulse LRC, shown in eq. (11).
Additional details on schemes based on LRC can be found in Refs. 11,
12, and 13.

Duobinary MSK, i.e.,

1
— 0=t=2T
0 otherwise

is also considered. This pulse is also denoted as 2REC."
Schemes based on pulses g(¢) of length larger than the symbol time
T are so-called partial-response schemes. Controlled intersymbol in-
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terference is introduced. This improves the power spectra'*'* and the
detection efficiency under certain conditions.'*"’

Figures 1 and 2 show the motivation for considering partial-response
continuous-phase modulation schemes with overlapping pulses g(t) of
increasing length L. Figure 1 shows how the power spectral density
{normalized to the total power) becomes more narrow for larger L
values. The sidelobes are also low due to the large number of contin-
uous derivatives in g(¢).""'2" Figure 2 compares QPSK, MSK, and 3RC.
Note that the raised-cosine schemes have constant amplitude. By
changing g(t), further improvements of the spectral tails can be
achieved.”"

1.3 Detectors

We show in our references that the 2 = 1/2 schemes can be detected
with good efficiency in an Msk detector' or an Msk-type detector
(modified offset quadrature receiver),'” which consists of a “matched”
filter in each quadrature arm followed by very simple digital processing.
In its most simple form, this processing consists of differential decoding
in each quadrature arm'? with differential encoding employed at the
transmitter. For MSK, the receiver in Fig. 3a is optimum. MSK consists
of linear modulation in each quadrature arm. A matched receiver filter
whose impulse response is a half-cycle sinusoid of length 2T is the
filter function a;(¢) and a:(¢) in this case.

An MsK receiver with modified filters was proposed in Ref. 2 for
partial response schemes in the case of TFM. For the partial response
case with overlapping pulses g(¢), the receiver shown in Fig. 3a is
suboptimum. However, for & = 1/2 and for reasonably small L (L =< 4),
this receiver gives good results for low and intermediate signal-to-noise
ratios.”™ The error probability shown in the graphs below is for binary
decisions based on the filter output compared to a threshold which is
0.

Figures 3b and 3b show two examples of the receiver filter a,(¢)."
The receiver filter a.(¢) is identical to a;(¢). The first example is the
so-called spaM (selected pulse amplitude modulation) filter,"”” where
we have used the same strategy in filter selection as was shown in Ref.
2. Note that the filter in Fig. 3b is truncated to Nr = 4 symbols. Figure
3c shows the so-called MIN (minimum energy signal) filter. It is shown
in some detail in Ref. 13 that the preferable filter depends on the
s/n . Filter spaM is good for low s/n’s, while filter MIN is good for high
s/n’s.”® For 3RC the difference in performance is small, though.

Figure 4 shows the “detection eye,” i.e., the input cos{¢(£, )} to the
filter a,(¢) for the 3RC scheme. (For further details see Ref. 13). The
eye in the other quadrature arm is the same, but offset one symbol
interval T.
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cos ¢ (t, &)

-1 | |
35T 45T 55T 6.5T

TIME

F1g 4—Cos ¢t, @) eye pattern of a binary 3RC, h = 1/2, scheme. Note how open the
eye is at the detection point (¢ = 5T in this time scale).

1.4 Error probability in Gaussian noise

The average error probability P for a given modulation scheme—
given pulse shape g(t)—and for a given receiver filter a(f) = a;(t) =
a:(t) can be evaluated exactly. For any given data sequence, the
decision after the filter is a comparison between a Gaussian variable
and a threshold which is zero in Fig. 3a. (For details see Refs. 13, 15,
16, 17, and 18.) It is shown in Ref. 13 that various filters are best at
various levels of P (various values of s/n). Note that by error proba-
bility P we consistently refer to the average error probability associated
with one binary decision after the receiver filter a(¢). Because of the
phase ambiguity of #, the bit-error probability of the modulation
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scheme, Py, is affected by the resolution of this ambiguity.”” With
differential decoding we have'

Py = 2P(1 - P). (13)

This will be discussed somewhat in Section V. Until then the calcula-
tions will be done using P (before the differential decoding).

In Ref. 13 we see that the average error probability P for the partial-
response scheme with an MSK-type receiver is

P= El C,Q( d; No)- (14)
Here E, = E, N, is the spectral density of the one-sided Gaussian
noise, §(-) is the error function associated with the normal distribu-
tion, d? is the squared Euclidean distance associated with a signal
corresponding to data sequence number i received in the fixed filter
a(t) (see Refs. 13 and 15 for details), and C; is the probability of that
specific signal. There are at most m = 2V7***! different signals in (14),
where Ny is the filter length in bit intervals (some of the distance
values are the same for several data sequences due to symmetry. (See
Ref. 13 for details.)

Assuming independent data symbols with p(—1) = p(+1) = 1/2, then

Ci=1/m. (15)
For qpsk and MSK we have d” = 2; thus,
2K,

o)

with the optimum receiver filter.

For the general partial-response case, the sum (14) consists of several
terms with several squared distance values d?, where one of them is
the minimum squared Euclidean distance. Methods for the calculation
of d2, i = 1 --. m, are given in Ref. 13. The parameters d; are
independent of signal-to-noise ratio. They depend only on the data
sequence, the pulse shape g(¢), and the receiver filter a(z).

Figures 5 and 6 show the calculated average error probability P,
using eq. (14), for a number of modulation schemes where the receiver
filter is the spam filter.”® The technique described in Ref. 2 was used
for selecting the filter. Several different pulse shapes are considered
(see Ref. 13 for details). For comparison, the error probability for QPsK
is also shown. It is evident that the longer and smoother pulse g(t),
the better the power spectrum and the larger the penalty in E./N,
compared to Qpsk. However, the penalty—using, for example, 3RC—
is only 0.5 dB at P = 107*. The penalty for TFM at P = 107" is about 1.0
dB. For lower P values the penalty is larger.
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Fig. 5—Error probability in detecting the phase node sequence (output of the receiver
filter) for SPAM receivers for various binary, # = 1/2, schemes.

The rest of the paper is organized as follows: In Section II we derive
formulas for error probability for the partial-response continuous-
phase modulation schemes with M branch diversity and maximal-ratio
combining. Section III contains the corresponding results for selection
combining, and Section IV presents some numerical results. Section V
contains a discussion and conclusions.

Il. MAXIMAL-RATIO-COMBINING

First we consider the problem of calculating the average error
probability
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Fig. 6—FError probability in detecting the phase node sequence (output of the receiver
filter) for sPaM receivers for various binary, h = 1/2, schemes.

P= J’ f(y)P(y)dy,

(17)

where P(y) is the average error probability of the modulation scheme
(with coherent detection) for Gaussian noise at the s/n y given by (14),

P(y) = ¥ CQUdM),

(18)

and where f(y) is the density function for y. Note that the receiver
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filter a(t) operates over Nr symbols, typically smaller than 6. Slow
fading is assumed and the averaging is performed over one “block” of
length Nz, much the same way as is shown in Ref. 20.

The instantaneous s/n in diversity branch k is assumed to be y,
with equal average value for all branches. For Rayleigh fading, the yx
have the probability density function of eq. (1).

Assume ideal maximal-ratio combining.*’ This combiner must know
each path magnitude and phase to perform perfect combining and
must have the property that the output signal-to-noise ratio is the sum
of the instantaneous branch s/n’s, i.e.,

M

Y= 2 e (19)
k=1
The random variable y has the density function®”’
1/y\"' 1
=_{2L = p—¥T
f =g (I‘) -1 ° (20)

for M-branch maximal-ratio combining, assuming independent Ray-
leigh fading in each branch. The average receiver-output s/n is

E{y} = MT. (21)

References 21 and 22 show that the average bit-error probability for
BPSK (QPSK) with coherent detection, maximal-ratio combining, inde-
pendent Rayleigh fading, and Gaussian noise is

1 T 1 1.3
==dl=\f—=|1+— T —— -2
P 2{1 V1+I‘[ D +gml+D

1.3.5- + « - .(2M = 3) —(M-1)
R L H (22)

where T is the average s/n per branch and where M is the number of
branches, M = 2. Corresponding formulas are also described in Refs.
23 through 25. For M = 1, see Ref. 7.

The average error probability for a modulation scheme with bit-
error probability P(y) = @(v2ay) for the additive white Gaussian
channel is given by eq. (22) with I" replaced by oI" (see Refs. 21 and
22).

For the case of coherent Msk-type reception of partial-response
continuous-phase modulated signals (see Section I), the error proba-
bility after the detection filter but before differential detection is a
weighted sum of @-functions, as shown in eq. (14). Thus, the bit-error
probability for the fading and diversity case is given by
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14— 1+ 8T 41+1'3 1+d?I‘ -
) 112 2 212° 2
1-3-5. - - . -@M—3) (  dil e
(M — 1)12#-1 2
where C;, d?, i =1 .. m depend on the modulation scheme and the
receiver filter used (see Section I). Numerical calculations of (23) for
various modulation schemes and various M are presented in Section

IV below.
For large s/n’s T, the formula (22) reduces to

M-y (1)
P=3or— (If) ' (28

It is easy to adapt this formula to the partial-response continuous-
phase modulation case. For large s/n’s eq. (23) can be written as

_ (eM 1) (1)‘" G

,  (23)

6,7,21

P

~mor-vr\ar) & @)

& (dA\M
()
To evaluate the asymptotic s/n difference between different schemes,

it is convenient to write eq. (25) as
M
_ @eM-1! 1
T MI(M-1)! 1 L
N (26)
4T E el S

2

The special case of BPSK (2PsK) is givenbym =1, C; = 1,d} = 2.

Thus, the asymptotic E;/N, difference between two schemes, e.g.,
between QPSK (BPSK) and some partial-response CPM schemes is given
by the factor

P

.
P 7 (@)

From the relationships above and (17) we can draw the following
conclusions:
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For M = 1, the difference in E;/N, between a partial-response scheme
and QpsK is smaller than the difference given by dr.i. alone. All the
d? affect the difference with equal weight C; = 1/m. For increasing M
values it can easily be concluded from the average in eq. (27) that the
smallest d?, i.e., d%i., will play an increasing role and dominate the
difference for large M, just as for the Gaussian channel.

These relative performance differences for various M values are
illustrated by the numerical examples in Section IV.

ll. SELECTION COMBINING
In this section we will derive formulas corresponding to egs. (22),
(23), and (24) for the case of diversity with ideal selection combining.
The ideal selection-diversity combiner is defined here as a device
that selects that diversity branch with the largest s/n for bit decisions.
The same branch is used for all symbols over one time interval for the

receiver filter, under the assumption of slow fading.
Let- yx be the instantaneous signal-to-noise ratio in branch k with

average value I' equal for all branches. For Rayleigh fading, the y:
have the probability density function of eq. (1). As shown in Refs. 6
and 7, the probability density function for the ideal selection-combiner
output s/n vy is

fly)= g eT(1 — e MM, (28)

where T' is the average s/n per branch and M is the number of
branches. The average receiver-output s/n in this case is

i1
E(y)=T-3 5, (29)

which of course increases more slowly with increasing M than the
corresponding average for maximal ratio combining (21).%7

First we derive an analytical solution to (17) for selection combining
and coherent BPSK. It is then easy to apply this solution to the error
probability for partial-response continuous-phase modulation (14).
The probability density function (28) can be written as

MM] _ —71+j
f=F 3% 1)1( l)e D (30)

The average bit-error probablhty for BPSK, coherent-detection and M-
branch diversity with selection combining is

- f f(Y)Q(V2y)dy

MM]
=5 2 - 1)1( )j Qe ™ ay, (31)
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We evaluate (31) for the more general family of modulation schemes
where the bit-error probability for the Gaussian channel is P(y) =
Q(JZT}'); here a is a constant <1.

The integral above can be evaluated analytically as

f Q( @)e-vﬁ(lﬂ‘ldy

f { f L e-”ﬂdt} e Ty
o v"2u'y \/2_‘”

1 T 1
== - [1— . (32)
21+y 14t +j
ol
Thus, with (31) we have P:
MM (-1)/ - 1
=Yy )(M 1) 1- . (33a)
2 S @+))\J LY,
al’
which can be written more compactly as
(1
1 M J
P=—y — (33b)
27 Jie
al

For the general case with an Msk-type receiver for a partial-response
continuous-phase modulation scheme with A = 1/2, as shown in eq.
(14), we arrive at the analytical error-probability formula

M
oY)

0 2_]'

) (34)

&

Cl
Y2

13

P=

where C;, d?,i =1 .- m are defined by the modulation scheme and
by the receiver. Numerical examples for specific transmitted-signal
formats, receiver filters, and number of diversity branches M are given
for (34) in Section IV below.

Next, we evaluate the dominating term in (34) for large signal-to-
noise ratios I'. For simplicity we do this for BPSK (a = 1). This can
then easily be extended to the general case (34), as we will see. For
large I's, eq. (33) with a« = 1 can be written as
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M
SHE
p
- p1:3e oo 2k - 1) i k
Since
3 - 1)‘( ) 0 (36)
=0
we have
G180 2k — 1) .
g G fen (e
The quantlty
Mo (M.
§=2 1 (i )z" (38)
i=0

is related to the Stirling numbers of the second kind (see Ref. 26,
Chapter 24 and Ref. 27, p. 33). Sis 0 for £ < M and

S=(-DM.M! (39)

for 2 = M. S can also be evaluated for 2 > M, as shown in Refs. 26 and
27. Thus, for large I'’s, the error probability behaves like
1-3. . ... 2e2M-1) 1
P= 2M+l l'!M (40)

The power of 1/T" is the same as for M-branch diversity with maximal-
ratio combining. The multiplying coefficient is larger, however.

For high-average-branch s/n’s T', the asymptotic error-probability
behavior for coherent BPsk with M-branch diversity is shown in Table
I below.

Table 1—Asymptotic behavior
of average probability of error
for large average per-branch
signal-to-noise I for selection
and maximal-ratio combining

using BPSK (QPSK).

Maximal-
Selection Ratio Com-

M Combining bining
1 L y—
4T 4T

) 31 31

812 161

3 151 E i

16T 321

4 105 1 35 1

32T 256 T
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For partial response A = 1/2 continuous phase-modulation with an
MSK-type receiver, the asymptotic behavior for selection combining is

1.8.0ens eM —1) 1
Pw= 9 (M+1) 1 1

Pw—¢e— (41)

Comparing formula (41) with the corresponding one for maximal-ratio
combining (24), it can immediately be seen that the relative asymptotic
performances of various modulation schemes are the same for the
selection combiner as for the maximal-ratio combiner. This is also
illustrated by the curves in Section IV.

IV. NUMERICAL RESULTS

Formula (23) for maximal-ratio combining and (34) for selection
combining are used to calculate the error probability P in the figures
below. Again note that the error probability is that found after the
filter in the quadrature arm in Fig. 1.

Figure 7 shows the error probability P versus the average per-branch
(and per-bit) signal-to-noise ratio I" for the modulation scheme 3RC,
h = Y%, with a receiver filter of MIN-type.'® Formula (23) was used and
QPsK results are shown for comparison. Note that the difference
between QPsK and 3RC grows with M. Also compare the difference in
Figs. 5 and 6 for the nonfading-additive white Gaussian channel. As
was predicted by the formula in Section II above, the asymptotic
difference between QPsk and 3RC is smaller for M = 1 than for M =
16 and for the additive white Gaussian channel. This is due to the fact
that, for low M, low signal-to-noise ratios dominate the density func-
tion f(y), as shown in eq. (1). For this region of vy, the difference
between the error probability for Qpsk and 3RC is small for the
additive white Gaussian channel (see Figs. 5 and 6).

Figure 8 shows the same modulation and diversity schemes as Fig.
7 with the exception that for 3RC a spaM-receiver filter is used (see
the introduction and Ref. 13). Notice that the differences between the
corresponding curves in Figs. 7 and 8 are small. The MiIN filter is better
than the spam filter for high s/n’s over the additive white Gaussian
channel (see Figs. 5 and 6 and Ref. 13). The spaM filter is better than
the MIN filter for low s/n’s. This explains the small but noticeable
differences between the 3RC curves in Figs. 7 and 8.

Figures 9 and 10 show the 3RC-MIN and 3R C-sPAM cases for selection
combining with QPSK results shown for comparison. Formula (34) was
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MAXIMAL-RATIO COMBINING
3RC
MIN FILTER
M-BRANCH DIVERSITY
T AVERAGE PER BRANCH
SIGNAL-TO-NOISE RATIO

. \*\

——3RC, MIN

- ‘\\\ \\\\\
A\ \ \

1074

3RC, MIN——
M =16

10-6 |||||11|1[j|111||||||\\111\\11

-10 0 20
I' IN DECIBELS

g. 7—Error g‘robablhty P vs average-per-branch s/n I" with 3RC, h = 1/2, receiver
w1th M[N-ﬁlter (The curves are shown without differential encodmg/decodmg )

used for the computations. Note that the same relative behavior is
present in Figs. 9 and 10 as was shown in Figs. 7 and 8. Also note the
larger per-branch s/n required for selection combining compared to
maximal-ratio combining for equal M.%’

The exact analytical formulas (23) and (34) are easy and straight-
forward to evaluate. For example, for M = 16 and for the 3RC-spam
case with a filter of length 4 binary symbols, 16x2° terms are used in
the sums. In general, Mx2V™***! terms are summed where Nr is the
filter impulse response length in bits."

Figures 11 to 14 show the error probability P versus the average-
per-branch s/n T for an increasing number of diversity branches with
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MAXIMAL-RATIO COMBINING
3RC
SPAM FILTER
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Fig. 8—Error probability P vs average-per-branch s/n I' with 3RC and spaM-filter M-
branch diversity with maximal-ratio combining.

maximal-ratio combining. Again, QPSK (BPSK) results are shown for
comparison. The same group of modulation schemes and receiver
filters are used. Note the widening spread for increasing M, as expected.
The corresponding case for selection combining is shown in Figs. 16
through 17 (and in Fig. 11 for the M = 1 case).

Figure 18 shows another way of presenting the relative error-
probability results. This figure shows the required receiver output s/n
(M.T) to achieve bit-error probability 10~ as a function of the number
of branches of diversity M. Maximal-ratio combining is assumed. The
modulation schemes are coherent 2RC, 3RC, and 4RC with spam
filters,"® with qpsk shown for reference. For increasing M, the s/n for
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Fig. 9—3RC with M filter and M-branch diversity with selection combining.

the additive Gaussian channel is approached. Note the relative position
of the curves for 2RC, 3RC, and 4RC. For further numerical results,
see Ref. 28.

V. DISCUSSION AND CONCLUSIONS

The curves in Figs. 7 through 18 are calculated with the assumption
that the receiver can resolve phase ambiguity of 180 degrees in the
detection process."” This is normally done by employing differential
encoding and decoding'"*'" and, likewise, for Qpsk. For this case, the
bit-error probability for the Gaussian channel is'’

Py = 2P(1 — P), (42)
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Fig. 11—Error probability P vs s/n I' for various selected h =1/2, binary cpM schemes
with selected receiver filters. On each curve the modulation format and the receiver
filter are given.

where P is the error probability in the symbol decision after the linear
filter in each quadrature arm. Thus, for the fading and diversity case,
the same relative curves are obtained as upper bounds

Py = 2P (43)

on the bit-error probability with differential encoding/decoding. In
absolute numbers, all error probabilities P must be multiplied by 2. In
principle, averaging of the type in (17) can be performed numerically
for (42) but, especially for large s/n’s and large numbers of diversity
branches, the bound based on eq. (43) is very tight.

The calculations of the bit-error probability for TFM with fading are
given in Ref. 28. This lies, as expected, between that of 3RC and 4RC.

The performance of GMSK in fading for various values of the param-
eter B,T—affecting the length of the pulse g(¢)—can be estimated by
comparisons to the raised-cosine pulses.> Compare the spectra and
eye patterns in Refs. 3 and 4 with those for raised-cosine pulses in
Refs. 11 through 13. Approximate fading and diversity (M = 2) error-
probability behavior is given in Ref. 3 for some cases of GMSK. A
detailed comparison of raised-cosine schemes and GMSK is given in
Ref. 28.
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Fig. 12—Error probability P vs average-per-branch s/n I" for the group of modulation
schemes in Fig. 11. M = 2 branch diversity with maximal-ratio combining is used.

1956 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1982



M = 4 BRANCH DIVERSITY
WITH MAXIMAL-RATIO
COMBINING

107"

1072
>
e
S
@
=Y
]

-3
€ 10
o
Q
@
@
w

1074

apPsk ——
1078 2RC, MIN——— \k,’-mc,spm
\ _ ~2REC, MIN
\"\
_3RC, MIN
P
10-‘-"IIllJ_lllllllllllllllil L1111
-10 0 10 20

T IN DECIBELS

Fig. 13—Error probability P vs average-per-branch s/n I" for M = 4 branch diversity
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Fig. 16—Error probability P vs average-per-branch s/n I" for M = 4 branch diversity
with selection combining.
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Fig. 18—Required receiver output s/n to achieve 10~ error probability as a function
of the number of branches for coherent detection of Qpsk and for 2RC, 3RC, and 4RC
with spaM filters.

This paper contains formulas for the calculations of the bit-error
probability for a class of modulation schemes with attractive spectral
behavior. The class contains such modulation schemes as MSK, FFSK,
TFM, and GMSK, as defined above. A simple suboptimum coherent
detector can be used with performance approaching the optimum
detector. The channel is assumed to be a slow Rayleigh fading channel
with Gaussian noise, and diversity is employed to combat multipath
fading. We assume the receiver uses either ideal maximal-ratio com-
bining or selection combining. Analytical formulas are derived for both
cases, and simple asymptotic expressions for large signal-to-noise ratios
are also derived and discussed. It is noted from the numerical calcu-
lations and also from the asymptotic formulas that the difference in
E,/N, between various modulation schemes in the considered class at
a given error probability decreases as the number of branches of
diversity decreases.
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