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We give a sufficient condition for one regular series parallel
channel graph to be superior to another with the same number of
stages. The main mathematical tools used for doing this are the
recently developed results on majorization over a partial order.

I. INTRODUCTION

An s-stage channel graph is a graph whose vertices can be partitioned
into s subsets (stages) Vi, Vs, ---, V,, with V; and V, each containing
a single vertex (called the source and the sink, respectively), and whose
edges can be partitioned into s — 1 subsets E:, Es, - - -, E;—; such that

(i) Edges in E; connect vertices in V; to vertices in Vi,

(i) Each vertex in V;, 1 < i < s, is connected to at least one vertex
in each of Vi, and V..

A channel graph is regular if for each i, the numbers of edges in E;,
and E; coincident to a vertex in V; are independent of which vertex is
chosen.

A series combination of an s-stage channel graph G and a ¢-stage
channel graph H is a union of G and H into an (s + £ — 1)-stage
channel graph, with the sink of G identified with the source of H. A
parallel combination of two s-stage channel graphs is a union of these
two graphs into another s-stage channel graph with the source and the
sink of one graph being identified with the source and the sink,
respectively, of the other graph. A channel graph is series parallel if it
is either an edge or is constructable from two smaller series parallel
channel graphs by either a series or a parallel combination. A series
parallel canopy is a special case of a series parallel channel graph in
which parallel combinations are allowed only when at least one of the
two component subgraphs consists solely of a single edge.

Each edge in a channel graph can be in one of two states, occupied

1965



or idle. In this paper, we follow Lee’s assumption’ that the states of
the edges are independent and that each edge in E; has probability p,
called the occupancy for E;, of being occupied. The blocking probabil-
ity of a channel graph is the probability that every channel—by which
we mean a path from source to sink consisting of one edge from each
E;—contains at least one occupied edge. An s-stage channel graph is
said to be superior to another s-stage channel graph if the blocking
probability of the former never exceeds that of the latter, independent
of the occupancies for the E; (common to both graphs).

Chung and Hwang® showed that a regular series parallel channel
graph (hereafter referred to as rspcg) without multiple edges can be
uniquely represented by its degree vector. They also proved that in
the case of two s-stage regular series parallel canopies, a necessary and
sufficient condition for one graph to be superior to the other is that
the degree vector of the former “majorizes” that of the latter. They
conjectured that the same condition might also hold for rspcg’s.
However, counterexamples to the sufficiency of the condition for
rspcg’s were given in Refs. 3 and 4. In this paper, we give a sufficient
condition for one s-stage rspcg to be superior to another, with multiple
edges between two vertices allowed, by using the recently developed
results of majorization over a partial order.>*

Il. MAJORIZATION OVER A PARTIAL ORDER

A set of numbers A = {a; = a2 = --- = a,)} is said to be weakly
submajorized” by another set of numbers B = {by = b; = +++ = ba} if

k k
Ya=Y b foreach k=1,...,n
i=1

i=1

If, in addition,

k k
Y ai=}Y b,
i=1 i=1

then A is simply said to be majorized by B.

The above concept of set majorization has been extended to major-
ization over a partial order.>® Let P = {S, —} denote a partial order on
S, where S is a set of n elements and s;, s; € S, s; — s; indicates that s;
is greater than s;in P. Let A = {a1, a2, +++, @,} and B = {by, ba, + -,
b.}, where A and B can be thought of as two sets of weights for the
elements in S. Then A is said to be weakly submajorized by B on P if
for every filter S; of S,

Y ai< Y b

€85, 8,ES;
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where S; is a filter if s; € S; and s — s;: = s € ;. If equality holds for
S; = S, then A is simply said to be majorized by B on P.
Lemma 1. Suppose A is weakly submajorized by B on P. Then there
exists C = {c1, ¢z, -+, Cn}, Where ¢; = 0 for all i, such that A + C is
majorized by B on P.
Proof: The proof is by induction on n. For n = 1, Lemma 1 is true by
setting ¢; = b1 — ai1. For general n, without loss of generality, assume
that s, is a minimal element in P. Set ¢, = b, — a@». Then A’ = {a, as,
«e+, @n-1, Qn + Cn} is still weakly submajorized by B on P, since for
any filter S; containing s,,
2 b — Z ai= Z b — Z a; = 0.
5,ES) 5E5; 5,€8j—(sn) 8,E8j—{#n)
Next consider the partial order P on S — {s.}. By our inductive
assumption, there exists nonnegative c;, ¢z, -+ -, ¢s—1 such that (a; +
¢, az+ ¢z, + -, dy_1 + Cn—1) is majorized by (b1, bs, +++, bn—1). Lemma
1 follows immediately.
We quote a result from Ref. 5:
Theorem 1: Let f(x1, X2, +++, Xn) be a function defined over the
domain D. Let P = (X, —) denote a partial order, where X = {x1, xa,
<+, Xs}. Then

f(algar2s "'ran)sf(blybz) "'rbl’l)

for all A majorized by B on P if and only if f is such that for every i
and j,

i} d

x,--->x,-=>—f2—f overall Xe D.
ax; ax,-
We now generalize Theorem 1 into Theorem 2.

Theorem 2: Let f(x1, x2, -+, x:) be a function defined over the
domain D such that f is monotone nonincreasing in each of its
arguments. Let P = (X, —) denote a partial order, where X = {x1, x»,
s++, Xn}. Then

f(a1,a2, -H,an)Zf(bl,bz, cee, bn)

for all A weakly submajorized by B on P if and only if f is such that
for every i and J,

x,-—>xj=>a—f56—f overall XeD.
ax,- axj
Proof:
(i) Assume f(ai, @z, +++, @) = f(b1, b2, -+, by,) for all A weakly

submajorized by B on P. Then, in particular,
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f(al, az, =-*, a-n) Ef(bl, b2) A ] bn)'»
or equivalently,
_f(als az, =+, aﬂ) = _f(bly b2: R} bn)

for all A majorized by B. From Theorem 1, a necessary condition for
this to happen is that for every i and j,
a=f) , a=f)

Xi—> Xj = =
ax; ax;

or equivalently

B_f = a—f overall X &€ D.
ax; o0x;

(if) Assume that for every i and j

d
xf—>x,-=>a—fs—f overall Xe€ D.
ax; 0x;
Let A be weakly submajorized by B on P and let Y7y b; — Y1 @i =
¢ = 0. From Lemma 1, there exists nonnegative C such that A + C is
majorized by B. From Theorem 1,

—flar+ci,as+ C2y ooy @n+ ) = —f(br, bz, -+, by).

Since f is monotone nonincreasing in each x;, it follows that f(a., as,
e @) =flar+ e, a4 coy orryQnF cn) =f(br, by ve-, b,). N

ll. THE MAIN RESULTS

Theorem 2 will be used for comparing two rspcg’s. To do this,
however, we first have to define a partial order such that an rspcg can
be represented as a set of weights for the elements of the partial order.
This can be done by using the Takagi graph characterization of an
rspcg.

An (i, j, r) multiplex, 1 =i < j < s, of an s-stage channel graph G is
an s-stage channel graph formed from the union of r copies of G, with
the copies being merged into a single copy from stage 1 to stage i and
from stage j to stage s. A channel graph is called a Takagi graph®® if it
can be obtained as a multiplex of a smaller Takagi graph, where the
smallest Takagi graph of s stages is an s-stage path. An (i, j, r)
multiplex can also be represented by the equation m; = r, where m;;
is called the multiplex index and r is the value of the index. Therefore,
a Takagi graph can be represented by a set {m;; = &} called a multiplex
set. Figure 1 illustrates how the Takagi graph {ms = 3,
mas = 2} is constructed. It is clear that adding or deleting a multiplex
index with value one has no effect on the Takagi graph. Up to this
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Mq3 = "‘2-1

Fig. 1—A Takagi graph.

equivalence, it has been proved (see Ref. 4) that there exists a one-to-
one mapping between multiplex sets and Takagi graphs, regardless of
the ordering of the multiplex indices in the set. Furthermore, it is
straightforward to verify that for an rspcg the product of all the values
in its multiplex set equals the total number of distinct channels.

Let m; and m,, denote two multiplex indices. Then m,; is said to
cross mpe if i < p <j < q, and to contain my, if i = p < q =j. The
following has been proved in Ref. 10:

Theorem 3: A channel graph is an rspcg if and only if it is a Takagi
graph without crossing multiplex indices.

We define a partial order P, on the set of multiplex indices {m,;:
1< i<j< s} by: mi;— mpq if m;; contains my,. Then the multiplex set
of any s-stage rspcg can be considered as a set of weights for the
elements of Py, (if m,; is not in the multiplex set, we define m;; = 1).
For a given multiplex set M, we define M;; to be the subset of M
consisting of all multiplex indices contained by m;;. We also let P;;
denote the partial order P restricted on M;;. For fixed occupancies pi,
P2, **+, Ps—1, let B(M) denote the blocking probability for the Takagi
graph with multiplex set M. Then, from Theorem 3, we have

B(M;) = {1 -1 a-py) II [1- B(Mpq)]} )
IEL;j my, € Nij

where L; = {I:my1 = 1, mij — my+1, but there does not exist mu, >
1 such that m;; = Mu — My} and where Ny = {mpgimp, > 1,
m;; — Mg, but there does not exist m., > 1 such that m;; —» mu., —
myq }. We quote a result from Ref. 2:
Lemma 2: For given constants ¢, ¢z, +++, Cn, all lying between zero
and one, define
f(xn) = (1 - cn)x";
f(xks Xp+1y ¢ %ty xn) = {1 - Ck[l - f(xk+lr Xe42, ***, xﬂ)]}x*
for k=12,... n—1.

Suppose the vector (In a., In as, + - -, In a,) is weakly submajorized by
the vector (In by, In bz, - - -, In b,) where In a; and In b; are nonnegative
for all i. Then

f(al,az,"',an)zf(b'lsb2)"°,bn)- |
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In particular, for any w > 1 and i < j, we have f(ay, az, +--, @i, +++,

aw, «-+, a,) = flar, az, ---, aw, ---, a;, ---, a,). Therefore, we also
have:
Corollary:
af(xl)IZ:"'axn)saf(xlsxzi"'!xﬂ) for sz'
dln x; dln x;

We are now ready to prove Theorem 4.

Theorem 4: An s-stage rspcg with the multiplex set {m;; = a;} is
superior to another s-stage rspcg with the multiplex set {m.; = by} if
{In b;;} is weakly submajorized by {In a;;} on P,.

Proof: A straightforward induction proof shows that B(M;,) is mon-
otone nonincreasing in each m;; € M,,. Therefore, if we can prove that
for every m,, — m.y, :

dB(M.s) _ 8B(M)
dlnmy, ~ dlnmy’

then Theorem 4 will follow immediately from Theorem 2.

Consider a path Z from the top of Pi; to the bottom of P, which
contains my, and m,,. Let r;, i = 1, 2, - - -, n, denote the value of the
ith multiplex index on this path. Suppose we hold every other m;;
constant except those on Z. Then B(M;,) can be expressed as a function
of ry, ra, - - -, rn alone since all other m;; are now constants. T'o be more
specific, we have

B(ra) =(1—cu)™
and
B(ry, res1, =+, 1) = {1 = e[l — B(ras1, Thez, ===, )]}
for k=1,2,---,n—- 1

From the Corollary of Lemma 2, we conclude that i < j implies

aB(ri,ra, =+, 1) - aB(ri1,rz, +++, 1)
dlnr; - dlnr;

In particular, we have
aB(ry, re, “',rn)<aB(r1, T2, »++,In)
dIn mu, - dln m,,

The proof is now complete by noting

aB(Ml.,) _ BB(rl, rz, ===, rn)
Blnmuv alnmuu
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and
OB(Mu) _ 6B(r11 T2, ===, rﬂ)
éhlmxy al-nm:ry ’

Define My, = {m; € Mi,: L # ¢} and define the partial order P,,
accordingly.

Theorem 5: An s-stage rspcg with the multiplex set {mi; = ai;} is
superior to another s-stage rspcg with the multiplex set {mi; = bi;}
only if {In b} is weakly submajorized by {In a;} on Py, (associated
with the {a;} set).

Proof: Consider two s-stage rspeg’s A and B with multiplex numbers
{mij = a;;} and {m;; = b}, respectively. Suppose there exists a filter
M C M,, such that

2 lnag< 2 lnb;‘j.

m;EM m;EM

Consider a set of occupancies pi, p2, - -, Ps—1 such that p; = 0 if msx+1
is contained by any m;; not in M. Clearly, if all edges from stage i to
stage j are idle, then we can set a;; and b;; to 1 without affecting the
blocking probabilities of A and B. But now, owing to the assumption
E Inaj< ¥ Inby,
JEM
the product of all a;; in A is less than the product of all b;; in B, or

equivalently, there are fewer paths in A than in B. But it is well known
that when the occupancies of all edges approach one,” then the blocking

En ==

(b)
my3
N
12 Ma3
. (c) ;
N, 7N\
(d) (e)

Fig. 2—Graphs for Example 1.
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Fig. 3—Graphs for Example 2.

probability of a channel graph with fewer channels exceeds the block-
ing probability of a channel graph with more channels. Therefore, A
cannot be superior to B. 1

IV. EXAMPLES

Example 1. Figure 2(a) shows the Takagi graph A = {m2 = ma; = 2,
mi3 = 4}. Figure 2(b) shows the Takagi graph B = {m; = 3, ma3 =
5}. Figure 2(c) shows the partial order P3. Figure 2(d) shows the
weights of A on Py3. Figure 2(e) shows the weights of B on P;3.

It is easily seen that M,; has only four filters, {mi}, {mi2, mi},

{mz23, mis} and {miz2, ma3, mis}, and product of the weights of A is
greater than that of B in every case. From Theorem 4, the first graph
is superior to the second graph.
Example 2. Figure 3(a) shows the Takagi graph A = {ms = 4, m;3 =
mss = 2}. Figure 3(b) shows the Takagi graph B = {mu = 3, ms =
5}. Figure 3(c) shows the partial order Pis. Figure 3(d) shows the
weights of A on P;s. Figure 3(e) shows the weights of B on P;s.
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Consider the filter M = {mis, m4s, mas, mis, Mmas}. The product of
the weights of A on M is 8 while the product of the weights of B on M
is 15. Hence, A is not superior to B. Note that A can still be preferable
to B (or B preferable to A) in many other senses. But one does not
dominate the other as far as the strong property of superiority is
concerned.

V. CONCLUSION

Channel graphs, of which regular series parallel channel graphs form
an important subclass, have been extensively used in modeling and
analyzing blocking probabilities of switching networks. A popular
concept in comparing the blocking characteristics of two channel
graphs is to see whether one is superior to the other under arbitrary
traffic loads. We give a sufficient condition for superiority in comparing
regular series parallel channel graphs.
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