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An Inversion Technique for the Laplace
Transform
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In this paper we use an approximation sequence defined by the
Widder Laplace transform inversion formula to provide a practical
method for inverting the Laplace transform. The approximation
sequence converges uniformly and retains essential structural char-
acteristics of the original function, e.g., nonnegativity, monotonicity,
and convexity. Thus, we approximate a distribution function by
distribution functions and use enhancement techniques to increase
the speed of convergence and to capture the quality of exponential
decay. Also, we present a practical computational method illustrated
by examples.

I. INTRODUCTION

The purpose of this paper is to summarize the techniques presented
in the paper “An Inversion Technique for the Laplace Transform”!
and to make available a useful reference of properties of the
‘approximation sequence,’ and a new numerical method developed
since the publication of Ref. 1. The inversion, or approximation se-
quence, retains the essential structural characteristics of the original
function, e.g., nonnegativity, monotonicity, and convexity. Thus, we
approximate a distribution function by distribution functions. For
application to queueing theory, this may be considered quite impor-
tant. The basic inversion sequence, together with error estimates, is
discussed in Section II; also, two enhancement procedures are given—
namely, the construction of a sequence that is more rapidly convergent
than the approximation sequence and which was not given in Ref. 1,
and a method of accurate approximation to functions that decay
exponentially. Section III discusses the new numerical method, and
Section IV presents two examples of numerical inversion along with
controls. Except for the new material whose derivations are given here,
all proofs can be found in Ref. 1.
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Il. INVERSION SEQUENCE

Consider a function f(¢) for which the Laplace transform, f(s),
defined by

fls) = f e "f(t)dt 1)
0

exists for s > ¢ and f(t) = 0(e*)(t — o); then a sequence of functionals,
(L»)5, is defined by

Lof(t) = fult) = (” g1 476

2)

One has
E_{E fa(t) =f(t) (3)

uniformly in every finite closed interval throughout which f(¢) is
continuous. Equations (2) and (3) constitute a variant of Widder’s
theorem.” The sequence [f.(£)]J¢ is called the “approximation se-
quence” of f(¢).

The following lists some important properties of f.(¢) valid for ¢ = 0,
n = 0; a dot indicates differentiation. Assumptions on f(¢) are to hold
in (0, o).

i) asft)<bea=<fi(t)<b,
f2(0+) = f(0+),
F2(04) = f(0+),
fa() = f(),
fa() = f(e0),

(if) f(t) monotone = f,(¢) monotone in the same sense. f(¢) com-
pletely monotone, absolutely monotone, convex, log-convex implies
the same property, respectively, for fu(t).

fa(t)

(iit) f(¢) = 0= —— 1 monotone decreasing in n, f(£) convex <

f(t) = fu(t), f () = 0 = f.(¢) monotone decreasing in n.
(v) If f(t)+g(t) = J’ f (5) g(u) cf‘_u (Mellin convolution), then

0
fa(t) is the approximation sequence of f(t) = f.(t)+g(t) is the approx-
imation sequence of f(¢)*g(t).

The pointwise error, e,(f; f), is defined by

&(t; ) = fa(t) — f(2). 4)
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One has
et )~ 3 % Gl=n—1,-n—DEfOt), n—o, (5
j=1 !

in which Gi(—n — 1, —n — 1) are Poisson-Charlier polynomials.® Set
Bi=G(-n—-1—n-— 1)' then the following recursion is satisfied:

B =—— [ﬁr +Bial, Bo=1, B=0. (6)
The terms of eq (5) through order n? are
&t f) ~5—7 £*f?(t)

+(—_'1_1?[ tfe )+— t‘f“’(t)] n—o. (7)

Some bounds for €.(t; f) are

t? )
(A < s
lealt; )| 2n+2§1:{13|f(x)i (8)
for pointwise error, and
len(t; £)] =< cnsup| ¢ () | )
=0
uniform over all £. The a, satisfies
2
on ~ \[—, n— oo, (10)
mn

It appears, therefore, that the convergence of fa(¢) to f(¢) is not
rapid. In fact, from eq. (7) it is 0(1/n) and is not improved by assuming
a higher degree of smoothness for f(£). However, one may decrease the
error, & (¢ f), for a given n in at least two ways by: (i) modifying the
sequence f,(t) to obtain a higher convergence rate, and (iZ) modifying
fo(t) to improve its approximation to f(¢). The first way may destroy
the desirable properties of the approximation sequence as previously
listed because the transformation from f(¢) to the members of the new
sequence may no longer be positive; the second way can be imple-
mented to preserve all the desirable properties with respect to a
function different from the original f(¢).

The following procedure improves the convergence rate but does
not preserve positivity. Define the functionals, 0., by

onf = oa(t) = (2 + l) fon(t) — (1 + l) fa(t); (11)
n n
then, from eq. (7)
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1
3+ 1)@2r+1)
1 2n’+9n+5
8 (n + 1)%(2n + 1)*

oa(t) — f(2) ~ (7]

t'f9), now, (12)

and hence
oa(t) — f(£) = 0(1/n?. (13)

Often, f(¢) decreases exponentially fast for ¢ — oo; the inversion
method may not capture this effect well for large ¢ if the decrease is
very rapid. This problem is largely overcome by the following tech-
nique, which constitutes an example of the second method of improving
the approximation.

If f (s) converges for s = —f3(B > 0), and 0 = a = 8, thenf (s — a)
exists and is the transform of g(¢) = e*f(t). If g.(t) is the approxima-
tion sequence for e*f(t) and

fra(t) = e *gal(2), (14)
then
,].jﬂ fralt) = f(t). (15)

The error €..(¢; f) = fua(t) — f(£) can be much smaller than e.(t; f),
corresponding to « = 0, so that a real improvement in accuracy can
result; of course,

nall; f) = e “en(t; 8). (16)
The approximation f,.(¢) imitates the rapid exponential decrease of
f(t) with increasing accuracy as a approaches B. Since g.(¢) is an

approximation sequence, it possesses all of the properties given earlier,
many of which carry over to f(#).

IIl. NUMERICAL EVALUATION
A type of generating function may be constructed for [ f.(£)]5. Let

1./1-2
Glz, t) —;f( . ) (17)
and define [a.(t)]5 by
Gz, 1) = T anlt)2"; (18)
then
t
fn(t) = Qn (n T 1) (19)
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This permits the use of numerical procedures for obtaining coeffi-
cients in a power series. The following is such a method. The notation

2mx

efx)=e 7 (20)

will be used. Let 0 < r < 1, g prime and g > n, and define the functional
S by

n

Sf=" 3 et {%—1[1 - requ)]}, (21)

iq

then, in terms of f.(t), one has

n+lg+1 t) . (22)

Sf= fn(t) + lg] fn+lq ( nt 1

For the purpose of computing f»(¢), Sf in the form of eq. (21) will be
used.

We will now assume that f(¢) is bounded so one may take
|f(¢)]| = A. Clearly, from eq. (22) and property 1,

q

1-r7

1Sf—fu)| < A (23)

and
lim Sf = f.(¢t). (24)

r—0+
Thus, Sf is an accurate approximation to f.(¢f) when r is small;
however, if the round-off error of each term of eq. (21) is bounded by
¢, and the total round-off error by 7, then

n+1l _,
n<e——r". (25)

It follows that a choice of r may be made to ensure the round-off
error, 7, is not too large, in accordance with eq. (25). The parameter ¢
may now be chosen to render the truncation error given by eq. (23)
comparably small.

IV. EXAMPLES

A Fortran program for the evaluation of Sf, as shown in Eq. (21),
was written by Bharat Doshi. Double precision arithmetic was used
with a round-off error of 10", As a rough estimate, it was assumed
that the computations required to form each term of the summation
in eq. (21) resulted in a round-off error of 107"; thus the choice € =
107" was made. The choices

LAPLACE TRANSFORM 1999



r=0.83, g = 127, n =50,
r=0.91, g = 251, n =100 (26)

lead to about five units error in the sixth decimal; the values of g given
result in negligible truncation errors. These errors in computing f5 and
fioo were considered acceptably small.

The function

f(t) =1/2e"* + 1/2¢7* @7)

is chosen for the first example. It represents a complementary distri-
bution function whose values may be accurately computed as a control,
and which shows the enhancement of accuracy obtainable by use of
eqgs. (11) and (14). Tables I and II illustrate these results. Since

Flo) = e b2 — (28)

the choice a = 1 is the appropriate value to use.

It may be observed, from Table I, that the error is halved in going
from fso to fioo as expected from the 0(1/n) behavior of eq. (7), while
the decrease of error from fio to o5 is better than 1/50 as seen from
the 0(1/n? rate of eq. (13). Table II shows that the effect of a is
greater for larger ¢ since the exponential term that is being tracked
becomes dominant.

The second example concerns the complementary busy-period dis-
tribution for an M/M/1.* The arrival rate is p and the service rate is
p = 1. For this case

t

dx
fey=1- P_WJ’ e‘“*"”Il(szE) >’ (29)
0
and
1
fe)==—I[p—1—5+ (o +1+s)*—4p], (30)
2ps
Table l—a =0
¢ f foo fioo 50
2 0.06891 0.07203 0.07048 0.06890
4 0.00916 0.01064 0.00990 0.00915
8 0.00017 0.00030 0.00023 0.00016
Table l—a = 1
t f fﬁﬂ.l flOD.l 0s0,1
2 0.06891 0.06911 0.06901 0.06891
4 0.00916 0.00916 0.00916 0.00916
8 0.00017 0.00017 0.00017 0.00017
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Table lll—p = 09,a =0

t f fwo flm a50
3 0.2919 0.2942 0.2931 0.2919
6 0.1950 0.1967 0.1959 0.1950
9 0.1514 0.1528 0.1521 0.1514
Table V—p = 0.5, a =0
t f feo fioo O5o
3 0.1803 0.1834 0.1819 0.1803
6 0.0764 0.0785 0.0775 0.0764
9 0.0399 0.0415 0.0407 0.0399
Table V—p = 0.1, a = 0
t f feo fio G50
3 0.0732 0.0774 0.0753 0.0732
6 0.0088 0.0103 0.0096 0.0088
9 0.0013 0.0018 0.0016 0.0013
Table Vl—p = 0.1, a = 0.4675
¢ f froa fmu.u 050,
3 - 0.0732 0.0742 0.0737 0.0732
[ 0.0088 0.0090 0.0089 0.0088
9 0.0013 0.0014 0.0014 0.0013

in which I(2x+p) is a modified Bessel function. The evaluation of the
control was accomplished by using a quadrature procedure. The values
p = 0.9, 0.5, and 0.1 were used. The best choice of a is, from Section II,
1- \/:;)2; however, when « is small, one could simply set a = 0, since
there is little improvement in using the best a. For the case p = 0.1,
one has a = 0.4675; accordingly, a comparison was made with a = 0.
Tables III through VI sample the results obtained.

V. CONCLUSION

It may be observed that the best « for p = 0.1 noticeably improved
the approximation. The performance of the o, functionals in all cases
created a marked improvement in accuracy; however, one should
remember that the desirable properties of the L, functionals are not
possessed by the o,. Nonetheless, there is a property of the o,, impor-
tant in numerical work, which follows from eq. (11). Namely, if 4 is the
round-off error in the computation of f,(¢) and fa.(t), then (3 + 2/n)8,
n = 1 bounds the induced round-off error in o, (i.e., round-off errors
are not significantly magnified).
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An interesting use of the inversion technique follows. A function f ()
is given in the form

f(t)= J’ g(t, x)dx, (31)
0

with g(¢, x) known; it is required to evaluate f(f) over a wide range of
values of ¢, Quadrature methods are accurate, for £ small, or can be
designed, for ¢ large, but do not apply equally well over all values of ¢,
including the important transition region from small to large. If the
transform f(s) can be obtained, then the inversion method described
here can be used to obtain sufficiently accurate values of f (£) over the
entire range of ¢, since eq. (3) shows that the errors, e.(f; f), are
uniformly bounded.
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