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In this paper we give an approximation method for obtaining the
probability the server is busy and the mean waiting time as seen by
the nth arriving customer for the GI/G/1 queueing system. Transient
behavior is the key issue of the method. The approximation consists
of a pair of recursion formulae whose state variables are the proba-
bility of delay and the mean waiting time. Any initial state may be
prescribed for the Oth arriving customer. Programming is very easy,
and the computation is rapid. The procedure is useful for rush-hour
analyses and for studying the recovery of a system from temporary
overload.

. INTRODUCTION

This paper presents an approximation method for obtaining the
probability the server is busy and the mean waiting time as seen by
the nth arriving customer for the GI/G/1 queueing system. Thus,
transient behavior is the key issue of the method. The approximation
consists of a simultaneous pair of recursion formulae whose state
variables are the probability of delay and the mean waiting time. It is
assumed that the Oth arriving customer finds the queue in some
prescribed state from which the successive states are computed. Nat-
urally, for the nth arrival when n is large, the computations provide
approximations to the corresponding eqilibrium quantities when equi-
librium exists. The procedure, however, is not limited to queues
possessing an equilibrium state. For methods specially adapted to
approximating the equilibrium quantities, we refer to a paper by A. A.
Fredericks,' in which the approximation Ao of that paper essentially
corresponds to the equilibrium results obtained here; we also refer to
Fredericks for an application to computer systems.’

Transient analysis is of particular importance in studying the recov-
ery of a system from temporary overload. This can occur after a short
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downtime during which the buffers become full and the machine must
now work off the accumulated load. Another situation calling for
transient analysis occurs in the case of minicomputers receiving hourly
data from an electronic switching system (ESS). The hourly rush of
traffic requires a transient analysis to determine the buildup and falloff
of delays. This corresponds to the general problem of rush-hour
situations. Knowledge of the transient behavior of a queue also indi-
cates the number of customers needed in the arrival stream until
approximate equilibrium conditions are recovered from some tempo-
rary overload (i.e., the relaxation time may be estimated).

In Section II we obtain the general recursion formulae and the
corresponding formulae defining the equilibrium results. In Section III
we specialize the recursions to the GI/M/1 queue and present the
exact solutions obtained using the Takaés® method as a control. We
show the relationship between the exact probability of delay and mean
waiting time, and also conclude that the approximate equilibrium
quantities are, in fact, exact. We discuss a number of numerical
examples and compare them with exact results. In Section IV we
reduce the general recursions to the M/G/1 case. A relation is again
obtained between the probability of delay and the mean waiting time.
The interesting property is proved that the approximate probability of
delay and mean waiting time as seen by the nth arrival satisfies the
same relation as the exact quantities; thus, the approximation method
is shown to preserve certain properties of the exact solution. We
discuss a number of numerical examples and compare them with
exact results. In Section V we present several numerical examples of
GI/G/1 queues. Exact solutions, however, are derived only for equi-
librium values.

In all the numerical examples given, the queues start empty; how-
ever, this is done only to facilitate obtaining the controls. Any initial
state may, of course, be used in the recursion formulae. A synopsis of
the important recursions and definitions of symbols is given in Section
VL

Il. RECURSION FORMULAE

Let A(x) be the distribution of time between arrivals with mean
arrival rate A, and B(x) the distribution of service time with mean
service rate p; the random variable £, which is service time minus
interarrival time, has the distribution

K(x) = J B(x + y)dA(y). (1)
0

If W, is the waiting time of the nth arrival, then we have the recursion
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W, = [Wa + £i]7, (2)
in which
[x]* = x, x=0
= 0, x=0
and the £, are iid with the common distribution K(x). Let W,(x) be
the distribution function of W,; then W,(s) is defined by

Wals) =j e *dWo(x), (3)
0

and hence
W,(s) = Ee W=, (4)

A recursion relating W,(s) to W,_.(s) will now be developed. From
eqs. (2) and (4) we have

Wa(s) = Ee™*Warte, (5)
and hence
Was) =E j e W dK (x), (6)
in which the expectation is over the distribution of W,._,. Let
K (s) = f e “*dK(x); (7)
then the functions
K.(s) = f e " dK (x) (8)
0_
and
0_
K (s) = f e *dK(x) (9)

will be used in the development. From eq. (6), we find that

Wa(s) = Woi(s)K.(s) + f “ Ee~ Wt d K (x). (10)

The recursion of eq. (10) is exact but, to obtain a simple, explicit
recursion, an approximation will be used at this point for the distri-
bution of W, ;. The more accurate the approximation chosen, the
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more accurate the final recursion will be, but also, presumably, the
more difficult to use; accordingly, a simple exponential approximation
will be used.

Let
a, = EW,, (11)
and
Jn=1— Wo(0+); (12)
then we use the approximation
o
Walx) =1 — Jne_ax, x=0,
=0, x<0O. (13)
From eq. (13) we compute
Jnas s
Eem Wt =1 — Joe. x< 0. (14)
+ s

On—1
Thus, egs. (10) and (14) yield the recursion
Wals) = Wor(0)Rols) + R(0) -5 R (- J’“). (15)
Jn Qpn—1
m + s

A pair of recursion relations will now be obtained for /., a.. Since

!jm Wals) =1 — oy, (16)
—Wi(0) = an, (17)
and
lim R.(s) =0, (18)
we obtain from eq. (15)
Jn =K. (0) + J, 1 K_ (— :""1), (19)
n—1
and
s Jn—l
Op = [K+(0) + R.— (— . )] On-1— K-’P(O)- (20)
n—1

Equations (19) and (20) constitute the approximate recursions sought.
If the queueing system possesses equilibrium values, then approxi-
mations designated by </, a, W(s) are obtained from

J=R.0)+JR (- f&’) 1)
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o= [I‘C,(O) + I?(— ;{)] a — K4(0), (22)

- 1 o Js 4 J
Wi(s) “1-Z.e K_(0) - 7 K- (— E) . (23)

[14

The recursions of eqs. (15), (19), and (20), and all subsequent
recursions derived from them, apply to arbitrary initial conditions and
to stable or unstable queues.

. GI/M/1 QUEUEING SYSTEM

To ascertain the quality of the approximations obtained by egs. (19)
and (20), a control is needed. This will be provided by the explicit
solution formulated by Takaés® for the GI/G/1 system. Accordingly,
let

Gz 8) = 3 Wals)e", (24)
n=0
A(s) =J e *dA(x), (25)
0
and
B(s) = f e *dB(x); (26)
then
R(s) = A(—s)B(s), 27

and the factorization
1—2K(s) = T.(z, )T (2, 5) (28)

defines the functions I's(z, s), I'-(z, s). The function I'+(z, s) is to be
analytic for R.s > 0 and not to vanish for R.s = 0, while I'_(z, s) is to
be analytic for R.s < 0 and not to vanish for R.s =< 0. Further, define
the projection operator T' by

TEe™" = Ee ™", (29)

in which 7 is an arbitrarily given random variable. Then the exact
solution for the generating function, G(x, s), is

(30)

_ 1 Wﬂ(s)
G =r g7 [I‘_(z, s)]'
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The only exact solutions to be studied in this paper will correspond
to the queueing system starting empty; hence, Wo(s) = 1. For this case
the projection of eq. (30) may be evaluated; we find that

1

R ) ey
To apply eq. (31) to the GI/M/1, we consider
R(s) = A(—s) (32)
n+s
and
1— 2R(s) =P F 8~ #2AS) (33)
p+s
Let 6(z) > 0 be defined by
p—8—pzA(S) =0; (34)
then we find that
" _8+sp.+s—-p.:zﬁ(—s)
1 ZK(S)_p.+S e . (35)
Thus,
8+
F+(z! 8) = s) (36)
L+ s
_pts— ,uzﬁ(—s)
I'-(z,5) = 3+ s ) (37)
and
I'_(z0) = ‘“(1—8_"’—) (38)
Hence, from eq. (31), we obtain
8 p+s
G(z, 8) = 20=2)0+s (39)

Let j., a. designate the exact values of 1 — W,(0+), and EW,,
respectively, and let

J(2) = ¥ jn2", (40)
n=0

a(z) = i a,z"; (41)
n=0

then, from
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j(2) = —— — Gz, ®), (42)
1—2z2 .

a(z) = - 2 Gz, 9, (43)
das
and eq. (39), we get
. 1-6
i@ == /e (44)
-2
and
-1 _ -1
azy = —F (45)
1—2

Let L, = jn — Jjn-1, An = a@n — an_1 and L(2), A(z) be the corresponding
generating functions; then elimination of § in egs. (44) and (45) yields

1 L(z)

A(Z) = ;m (46)
and
1 j(2)
a(z) = " T-LG) (47)
In particular eq. (47) implies the recursion relating j», @., as follows:
1. ..
an = ;]n + Z An—k(.]k -'_]k—l)- (48)
From eq. (32), we find that
-~ _ P, -
K.i(s) = i ts A(p), (49)
_ A A
R_(s) = A9 — AW, (50)
and
A -~ A 1 -
K. (0) = A(w), 4(0) =— ;A(P)- (51)
Hence, egs. (19) and (20) specialized to the GI/M/1 are
“ Jne s fedn A
Jo=Ap) + — A (=) - A (52)
1-— lh ®n-1
,U'. [4 7 |
and
-~ -~ Jn—l -~ ]- ~
an = | A(p) + [A ( ) - A(.u)] an1 +—-A(p). (53)
1 _ lJn—l Onp—1 .I'.L
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We will now show that the limiting forms of .J,,, a,, that is J, « are
exact; thus J = f, @ = a. Equations (52) and (53) show that

A J ~ I\ .
J=A(p) +1_12[A (E)_A(“)]’ (54)
1"
and
a={ A(u) + 11J [ﬁ (f) —ﬁ(,u.)} a+ lzi(p,). (55)
1--2 * i
I
Hence,
J
A (—) —A(p)
« 1 .
1_li =1—3A(u) (56)
U a
and, from eqgs. (55) and (56),
1 J
“ui=J (67
and
J=A[pa -] (58)

Since egs. (57) and (58) are the exact relations defining j, a, the
statement is proved.

An M/M/1 will be used to start the numerical examples. For the
M/M/1, one has (p = A/u)

1 .
Jo=—— [p+——7— (59)
1+p 1+1
A.gﬂ—l
and
1 1 1]
=1 e (PP T T |t
p 1+Xgn—1 b

in which the designation g, = J./a, will henceforth be used.
Since Jy = 0, ap = 0, the computations are started with

_p __P
J1 = K.(0) T+p’ (60)

and
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Table |—M/M/1, p = 0.2.

n J a J a
1 0.1667 0.1667 0.1667 0.1667
2 0.1898 0.2176 0.1898 0.2176
3 0.1962 0.2368 0.1962 0.2364
4 0.1985 0.2445 0.1985 0.2440
5 0.1994 0.2477 0.1993 0.2473
Table I—M/M/1, p = 0.8.
n J a J a
1 0.4444 0.4444 0.4444 0.4444
2 0.5542 0.7517 0.5542 0.7517
3 0.6047 0.9959 0.6084 0.9912
4 0.6354 1.2016 0.6418 1.1890
5 0.6570 1.3804 0.6650 1.3578
Table Il—M/M/1, p = 2.0.
n J « J a
1 0.6667 0.6667 0.6667 0.6667
2 0.8148 1.2593 0.8148 1.2593
3 0.8719 1.8233 0.8807 1.8189
4 0.9012 2.3727 0.9172 2.3603
5 0.9191 2.9131 0.9362 2.8922
: 1 »
a=—-Ki(0)=——, (61)
pl+p

which are exact. The value p = 1 will be used in all examples. Tables
I through III below present approximate and exact values for p = 0.2,
0.8, and 2.0.

For the next example, the renewal stream is
1

A =g oa+

(62)

The recursion relations are

1 5+ 28,
J,,=—[1+J,H En-1 ] (63)

6 (1+ gn-1)(1 + 2g8n1)
and
1 5+ 28,1 1
== 1+ n-1+ —=.
“~% [ T+ g1+ 2gn_1)] a1ty (64)

Some numerical results are given in Table IV.
As a further example the case D/M/1 is considered. We have

A(s) = e™T. (65)

The recursion relations are
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Table IV—GI/M/1, p = 1/3.

n J a J a
1 0.1667 0.1667 0.1667 0.1667
2 0.1991 0.2269 0.1991 0.2269
3 0.2100 0.2538 0.2101 0.2534
4 0.2147 0.2670 0.2148 0.2662
o 0.2192 0.2808 0.2192 0.2808
Table V—D/M/1, T=2, p = 0.5.
n J a 7 a
1 0.1353 0.1353 0.1353 0.1353
2 0.1720 0.1903 0.1720 0.1903
3 0.1867 0.2179 0.1868 0.2175
4 0.1938 0.2331 0.1940 0.2324
5 0.1977 0.2419 0.1978 0.2410
) 0.2032 0.2550 0.2032 0.2550
—Tgn-1 -T
e —e
dn=eT+ Jpo) ———, (66)
1- gn—l
and
—Tgn-1 -
e —e _
an=eT+——|an-1 + e . (67)
1 - gn—l
We find that the exact result for j, is
n kk—l
Jn= Y - Tk 1g=*T (68)
k=1 .

The equilibrium values for T'= 2 are J = j = 0.2032, a = a = 0.2550.
Table V presents the numerical results.

V. M/G/1 QUEUEING SYSTEM
For the M/G/1 queue, we have

R(s) = Lé(s); (69)
A—s
hence
1—zR(s) =A_—3_Aﬂ_ (70)
A—s
Define 8(z) > 0 by
A —8—AzB(8) = 0; (71)
then
1_ZK(3)=8—3A—3—}\2§(3)’ (12)
A—s §—s
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and hence

A—s—AzB
Dz, 5) =25~ ABE)
d—s
06— s
I‘_{z,S)—;\_S,
and
4]
(2,0) =—.
I'_(z, 0 X

Accordingly, the generating function, G(z, s), is
A —
Glzs) =2 275
6 A —s— AzB(s)
thus, the generating functions j (2}, a(z) are
1 A

and

ale) =3 ——— [l—z_”—z—j(z)},

which implies that the relation between j», . is

a. = a +1 Ly
n n—1 .l'.l. A_]n,
n 172,

an=——+—
[ Akgljk

This may be compared with eq. (48) for the GI/M/1.
From eq. (69), we have

R(s) =—— B,
A—s
N A “ “
R.(s) = 32— [B(s) - B
-8

R.(0)=1-B®),
and

o 1 - 1
K 0) =5 [1— B(A)] T
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Thus, the recursion formulae eqs. (19) and (20) become, for M/G/1,

Jn = 1 - ﬁ(A) + Jnfl#ms (86)
1+ Xg,hl
n = 1—Bmyw—§%L— %ﬂ+1—%u—ﬁmu (87)
1+ Xgn—l K

Insofar as approximations imitate characteristics of an original, we
may better apply the approximations. We will now show that the
approximations <J,, a., satisfy eq. (80). From eq. (86) we find that

BN  J.—1+ B0

= ) 88
T (88)

1
1+ Xg"_l

_ l Jnfl[Jn -1+ B‘(A)]
AeJunBOA) — oJ, +1— BN’

(89)

Qn—-1

and, from eq. (87),
Ju1BO) — J + 1 — B
Jn1 (90)

1 1 a
san-1 +— — = [1 — B(A)].
pooA

Op — Qp—1 = —

Thus, substitution of a,—, from eq. (89) into the dexter of eq. (90) yields
1 1

On = Qn-1+—— =y, (91)
pooA
and
n 1°7
=0+ — — = . 92
o a0+,u Ag‘oJk (92)

From eqs. (81) and (92), we have
1 .
an—-an=—ao+Jo——E (Jr — Ji); (93)
)

hence, for a stable queue,

Je—dr—0, k- oo (94)
Since j, — p, then also J, — p, & — . Unlike GI/M/1, however, a #
a. The equality that occurs in GI/M/1 was to be expected since the

waiting-time distribution was approximated by an exponential in a
portion of the integration producing eq. (15), and the exact equilibrium
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distribution is, in fact, exponential. This does not occur in M/G/1,
however, since the waiting time is not exponential. The value for a is
simply
0= AB”(0)
21—p’

(95)

while solution of the equilibrium form of egs. (86) and (87) shows that
1 p—14+BN

a=- = (96)
r(1=p)[1— BA)]
thus, a = a for small A.
For the first numerical example, consider
A " 1
A =——, Bl =+ 97)
p+s (1 N 1 )
E S
then
p 4
Jp=—— |4+ p+ Jpoy—|, 98
(2+p)2( . 110+gnl) N

0 (44p+—02 ) +1 1(1 4 ) (99)
o =—0 — ) an- -~ (1-——=7])
2+ p)* P ¥ g ' P 2+ p)*

We have
_pe+p) 1L, 4
Ji= CFLE a; =1 . [1 @ P)2j| (100)

for the queue starting empty. Table VI presents some numerical values
for p = 0.5.
As another example let us consider the following M/D/1:

- 1
A(s) = B(s) =e".
(s) T+ 25 (s)=¢e (101)
The recursion formulae are
—-1/2
Jo=1—e 4 dpy———, 102
e 1 1+ 20 ( )
and
e—l/Z
=(1—e12+ - -2 _ 1
o ( e T 2gn—l) on—1 + 2e 1 (103)

The values are summarized in Table VII below.

V. GI/G/1 QUEUEING SYSTEM

For the next group of examples, the control will provide only
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equilibrium values. The following uses an interrupted Poisson arrival
stream* defined by
3.004s + 0.913216

A = 713085 + 0913216 (104)
The service time distribution is given by
3+ 5s
B(s) = )
&) =T 2@+ 29 (105)
Thus,
(0.913216 — 3.004s)(3 + 5s) :
= , (106
Res) (0.223586 — 5)(4.084414 — s)(1 + 25)(3 + 2s) (106)
0.0516472 0.672764
B9 = 5553585 —5 * 1084414 =5’ (107)
0.182021 1.266801
= 1
R.(s) 1+2s t3ros (108)
and
R.(0) = 0.604288, K’ (0) = —0.645553. (109)
The recursion formulae are
0.0516472 0.672764
= 0. 8 + o + , (110
o/ = 0.60428 ! (0.223586 + g1 4.084414 + g,,_l) (110)
and
0.0516472 0.672764
. = 0.604288 + +
“ ( 0.223586 + g.-1 4.084414 + g,._,) (111)

«an-1 + 0.645553.

Table VI—M/G/1, p = 0.5.

n J a J a

1 0.3600 0.2800 0.3600 0.2800
2 0.4245 0.4310 0.4266 0.4269
3 0.4515 0.5280 0.4547 0.5174
4 0.4666 0.5948 0.4698 0.5777
5 0.4762 0.6423 0.4789 0.6198
o0 0.5000 0.7778 0.5000 0.7500

Table VII—M/D/1, p = 0.5.

n J a J a

1 0.3935 0.2131 0.39356 0.2130
2 0.4443 0.3244 0.4482 0.3166
3 0.4655 0.3933 0.4701 0.3764
4 0.4773 0.4387 0.4812 0.4140
b 0.4846 0.4694 0.4876 0.4388
o0 0.6000 0.5415 0.5000 0.5000
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Table VIl—G//G/1, interrupted
Poisson, p = 0.7.

n J a

1 0.6043 0.6456
2 0.7123 1.1509
3 0.7498 1.6762
4 0.7703 1.9470
5 0.7842 2.2769
6 0.7947 25743
7 0.8031 2.84562
@ 0.8824 8.0160

Table IX—Approximate and
exact waiting-time distributions.

x w(x) = w(x) =
0 0.1176 0.1183
1 0.2190 0.2212
2 0.3014 0.3026
3 0.3728 0.3717
4 0.4363 0.4323
5 0.4933 0.4863
6 0.5448 0.5350
7 0.5911 0.5789
8 0.6330 0.6187
9 0.6706 0.6647

10 0.7045 0.6872

Table VIII presents the numerical results. The exact equilibrium
values are j = 0.8817, a = 8.547.

We will use this example to illustrate eq. (23) for the approximate
distribution function. Using the approximate equilibrium values oJ, a,
as in Table VIII, we find that

w(x) = 1 — 0.894602¢ "1™ + 0.0439472¢ 3% (112)
— 0.0317493¢ 096344,
The exact waiting-time distribution is
w(x) = 1 — 0.8420579¢0%%0%3= _ 0,03963069¢ > (113)

The numerical comparison is given in Table IX.
As another GI/G/1 example, we consider
1

A(S) = m, (114)

and
B(S) — 1/2e7.7s + %8—1.33. (115)

Here the service consists of a step function with two values. The
recursive equations are
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(116)

I = 0.157825 + Joy (1'226734 0-384559)'

1+ 2gn—l - 1 +gn‘.1
and

1.226734 _ 0.384559
1+ 2g,._1 1+ 8n—1

We show the numerical values in Table X. The exact equilibrium
values are j = 0.1798, a = 0.09266.

o, = (0.157825 + ) an— + 0.068909. (117)

Table X—GI/G/1, two-step
service time distribution, p =

1/3.

n J a

1 0.1578 0.06891
2 0.1741 0.08688
3 0.1782 0.09278
4 0.1795 0.09485
5 0.1800 0.09558
o0 0.1802 0.0960

For the last example, a D/G/1 will be considered. Let

A R (118)
(1 + 3 s)
then
Re) =—— . R “’T : 2Te;2T, (119)
(1+—s) (1+§s) L+5s
and
R_(s) = R(s) — R.(s). (120)
The recursion equations are
o= e (1 + 2T) + Ju1K(—gn-), (121)
and

on=[e?T(1 + 2T) + R_(—gn-1)]on—1 + e 2T(1 + T). (122

Tables XI through XIII show values for 7" = 2, 10/9, and 0.5, respec-
tively.

To obtain exact equilibrium values for the stable queues, define the
roots §;(z), 82(z) by

1 — %bi(z) = Vze /2THE), (123)
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Table XI—D/G/1, t=2, p =

0.5.

n J a

1 0.0916 0.06495
2 0.1085 0.07016
3 0.1136 0.07561
4 0.1154 0.07775
5 0.1162 0.07863
) 0.1167 0.07927

Table XIl—D/G/1, T=10/9, p

= 0.9.

n J a

1 0.3492 0.2288
2 0.4614 0.3822
3 0.5185 0.5025
4 0.5545 0.6032
5 0.5801 0.6906
oo 0.7590 2.0631

Table XIl—D/G/1, T=0.5,p =

2.
n J a
1 0.7358 0.5518
2 0.8875 1.0716
3 0.9362 1.6822
4 0.9566 2.0893
b 0.9672 2.5945
10 0.9850 5.1101
20 0.9928 10.1252
Voda(z) — 1 = Vze /2T, (124)
then
. 1 1
j(2) = 11— 1- 1 d1(2)8a2(2) |, (125)
and
1
a(z) =1 — [81(2)“ +8(2) 7 — 1]. (126)

Thus, the equilibrium values are
J=1=%&MD&((1), a=81"+8&1)7"-1 (127

and, hence, for T = 2, we have j = 0.1164, a = 0.07842, and for T =
10/9, j = 0.7587, a = 1.9895.
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VI. SYNOPSIS

We list the recursions and definitions of symbols here for ready
reference.

6.1 Definitions

A(x): interarrival time distribution.
B(x): service time distribution.
W,.(x): waiting-time distribution of nth arrival.

K(x)=f B(x + y)dA(y).
0

A: mean arrival rate.
i: mmean service rate.

p=Ap.

R(s) = f e “dK(x).

R.(s) = f e *dK(x).
0

0_
R (s) = f e “dK(x).
A(s) = f e *dA(x).
0_

B(s) = j e *“dB(x).
0

Wa(s) = j e *dW,(x).
0

Ja: probability nth arrival sees server is busy.
Jn.: approximate evaluation of j,.

a,: mean waiting time of nth arrival.

a,: approximate evaluation of a,.

gn = Jn/an .
All symbols without the subscript n designate equilibrium values.
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6.2 Recursion formulae
6.2.1 General—Transient

Jp = K(0) + Ju1 R(—gn),
an = [R.(0) + R_(—gn1)]an1 — K4(0),
and
T K (—gn_1).

Wa(s) = Wai(s)Ko(s) + K(0) —

S+ gn
6.2.2 General—Equilibrium
J = R.(0) + JR_(-g),
o= [R.(0) + E-(-g)]a — R%(0),

and
w(s) =—1——[I? ©0) ——— JR (-g)
1-R.(s) | stgo 8
6.2.3 GI/M/1
R I " R
¢=Amy»-ii—4AmFo—Awm
1- —&n-1
1
“ 1 A A 1 .
ap = A(]J.) + 1 [A(gn—l) - A(.I'.l.)] Qnp—1 + "A(P»);
n
1 - _gn—l
]
J=A[u1 - J)],
and
J
=2
pl—dJ
6.24 M/G/1
L=1~EM+J4—£?Lﬂ
1+ X En-1
w=|1-B0 +—Bf"— ae + 2 =< [1 = BO],
1+ Xgn—l a

J=j=0p,
a=1 p—1+ BQ)
L (1—p)[1- BN
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and
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