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In this paper we analyze the throughput and delay characteristics
of the Carrier-Sense Multiple-Access protocol with a queueing model.
The effects of finite buffer size, bursty arrivals, and collision detection
with exponential rescheduling are examined.

The Carrier-Sense Multiple-Access protocol could be used on a bus
in a packet switch. It works by sending a signal to all sources when
the bus is occupied. A source postpones transmission to the bus when
this signal is heard. Since the signal takes a positive amount of time
to reach the sources, two or more sources occasionally will attempt to
use the bus at about the same time. When this occurs, all the packets
are destroyed and rescheduled.

We conclude that: (i) it is important to choose the mean resched-
uling time correctly, and (ii) performance degrades significantly
when compound Poisson arrivals (peaked traffic) replace Poisson
arrivals (smooth traffic).

I. INTRODUCTION

The Carrier-Sense Multiple-Access (csma) protocol has been pro-
posed for resolving conflicts when several sources attempt to use a
single channel. In this paper we investigate the throughput and delay
characteristics of csMA.

1.1 Background

When several sources attempt to use a single channel, a protocol (in
this context, protocol is synonymous with queue discipline) is required
to allocate the channel among the sources. When the channel is
occupied, a signal is sent indicating that state of affairs. When a source
wants to use the channel, it first listens for this signal. If the signal is
not heard, the source starts transmitting. If the signal is heard, the
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source postpones transmitting and tries again at another time. The
advantage of this system is that a device to control the sources is not
required. The disadvantage is that occasionally messages will be de-
stroyed because two sources will transmit at the same time. This is a
consequence of the fact that signals travel at finite speeds, so there is
a delay between the epoch when one source seizes an idle channel and
the epochs when the other sources can first hear the busy-channel
signal. Thus, soon after a source seizes the channel, another source
may sense that the channel is free even though the channel is busy.
When this occurs, both messages are destroyed because their bits have
been merged. At the end (earlier if collision detection is used) of each
transmission, the source determines whether the transmission was
successful. If it was, the source goes about its business; if it was not,
each message is rescheduled as if the channel were sensed as busy.

The csMA protocol is used in the Ethernet* local-area distribution
system and has been considered for part of a digital switch. Since csma
is envisioned as a protocol for packet networks, we will refer to the
arrivals as packets and the channel as a bus.

1.2 Relation to other work

The first study of csMa is Kleinrock and Tobagi.! In addition to the
version of csma studied here, which they call nonpersistent csma, they
investigated various forms of persistent csMA and slotted csma that
are not alluded to in this paper. Their paper implicitly assumes that
the rescheduling delay is infinite. This means that packets which find
the bus occupied or which are destroyed in a collision are abandoned.
For the most part, we assume, as their paper does, that packets arrive
according to a Poisson process. In a subsequent paper by Kleinrock
and Tobagi,? the rescheduling times are modelled as geometrically
distributed random variables. They used a finite number of sources
and assumed the arrivals to be quasi-random (i.e., finite-source Pois-
son). Also, they introduced an unnatural discretization of the time
scale, which causes some small distortions in the results. A continuous
version of this model is described and solved in Halfin.? Our analysis
shares many features with the analysis found in Ref. 2, particularly
the exploitation of the regeneration epochs.

Tobagi and Hunt* add collision detection to the model of Kleinrock
and Tobagi.? Collision detection is a feature that informs a source that
its packet has been destroyed soon after the collision occurs. Our
model of collision detection is based on the model presented in Ref. 4.

Rappaport® and Rappaport and Bose® describe an elaborate model
of a protocol similar to csMaA.

* Ethernet is a trademark of Xerox Corporation.
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1.3 Summary of results

The models considered in this paper can be easily solved numeri-
cally. The following conclusions were reached by considering many
numerical examples.

(i) Itis important to choose the mean rescheduling time correctly;
performance is not sensitive to changes in this number near its best
value.

(ii) If the mean rescheduling time is based on a designed load but
the realized load is different, the realized performance is almost as
good as if the mean rescheduling time were based on the realized load.

(iii) When the traffic intensity is no larger than 0.7, the throughput
is insignificantly lower than the traffic intensity.

(iv) Performance is significantly degraded when compound Poisson
arrivals (peaked traffic) replace Poisson arrivals (smooth traffic).

(v) When the traffic intensity is no larger than 0.7, collision detec-
tion lowers the average waiting time significantly and reduces the
sensitivity of the throughput to the mean rescheduling time. For higher
traffic intensities, collision detection significantly increases the
throughput and decreases the average delay.

1.4 Outline of this paper

Our model is described in detail in Section II, and the method of
solution is outlined. The details of the solution are presented in Section
III. Numerical examples and empirical conclusions from the model are
given in Section IV. In Section V, we consider the effects of bursty
traffic by introducing compound Poisson arrivals. We return to Poisson
arrivals in Section VI and examine the benefits of collision detection.
Appendix A records the transition probabilities omitted from the text,
and Appendix B lists the most important symbols used in the text.

Il. MODEL AND OVERVIEW OF THE SOLUTION METHOD

Our setting is a queue of the M/D/1/K type. Let A be the rate of the
Poisson arrival process. There is a single server with a constant service
time per packet. At most K packets may be in the system (queue plus
server) at any time. Packets that arrive when the system is full are lost
forever and have no effect on the system. Our use of constant service
times reflects the assumption that all packets have the same length.

The parameter K has two potential interpretations. One is to suppose
there is a buffer that can hold K — 1 packets, so the maximum number
of packets in the queue is K — 1. The other is to suppose there are K
ports and a packet that cannot seize a port is lost. We will show that
proper limiting probabilities will not exist without this bound on the
number of packets in the system.
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When a packet is on the bus (i.e., when it enters service), a signal is
sent that warns other packets that the bus is occupied. (Equivalently,
a signal indicating the bus is free is turned off when a packet is on the
bus.) Let & denote the one-way propagation delay for this signal. It is
common to all potential users. The propagation time between a source
and the bus depends on the distance between them. If we calculate A
for the source that is farthest from the bus, the assumption that A, the
one-way propagation delay, is common to all users will underestimate
the performance measures. This propagation delay has two effects.
The first effect is that for the first A4 time units after a packet occupies
a previously idle bus, other packets that arrive and want to use the
bus will do so because the signal that the bus is occupied has not
reached them. When this happens, we say that a “collision” has
occurred and the first A time units of a service time are called the
“yulnerable” period. The second effect is that the signal that the bus
is free is not received until the bus has been free for & time units.

When a collision occurs, the bits in both packets are scrambled, and
so both packets must be retransmitted. We assume that the collision
is detected at the end of the unsuccessful transmission. Then each
source involved in the collision draws a number from an exponential
distribution with mean 1/a, which is the length of time until the source
next attempts to use the bus. Furthermore, all sources that attempt to
transmit a packet and hear the signal that the bus is occupied make
their next attempt in this fashion. We call « the “retry rate.”

Our objective is to express the throughput (equivalently, the asymp-
totic departure rate or the asymptotic proportion of time that the bus
is successfully transmitting packets) and average waiting time of a
packet (i.e., the departure time minus the arrival time) to the system
parameters A, K, h, and «a.

2.1 Outline of solution

Choose time units so that the processing time of a packet is unity.
Consider a packet, 2, that gets on an empty bus at time £. This pac-
ket will relinquish the server at ¢ + 1 and the signal that 2 is on the
bus will cease being sensed at some random time r with ¢ + 1+ A <
7 =<1t+ 1+ 2h. If no packets arrive during the vulnerable period, then
r=t+1+ 2h

Suppose we assume that 2 holds the bus for a (nonrandom) length
of time », with 1 = v = 1 + 2h, at the end of which Zrelinquishes the
server and the signal that 2 is on the bus ceases. Retries that occur
during the vulnerable period destroy the messages involved in the
collision. These retries are not considered to have seized the bus.

When » = 1, these assumptions will provide an upper bound for the
throughput and a lower bound for the average number of customers
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present (in a buffer or on the bus) in the steady state. When » = 1 +
2h, a lower bound for the throughput and an upper bound for the
average number of customers present is obtained. Little’s theorem (the
queueing formula L = AW) implies that setting » = 1 provides an
upper bound for the average waiting time and that setting v = 1 + 2A
provides a lower bound. Therefore, we will solve a model with constant
service times ».

Since A is typically much smaller than one (we use A = 0.01 in our
examples), we expect that the bounds will be close together. That is
the case in our numerical examples. Therefore, either of the bounds is
a good approximation to the true measure of performance.

Let X(¢) be the number of packets present at time £. We want to
obtain

Pa=}i:2P{X(t) =1} (1)
for each { = 1, 2, ..., K. These “limiting probabilities” are easily
shown to be independent of the distribution of the initial state X(0).
To obtain {p;}, we embed a discrete Markov chain at customer
“ejection” epochs, which are defined as follows. Let C,. be the epoch
where the mth packet to get on an empty bus leaves the bus. This may
be the end of a successful transmission where the packet leaves the
system or it may be the end of a destroyed transmission where the
packet rejoins the queue. To encompass both types of events, we call
Cn the mth ejection epoch.

Let Y = X(C#) A limso X(Cm + s); it represents the number of
customers present just after C,. Since the arrivals are Poisson and
retrials are governed by an exponential distribution, it is easy to see
that {Ym;m =0, 1, --- } is a Markov chain. It is also easy to see that
this chain is irreducible and aperiodic (details are omitted) so that the
limits

m A lim P{Y. =i}, i=0,1,...,K,
exist and are independent of Yy, are positive, and sum to one.

Three steps are used to obtain { p;} from {=}. The first step is to

relate {m} to { pi} where
pi & lim P{Y, = i and transmission is successful},

n—som

i=01..--,K—-1 (2)

The relationship is obtained by calculating the state-dependent prob-
ability of having a collision. The second step is to use a “rate up equals
rate down” argument to show

Apl'=§-pl:: i=0,1,"',K—1, (3)
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where { is the ejection rate. The third step is to obtain p, by a renewal-
reward argument. Then eq. (3) is used to calculate { and the remaining

pi’s.

lil. SOLVING THE MODEL

In this section we give details of the solution of the model described
in Section II.
3.1 Collision probabilities

Let ¢, be the probability that n packets arrive in an interval of
length, »; then

A n
c,.=e7‘\"(p), n=01,--..
n!

A well-known property of Poisson arrival processes (e.g., Corollary 5-
13 in Heyman and Sobel’) is that the arrival epochs are iid and uniform
over [0, ] when it is given that n > 0 arrivals occurred during [0, »].
Thus, for a service interval that starts with i packets in the queue, we
have

M & P{no arrivals prior to A|n arrivals in a
service interval that starts with i in queue}

=(y_h), n=0,1, ... and any i. (4)

14
Use the memoryless property of the exponential distribution to obtain

8; & P{no retries prior to A|n arrivals in a
service that starts with i in queue}

=e™, i=0,1, ... and any n. ®)

Since a collision is avoided if, and only if, there are no arrivals and no
retries during the vulnerable period, we have

d.(i) & P{no collision and n arrivals in a service
interval |start with i in queue}

=n.cab;, i, n =0, (6)
and

d,(i) & P{collision and n arrivals in a service
interval |start with i in queue}

=(1—nd)en, i, n=0. (7
Equations (6) and (7) are used to calculate the transition probabilities
of the embedded Markov chain {Y,,; m=0,1, --- }.
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3.2 Transition probabilities

Recall from Section 2.1 that Y, is the number of packets in the
system just after the mth ejection epoch. All of these packets must be
in the queue because of the propagation delay in broadcasting that the
bus is available. Let

Py & P(Your = J| Yo = i}. ®)

In this section we present formulas for computing p;, 0 <i,j < K. It
will be convenient to call both exogenous packet arrivals and retries
“arrivals”; the former are “outside” arrivals. Then, for2=i=K -1
and 0 < i+ n < K — 2, we may write

Pii+n = P{next arrival is from outside|: in queue}
X [P{n outside arrivals during service and no collision|service
starts with i in queue}
+ P{n — 1 outside arrivals during service and a collision |service
starts with i in queue} ]
+ P{next arrival is a retry|i in queue}
X [P{n + 1 outside arrivals during service and no colli-
sion|service starts with i — 1 in queue}
+ P{n outside arrivals during service and a collision|service
starts with i — 1 in queue}].
Use the memoryless property of the exponential distribution to obtain

P{next arrival is from outside|i in queue} = —.
A+

Set 8 = A/« for notational simplicity; then

Pin = o5 1ol + @] + 5 rsli = 1 + i = DL 9
To obtain the remaining entries of (p;) we need to account for
boundary conditions. The details and the formulas are given in Ap-
pendix A.

It is easy to see that (p;) is irreducible and aperiodic. Therefore,
there is a unique stationary distribution that is also the limiting
distribution. Furthermore, since the continuous-time process {X(¢);
t = 0} starts from scratch (i.e., it regenerates) each time the Y-process
reaches zero, the X-process is regenerative and the mean time between
regeneration points is finite. This implies the limits in eq. (1) exist. A
similar argument establishes that the limits in eq. (2) exist.

We can use eq. (9) to explain why the finite capacity, K, is essential
for our analysis. Suppose K = o; then eq. (9) is valid for : = 2 and
every n = 0. Equation (9) is also valid for n = —1 if we set d;(i) = 0
whenever j < 0. Define
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™

8= E nPii+n — Pii-1;

1
it is the expected size of a jump out of state { in the Y-process.
Intuitively, if lim; .. g; > 0, the Y-process is tending to infinity and
limp—o P{Yn =j} = 0 for all j. From eq. (9) we can calculate (details
are omitted)
B(l _ e*iahe—kh) i[e—n(l’—l)(e—hv _ e—M) + e—a:’e—l\v].
i+8 i+ 8 ’

g=M+

and so, if A > 0,
]_j]]l 8= Av. (10)

This phenomenon can be described physically. When j is large, e 7o
is small so the probability that an ejection is a completion is very
small. This means that once state j is reached (as it must be because
the process is irreducible), the number of customers present grows
monotonically with very high probability.

The corollary in Kaplan® states that an irreducible and aperiodic
Markov chain for which eq. (10) holds is not ergodic if p;; = 0 whenever
J < i — k for some k that is independent of i. At most, one departure
can occur at a time, so p; = 0 whenever j < i — 1. Therefore, the Y-
process is not ergodic when K = oo,

3.3 Solving the balance equations

Instead of solving # = #P to obtain {]}, we will solve balance
equations between two sets of states. Let

K
p;(Zj) 4 P{Ym+1 Ej-l Yn=1i}= E Pik.
k=j

In the steady state, the rate of transitions between states {0, 1, - - -, i}
and states {i + 1, i + 2, - - ., K} must be the same in both directions,
so*

Ti+10i+1,i = 2 Wkpk(ai + 1)’ i = 0: lv ftty K-1 (11)

k=0
We can solve eq. (11) by replacing =; by x; and setting xo = 1, and using
eq. (11) to obtain x4, from xo, - - - , xi. By setting

K
m =X E X
j=0

we obtain a nonnegative solution of eq. (11) that sums to one.

* The basic idea was developed by Robert Morris and Eric Wolman. The details for
Markov chains are given in Theorem 7-13 of Heyman and Sobel.’
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3.4 Departure point probabilities

Recall that C,, is the mth ejection epoch. Let us write C,» = D) when
Cn is a departure epoch. Now

P{Cner=D, Y1 =J}

K
=Y P(Chs1=D, Yn1=J|Yn=0}P{Yn=1i}
i=0
for every j and m. We will see below that P{Cns1 = D, Ynu =
7| Ym = i} does not depend on m, so denote it by g;. Then

K
p;= lim P{C"H'l = Dv Y =J] = 2 qiyTi,

m—soo =0

j=01..-,K—1 (12)

Observe that, forl=j=K—-2and1=i=<j— 1, P{Chs1=D, Ynn
=j|Ym= ;}

= P {next arrival is from outside|i in queue}

X P {j — i outside arrivals during service and no collision|service
starts with i in queue}

+ P {next arrival is a retry|i in queue}

X P {j—1+ 1outside arrivals during service and no collision |service
starts with i — 1 in queue}

- __ﬁﬁ $4i) + 5 A= D).

The remaining entries are obtained by accounting for boundary be-
havior. The results are:

Qoo = CoTjo = Co, (13a)
qo=1 ‘:’B, (13b)
and

go=0 for i=2. (13¢c)

Forl=j=K-2,
qo = d;(0), (14a)
gij = % dii(i) + # disin(i—1), 1=i=j, (l4b)
J+1 do( ), (14c)

e EY RS
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and

=0, I1=j+2 (14d)
When j = K — 1 we obtain
Qox-1 = i d.(0), (15a)
K-1
qik-1=——7r Z d.(i) + 2 dn(i —

B-I-lx-;-
1=i<K-1 (15b)

gx.x-1 = OK-1.

In eq. (46) we show that the infinite sums in eq. (15) have represen-
tations as finite sums containing no more than K terms. Since Cpn41 =
D and Y,.+1 = K cannot occur simultaneously, g:x = 0 for every i.
Notice that (the subscript « denotes a limit)
K-1

nid Y pj=P{Co=D,Y.<K-1}
o

= P{an ejection epoch is a departure epoch}
= P{no collision}, (16)

where the last two probabilities are steady-state quantities and can be
interpreted as long-run proportions.

3.5 Converting (pi} to { p:}

Let E(t) be the number of ejections by time ¢. Since {E(t); ¢ = 0}
regenerates when an ejection leaves the system empty (i.e.,, when
Y~ = 0 for some m),

§ & im E(2)/t

exists. It is the ejection rate. It is also the rate at which packets gain
access to an idle bus, so { is the arrival rate of new and rescheduled
packets, which is denoted by G in Kleinrock and Tobagi.!

The rate at which the number of packets present jumps from i to
{ + 1is Ap;. The rate at which it jumps from i + 1 to { is {p;. In the
steady state these rates must be equal so we have

Lemmal: Api={pi, i=0,1,...,K-1. (17)

Lemma 1 can be proved rigorously. The proof uses standard methods
and is omitted.
There are K + 1 unknowns in eq. (17) and K equations, We will find
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Po by an independent argument; the remaining p/’s and { are obtained
from eq. (17).

Let T, be the amount of time X(-) is zero in an arbitrary cycle of the
X-process, and let M be the expected length of a regeneration cycle. A
basic property of regenerative processes (see, e.g., Theorem 6-7 in
Heyman and Sobel’) is that

Po= E(To)/M. (18)
Since X(¢) = 0 if, and only if, ¢ is in an idle period,

E(To) = 1/A. (19)

When Y = i, let {; be the average time between en ejection epoch and
the next ejection epoch. We have

v+ - 1 if i<K
o+ A
Vi = )
"+E if (=K, (20)

because y; is » plus the expected time to the next arrival after the
ejection epoch. Let m; be the mean number of visits of the Y-process
to state i during an arbitrary regeneration cycle of the X-process. Thus,
m; is the mean number of visits of the Y-process to state { between
visits of the Y-process to state zero, because the X-process regenerates
whenever the Y-process enters state zero. It is easy to show (see
Exercise 7-78 in Heyman and Sobel’) that

m; = i/ mo, i=01,-..-,K (21)
Using eqs. (20) and (21) we obtain

M= = 2| S o (v —) + 4
_Eakblm!_;u %:m P A ™\" " Ka

_ 11 KV Bm Bmk

_;r_oX(p+%"B+i+ K), (22)

where p = Av.
Substituting eqs. (19) and (22) into (18) yields

_ K-1 ,B‘PTJ B'JTK
pn—ﬂn/(p‘f' 08—+;:'+—-K———). (23)

Obviously [and formally from egs. (12) and (13)], we find that
Po = . (24)
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Combining eq. (17) with { = 0 and eqs. (23) and (24) yields

-~ , K-1 B,m_ BWK
f"@u/l’n—?\/(ﬁ"‘gﬁ_*_i"'T)- (25)

Equation (25) shows that { can be computed when the balance equa-
tions are solved.

3.6 The throughput, occupancy, and average waiting time

The throughput, 6, is the asymptotic departure rate. Since the
departure process regenerates whenever the ejection process regener-
ates, § is well defined. The asymptotic departure rate equals the
asymptotic rate at which packets are accepted, because all accepted
packets eventually depart and the number of packets present is no

larger than K; therefore
K-1

=13 pi (26)

Combining eq. (26) with eqs. (16) and (17) yields
8 = {n.. 27

This equation states that the departure rate equals the ejection rate
multiplied by the asymptotic proportion of ejections that do not suffer
a collision. Equation (27) illuminates the essential trade-offs involved
in using csMA. One expects that { increases and n. decreases as A and
a increase. This means that for each A, there is a value of a that
maximizes §. Let 8*(A) be the largest value of 8 that can be achieved
when A is specified. We also expect that §*(A) will first increase with
A and then start decreasing.

Let ¢ be the long-run proportion of time that the bus is occupied.
The regenerative arguments used above can be used to prove that ¢ is
well defined and that

K
b= v%: mi/M. (28)

Using egs. (22) through (25) in conjunction with eq. (28) yields
¢ =ri. (29)

This equation can be obtained from Little’s theorem by regarding
the bus as “the system.” Then { is the arrival rate (since only packets
that depart could have arrived) and » is the expected time a packet is
on the bus. Little’s theorem asserts that {v is the average number of
packets on the bus, which is the proportion of time that the bus is
occupied. Combining eqs. (27) and (29) yields

¢ = vl/n.. (30)
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Suppose that we attempt to increase § by increasing the arrival rate,
and K and « are adjusted to keep n. constant (i.e., a fixed proportion
of collisions). Equation (27) shows that increases in # must be accom-
panied by decreases in the occupancy of the bus, and that doubling
the throughput would halve the occupancy.

From egs. (17) and (25), pi for 1 = i = K — 1 is obtained in the
obvious way and p is obtained from px = 1 — ¥§ ' pi. Then

K

L=Yip:
1

is the average number of packets present in the steady state. Since
is the arrival rate of packets that enter the system, Little’s theorem
yields

W=L/64, (31)
where W is the average length of time that a packet is in the system.

3.7 Relation to the model of Kleinrock and Tobagi

In this section we explain how the “basic equation for the through-
put” [eq. (3) in Ref. 1] can be obtained from the model in this paper.
This will clarify the similarities and differences between the two
models.

In Ref. 1 Assumption 1 states that the average retry interval is large
compared with the packet transmission time. In our notation, this
assumption is that 1/« is large compared with ». Since there is no
parameter corresponding to a in eq. (3) of Ref. 1, it appears that they
have set & = 0. Let us do that. This means that every transmission
that is destroyed by a collision stays in the queue forever. Conse-
quently, Assumption 2 in Ref. 1, which states that the interarrival
times of the point process consisting of packet arrival epochs and retry
epochs is a Poisson process, is valid because there are no retry epochs
and the arrival epochs form a Poisson process.

Another consequence of @ = 0 is that without a finite buffer,
lim,..P{X(t) = i} = 0 for all i because each packet transmission has
a positive probability of being destroyed by a collision. Therefore, we
make these two assumptions.

Assumption 3. There is a finite buffer that can hold K — 1 = 0
packets.

Assumption 4. If a packet transmission is destroyed when the buffer
is full, that packet is flushed from the system.

The next assumption is required to replicate the collision process in
Ref. 1.

Assumption 5. Packets that arrive when the buffer is full and a
packet is being transmitted will destroy that transmission.
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With these assumptions and « = 0, the arguments and formulas in
Sections 3.2 through 3.5 can be used to obtain the results given below,
but we will bypass that roundabout route and give a direct argument
(which is essentially the argument in Ref. 1).

In the steady state, whenever a packet seizes the bus, there are
K — 1 packets in the buffer. The mean time between entries to state
K — 11is, via eq. (20), » + 1/A, and 1/A is the mean length of stay in
state K — 1, so
A1
Ty 1A 1+ M

The probability that a transmission is not destroyed by a collision is

e ™ so

(32)

DK—1

0 = Apx—1e™M. (33)

Equation (7) of Ref. 1 and « = 0 show that

v=1+2h— (1—e™)/A. (34)
Substituting egs. (32) and (34) into eq. (33) yields
Ae M

=Ttz o™

which is eq. (3) in Ref. 1.

We can conclude that eq. (3) in Ref. 1 is valid when a = 0 and the
derivation in Ref. 1 requires assumptions 3, 4, and 5. Our model does
not use assumptions 4 and 5 so it should produce a greater throughput
when all other factors are the same; this is demonstrated numerically
in Section IV. Since K = 1 is allowed, this derivation explains why eq.
(3) in Ref. 1 becomes the single-server Erlang loss formula when there
are no collisions, i.e., why & | 0 yields eq. (9) in Ref. 1.

IV. NUMERICAL RESULTS

A Fortran program to solve the equations in Section III was imple-
mented in double-precision arithmetic on a PDP-1170. Because of
memory limitations and the design of the program, K = 30 was
required. The running time on a cRT display terminal with a 9600-baud
line is less than a twinkling of an eye.

In all the numerical examples we use A = 0.01. This is the value
used by other authors. It is a reasonable value to use for a system such
as Ethernet with loops of about 300 meters carrying 128-byte packets
at 10 megabits/sec. In general,

Ir

hy=—,
sc
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where
! = loop length in meters,
r = transmission rate in bits/second,
s = packet size in bits, and
¢ = speed of light in m/second.

4.1 The upper and lower bounds are close

In Table I we present various cases that demonstrate that the lower
and upper bounds for § and W are close. The subscript “avg” stands
for average and the entries are obtained by setting » = 1 + A. In all
these cases, K = 20.

Table I suggests the approximations

Wavg = 1/§(W[b + Wub) and Bavg = 1‘&(01'5 + Bub)-

We make no claim for the general validity of these approximations.
Based on the encouraging results in Table I, and on several dozen
other examples not reported here, we will henceforth use the case » =
1 + h as an approximation; there will be no explicit mention that our
numerical results are approximate.

4.2 The effects of changing «

The first two pairs of columns in Table I show that for fixed A,
different values of a yield different values of the performance measures.
In this section we explore the consequences of changing a.

When K and A are given, the maximum achievable throughput is
attained when there are no lost service times from collisions and
instantaneous retries, i.e., by an M/D/1/K queue. Let the throughput
of the M/D/1/K queue be denoted by fmax. When K = 20 and A = 0.7,
Brnax = 0.700 to three decimal places. In Table IT we show that good
choices of a will achieve # = 0.699, but the throughput for poor choices
of a have a much lower value. In particular, very small values of « do

Table |—Evidence that the bounds for # and W are close

A 0.7 0.7 0.5 0.9 1.0 3.0

a 0.01 3.0 0.5 1.0 1.0 2.0
O 0.459 0.673 0.818 0.803 0.798 0.5660
[ 0.457 0.667 0.812 0.796 0.790 0.555
O 0.455 0.660 0.806 0.788 0.782 0.549
Wb 42.1 11.4 19.6 19.9 22,7 35.8
Waug 41.9 10.2 19.1 19.3 223 35.5
Wi 41.7 9.1 18.7 18.7 21.9 35.1
avg ne 0.991 0.828 0.923 0.861 0.824 0.570
avg ¢ 0.466 0.814 0.888 0.933 0.947 0.984
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not do well. This confirms the observation given in Section 3.7 that
the model in Ref. 1, in which a = 0, underestimates the throughput.

The explanation for the qualitative properties shown in Table II is
as follows. When a is very small, a packet that upon arrival finds
another packet in service will spend a long time waiting to retry. This
makes collisions rare but tends to keep the buffer positions full, which
makes the throughput and bus utilization low. As « is increased, the
retries are more frequent, and although there are more collisions, this
is more than offset by the shorter times spent waiting to retry. When
a is made sufficiently large, the retries occur so rapidly that too many
packets are destroyed and performance degrades.

A significant feature of the data in Table II is that # does not vary
much for 0.5 = a < 1.6. The variation within the interval 0.6 = a < 1.4
is in the fourth decimal place. The value of a that achieves the lowest
value of W also achieves a high value of #, but the value of a that
achieves the highest value of # has a value of W about 9 percent larger
than the best value of W we have found.

Let 8* denote the largest value of # that is found for fixed values of
A, h, and K. Numerical results not reported here have shown that §*/
#max increases as A decreases. This is not surprising because lower input
rates result in fewer collisions. Since #* = 0.6993 and fmax = 0.700, 6*/
max is very close to one. This suggests that csma will provide good
throughput performance when A =< 0.7, and that collision detection
schemes will not increase throughput very much when A < 0.7.

4.3 The effects of changing A

Take K = 20 and 2 = 0.01. Choose a so that the throughput is
maximized. The effects of changing A are shown in Table IIL

Notice that @ increases with A for A < 2 and then 6 decreases very
slightly when A = 3. This indicates that the phenomenon of lower
throughput with higher arrival rate will not occur in the normal
operating range of A = 1. Table III also shows that a should not
increase as A increases. This property also appeared in every example
we tried.

Table ll—Performance measures vs. a when K = 20and A = 0.7

o 0.001 0.01 0.1 0.5 0.8 1.0
q 0.362 0.457 0.660 0.6989 0.6993* 0.6992
w 53.9 419 22.8 8.34 6.51 6.61
n. 0.993 0.991 0.979 0.968 0.963 0.963
¢ 0.368 0.468 0.681 0.729 0.734 0.734

« 14 1.6 2.0 3.0 4.0 5.0
[} 0.6986 0.6980 0.696 0.667 0.556 0.423
w 5.53 5.52 5.87 10.2 24.1 421
n. 0.949 0.943 0.927 0.828 0.612 0.437
¢ 0.743 0.747 0.758 0.814 0.917 0.977
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The average waiting times shown in Table III are about the same as
the corresponding quantities for 1000 sources shown in Fig. 3 of
Ref. 2.

Suppose we design a system for a nominal arrival rate and from time
to time the actual arrival rate differs from the nominal arrival rate. In
Table II we see that performance suffers if a poor value of a is chosen.
Now we show that moderate changes in A will not cause much
degradation in the throughput rate or the average waiting time.

We assume that K = 10 and A = 0.01 are held fixed. The nominal
arrival rate is 0.7 and « = 1.6 yields the largest throughput rate. We
also assume that when A changes, the new value is maintained long
enough to ensure that steady-state performance measures are ade-
quate. If we achieve good performance with arrival rates A; and A, it
is reasonable to suppose that we will achieve reasonable performance
when A is changing from A; to Az.

We will use the notations §* and W* for the best values of § and W
we have found by varying a. The entries marked § and W are for
a= 1.6.

Table IV shows that, for the values chosen, deviations from the
nominal load will not cause serious performance degradation if « is
kept fixed.

4.4 The effects of changing K

As K is increased, more packets can be stored, so the throughput
should increase. This cannot be carried too far because as K — oo,
lim,_.. Y, = o (as shown in Section 3.2), which causes the probability
of a collision to approach 1 and # — 0. We have not found a value of
K to demonstrate this numerically.

Table lll—Performance measures vs. A when K = 20 and h = 0.01

A 0.7 0.9 1.0 2.0 3.0
a 0.8 0.6 0.5 0.5 0.4
[ 0.699 0.813 0.817 0.818 0.817
Ornax 0.700 0.898 0.975 1.00 1.00
w 6.51 18.9 21.4 23.9 24.1
nc 0.963 0911 0.914 0.913 0.905
¢ 0.734 0.901 0.904 0.905 0.912

Table IV—# and W vs. A when a = 1.6, K = 10, and h = 0.01

A 0.5 0.6 0.7 0.8 0.9 1.0
g 0.600 0.599 0.692 0.764 0.801 0.812
a* 0.500 0.699 0.692 0.764 0.801 0.815
W 2.30 3.07 4.37 6.22 8.06 9.39
w* 2.18 2.65 4.18 6.09 8.05 9.38
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In Table V below we use the following notations:
#* = largest value of 4 found

aj = value of a that achieves #*
W* = smallest value of W found
ajy = value of a that achieves W*
W(as) = Wwhen a = ay
O(aly) = § when a = aly
Omax = throughput of M/D/1/K queue.

In Table V, * and W* increase with K; a}y and o] decrease with K;
aiy = aj, and the difference is small and gets smaller as K increases;
Wi(a3) is not much bigger than W*; and #(a i) is not much smaller
than 8*,

4.5 Conclusions

From the data presented in this section, and from dozens of unre-
ported sets of calculations, we conclude that:
(i) The bounds on # and W are close, and choosing ¥ = 1 + A yields
a good approximation.
(i) It is important to choose a good value of a, and performance is
not sensitive to changes in a near the best value.
(it) The value of a that minimizes W is close to the value of a that
maximizes 6.
(iv) The best value of a decreases as A and K increase.
(v) For A = 0.7, 8* is essentially the same as @n.x when K = 5.
(vi) Although « should vary with A, # and W do not significantly
differ from their best values if a is held fixed while A varies over a
moderately wide interval.

V. BATCH ARRIVALS

In this section we replace the assumption that packets arrive ac-
cording to a Poisson process with the assumption that packets arrive

Table V—Performance measures vs. K when A = 0.9 and h = 0.01

K 5 10 15 20 30
Ormax 0.842 0.885 0.895 0.898 0.900
] 0.771 0.801 0.810 0.813 0.814
Ola) 0.771 0.798 0.808 0.811 0.814
a 3.0 1.4 0.8 0.6 0.4
o 4.0 1.8 1.0 0.7 0.4
w* 3.61 8.05 13.2 18.8 30.6
W(ad) 3.66 8.12 134 189 - 305
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according to a compound Poisson process. In Fuchs and J ackson,’
statistical analysis of call arrival times are given. Two of their conclu-
sions are as follows: The exponential distribution is a reasonably good
approximation of the time between bursts, and the size of a burst
(measured in various ways) has a geometric distribution. The purpose
of this investigation is to find out how sensitive the performance
measures are to the assumption of Poisson arrivals. We will see that in
this model, the throughput can be significantly lower with bursty
arrivals than with Poisson arrivals with same rate.

Specifically, we assume that bursts arrive according to a Poisson
process with rate A;, and the bursts Bi, Bs, - .- are iid with

P{B]=i}=(l—£)£l, i=112""- (35)

It would be nice to interpret this process as one where messages arrive
according to a Poisson process with rate A, and the jth message
consists of a random number of packets with a geometric distribution.
Unfortunately, we cannot do that in the context of the model described
in Section IL. This arrival process does not conform to the finite buffer
interpretation of the model because only the current lead packet in
each message would compete for the bus; we, on the other hand,
assume that all packets in the buffer compete for the bus. This arrival
process does not conform to the interpretation that there are K ports
because that would require that if the first packet (i.e., the message)
finds a free port, then all the packets in the message would enter the
system. We assume that only those packets that find a port gain access
to the system.

5.1 Details of the arrival process

Let A(f) be the number of arrivals during (0, T'). Since A(¢) is a
compound Poisson process, we know that there are constants M and
V, such that

E[A(t)] = Mt
and
Var[A(t)] = Vi
with V= M. We call M the arrival rate. From eq. (35) we obtain

1 ¢
T—¢ and Va.r(Bl)——-—(l_g)z.

Standard calculations yield

E(B)) =

Ant

E[A(t)] = MotE(By) = T—¢
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and
Var[A(¢)] = Aot Var(B)) + Ast[E(B) ]

_Ast(E+ 1)
R
In an obvious way we obtain
2M* V-M
v=yu+v ™ Syrv

Letting z = V/M = 1 yields
2M z—1

Mgy, and 6=

(36)
Equation (36) relates the parameters we might obtain from measure-
ments, M and z, to the parameters of the model, A, and £. Let

b(n,j) = P{Bi+ B2+ --- B;=n};

it is the probability that n packets are contained in j bursts. The sum
of iid geometric random variables has a negative binomial distribution,

0 if n<j
b(n,j) = (Z:;) (1— &)7gn if n=j

for all nonnegative integers j and n. We can compute &(n, j) by
recursion from

b(0,0)=1, B(1,1)=1-¢
b(,N)=0-8b-1j-1), Jj=2

and
o j+Ek-1. . . .
Mj+kd)=L—E——EM]+k—1JL k=1 and j=0.

5.2 Changes in the Poisson model

In this section we describe the changes in the equations in Section
III that are caused by compound Poisson arrivals.

Let ci(j) be the probability that j batches arrive in an interval of
length »; therefore,

(37)

. Aov)’
c(j) = e”"b’%.

Let

d.(i,j) = P{no collision and n arrivals in a service interval|j
batches arrive and start with i in queue};
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then

du(i) = ¥ dali, el ). (38)

i=0

Expand on the argument used to obtain eq. (6) to conclude that

da(i, J) = 8im;b(n, j). (39)
Similarly,
dn(i) = EO (1 — 8:im;)b(n, j)es()). (40)
=

The transition probabilities described in Section 3.2 and Appendix
A are given in terms of the d and d functions, so they do not change
form. The infinite sums, used in Section A.1 of Appendix A, have to be
recomputed; this is done in Section A.2 of Appendix A.

The steady-state balance equations depend only on the transition
probabilities, so everything in Section 3.3 is still valid. No changes are
required for the equations in Section 3.4.

Since the arrivals do not form a Poisson process, time-average
probabilities need not equal arrival epoch probabilities and we cannot
use the arguments in Section 3.5 to obtain the steady-state probability
that i packets are present. This means we have not obtained L and W
for this model. We can obtain the throughput by using the arguments
in Section 3.5.

Let { be the ejection rate and po = lim,_.. P{X(t) = 0}. In the steady
state, Aypo is the rate at which transitions leave state 0 and {m is the
rate at which transitions enter state 0. Since these rates are equal, we
have

{ = Awpo/mo. (41)

Equations (18) through (25) are valid for compound Poisson arrivals
when A is replaced by As. The throughput is obtained from eq. (27).

5.3 Numerical examples

Let 8. be the throughput when z is the variance to mean ratio. In
Tables VI and VII we use the value of & that maximizes §, and A =
0.01.

In Tables VI and VII we see that batch arrivals can significantly
degrade throughput, and the degradation increases with z and de-
creases (except, possibly, for very large A) with A.

In Section IV we saw that @ is strongly influenced by «. That
observation suggests that the throughput values in Tables I and II
might improve if a varied with z. Our numerical experience suggests
that, in the vicinity of the best a, 6. is not sensitive to changes in a.
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Table VI—Throughput vs. M for K = 5 and h = 0.01

M 0.1 0.5 0.7 0.9 1.0 2.0 5.0
a 20.0 4.0 4.0 3.0 3.0 2.0 2.0
& 0.100 0.497 0.667 0.771 0.798 0.828 0.819
t 0.069 0.382 0.635 0.663 0.709 0.819 0.813
s 0.035 0.205 0.304 0.403 0.451 0.741 0.804
0:/6, 0.689 0.769 0.868 0.860 0.888 0.989 0.993
05/6, 0.349 0.412 0.456 0.5623 0.565 0.895 0.982

Table VIl—Throughput vs. M for K = 10 and h = 0.01

M 0.1 0.5 0.7 0.9 1.0 2.0 5.0
a 10.0 1.5 16 1.4 1.2 0.9 0.6
6, 0.100 0.500 0.692 0.801 0.815 0.821 0.816
[/ 0.069 0.400 0.590 0.737 0.775 0.816 0.8056
05 0.035 0.235 0.371 0.5612 0.576 0.798 0.788
0:/6, 0.690 0.800 0.853 0.920 0.951 0.994 0.987
85/6, 0.350 0.470 0.536 0.639 0.707 0.972 0.966

The largest improvement that we could achieve by changing « was
0.003.

Vi. COLLISION DETECTION

Suppose that a time units after the vulnerable period ends, the bus
is examined for a collision. When a collision is detected, the packet
transmission is aborted and that packet is returned to the buffer.
Collision detection reduces the time spent transmitting garbage, so it
will increase throughput and reduce delays.

6.1 Changes in the model without collision detection

Two changes in the equations in Section III are required to describe
collision detection. The first change is in eq. (7). Let

nn = P{no outside arrivals prior to k|n outside arrivals
prior to a + h};

then

L a " = LU
Nn = (a+h) ] n 0) 1! . (42)

Let ¢ be the probability than n outside arrivals occur in an interval of
length a + A, i.e,,

n
a _ p~Math) (a+h)

Cn 1 ] n=0!11"';
n.

then

da(i} & P{collision and r outside arrivals by a + A|service
starts with i in queue}
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= (1 —mnadi}ea, Ln=0, (43)

where §; is given by eq. (5).

The equations in Sections 3.2, 3.3, and 3.4 are given in terms of the
functions d and d, so no changes are required. In Section 3.5 we need
to change eq. (20) because the expected length of time that a packet
is on the bus is not ». Let

pc(i) = P{a collision occurs |service starts with i in the queue}.

There are no collisions if, and only if, no arrivals (inside or outside)
occur within a time interval of length h. Thus,

1 = pc(i) = dich
or
pi) = 1 — dicd, i=0,1,---, K—2. (44a)
When [ = K — 1, no outside arrivals are permitted, so
p(K—1)=1— k1. (44b)

Let T be the transmission time of a packet, given that i packets
were present at the last ejection epoch, and let »; = E(T;); then

T = 1 + A if no collision
' a + h if a collision

and so
NIR S : :
y'_ia+?\{( + R)[1 = p(i)] + (a + h)p.(i)}
o . ;
+ia+}\{(“'h)[l_p"(‘_l)]+(a+h)p"“_1)}
1t h-(-gPPO P o k1 )

i+ 8 ’

We replace the » in eq. (20) by »;, which induces some obvious changes
in egs. (22) through (25).

6.2 Numerical examples

In Tables II and III we saw that when A = 0.7, the throughput in the
vicinity of the best a (0.8) is very close to 0.7; but when a =< 0.1 or
a = 3.0, the throughput can be much smaller than 0.7. With collision
detection, with a = 0.02, throughputs of about 0.7 can be achieved with
a as large as 5.0. Collision detection reduces the average waiting time
by about one-third. This example suggests that when a throughput
close to the maximum possible can be achieved without collision

MULTIPLE-ACCESS PROTOCOL 2045



Table VIll—Performance measures vs. A when
K =20, h = 0.01, and a = 0.02

A 0.9 1.0 2.0 3.0
a 4.5 3.0 2.5 2.5

9 0.891 0.935 0.943 0.942
w 8.53 14.9 20.6 20.9
ne 0.718 0673 * 0.628 0.619
¢ 0.910 0.958 0.969 0.970

Table IX—Performance measures without
collision detection

A 0.9 1.0 2.0 3.0
o 4.5 3.0 2.5 2.5
4 0.434 0.569 0.606 0.602
w 44.2 33.3 324 32.9
ne 0.444 0.5685 0.625 0.620
¢ 0.989 0.983 0.980 0.981

detection, collision detection will lower the average waiting time and
make the throughput less sensitive to a.

Now we investigate the effects of collision detection when the
throughput is significantly smaller than the arrival rate.

By comparing Tables III and VIII we can see the effects of collision
detection. Throughput increases significantly for each A and W de-
creases. An indirect effect of collision detection is that larger values of
a are best. This reduces the time spent waiting for a retry, makes the
probability of no collision smaller, and yields a larger occupancy for
the bus. If the values of « shown in Table VIII were used without
collision detection, performance would degrade significantly, as shown
in Table IX. From the last two rows of Table IX we deduce that the
bus wastes a lot of time transmitting packets that have been destroyed.
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APPENDIX A
Transition Probabilities

In Appendix A we record the transition probabilities omitted from
the text.

A.1 Transition probabilities for Section 3.2
Let

Sa(j,i) = ¥ dali)

and
Sa(j, i) = 3 dali).

n=j
The former is the probability that more than j — 1 packets arrive in a
service interval and there are no collisions when i packets are in the
buffer at the start of the service interval. The latter is the correspond-
ing probability when there is a collision. For computational purposes
it is important to represent these infinite sums as finite sums. Observe
that

Jj-1

and
J-1
n=0
then
® @ — h n n
S#(0,i) = % duli) =8, (" ) e X gem ag)
n=0 0 v n:
Since S7(0, i) + Sa(0, i) = 1 is easily established,
84(0,i) =1—e™ (47)

this equation also can be obtained by calculating the sum explicitly.
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To modify eq. (9) when i = 0 we have to delete terms with negative
arguments. When [ + n = K — 1 we need to recognize that state K —
1 is reached if n = K — 1 — i packets arrive and there is no collision.
When i + n = K, we need to recognize that state K is reached if, and
only if, at least K — 1 — i packets arrive and there is a collision.

The following transition probabilities are obtained:

Poo = do(0)
Do,; =&;(O)+dﬁl(0) 1515K—2

I

Poxr Ki d,(0) + di-2(0) = S7(K — 1, 0) + dx-(0)
~1

Dok =KZ dn(0) = S4(K — 1, 0)

Pio =717 3 do(0)
pus =£§éﬂu) 35180 + d)]
Prs = 1aglE 0+ dea]+ T30 + (O
2<j=<K-2
prs -%[SAK 2, 1) + di_s(1)]

l T B ——[Sa(K — 1, 0) + dx—2(0)]

B
pl.K—l+ﬁSd(K 21)"‘ B

For2=i=K-2,

S4(K -1, 0).

Pii-t =2 B do(i —1)
pii = B do(i) +-—-——[a;(t— 1) + do(i — 1)]
L l+B 0 ,8
Pij = B [d ‘I(L) + d] —i— l(t)] + __'__[d —l+l(l )

i+ B + 8
+dii(i—-1)], i+l=sj=K-2,
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pr"K-l = = B [S.;T(K_ 1 - i, I) + dK*Q*i(i)l

i+
+ i:B[SJ(K—i,i—_l) + dxili — 1))
K = B SiaK—i1—-1,1) + ¢ SaK—1i,i—1)
Pik I+ﬁ d » L+,8 d Lt
K-1 -
PK-1K-2 _me(K_Z)
___ B 0. K — K-1 o1 p_
PRkt =T +BSd(O.K 1) +K— T +B[Sd(1;K 2)
+ do(K — 2)]
___ B _ K-1 _
PK-1K _T{__]-"'—BSd(O’K 1+ K—-1 +ﬂSd(1’K 2)
Prk-1 = O0k-1
prx =1= 8k

A.2 The effect of batch arrivals

Equations (46) and (47) have to be modified for the compound
arrival process. From eqs. (38) and (39) we obtain

Sz(0,i) = ¥ da(i) = ¥ Eﬂ da(i, 7)eol(J)
n=0 n=0 j=|

o

= 3 cls) 3 dlid)

=0

=Y cu(7) Z_S,—*qu(n,j)
n=j

j=0
al = (v—nhY .
=&Y cl)) ¥ (——] bn,)). (48)
J=0 n=j v
To evaluate the double sum, let
ar =Y b(n,jes());

=0

it is the probability that n customers arrive during a service interval.
Let

Aiz) = Y 2"an= 3 2" % bln, j)es())- (49)
n= =0 J=
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Comparing egs. (48) and (49) we see that the double sum in eq. (48) is
A(-) evaluated at z = (v — h)/».
Standard generating-function arguments yield

A(z) = C[B(2)], (50)
where
N il (1-9%
Bz)=7Y *P(B.=k) =%
()= 2 2PBi=h) =7—F¢
and

é(z) = E chb(j) = g Mwril=2)_
=0

Substitution into eq. (50) yields

A(z) = exp (Ab» z-1 ) (51)

1—2z¢

Evaluating eq. (51) at z = (v — &) /v and substituting the result into eq.
(48) yields

—Asvh
S(0, {) = diexp l:;-:_(-vbi—h)g]

As before,

Sa(0, i) =1 — 8z(0, £)

is obtained easily.

APPENDIX B
List of Symbols

The following is a list of symbols and their definitions as used in this
paper.

retry rate

one-way propagation delay

system capacity in packets

Poisson arrival rate

compound Poisson arrival rate

P{no collision}

service time (constant)

proportion of time bus is occupied

throughput

= throughput of an M/D/1/K queue

average wait (in queue plus in service) of a packet
variance to mean ratio of compound Poisson process

[ A |

»”
[
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¢ = ejection rate of packets from the bus.
An asterisk on a symbol means the best value found. The subscripts
Ib, ub, and avg stand for lower bound, upper bound, and average,

respectively.
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