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In this paper we describe the design, testing, and use of drand48—
a good, pseudo-random number generator based upon the linear
congruential algorithm and 48-bit integer arithmetic. The drand48
subroutine is callable from C-language programs and is available in
the subroutine library of the UNIX * operating system. Versions coded
in assembly language now exist for both the PDP-11 and VAX-11
computers; a version coded in a “portable” dialect of C language has
been produced by Rosler for the Western Electric 3B20 and other
machines. Given the same initialization value, all these versions
produce the identical sequence of pseudo-random numbers. Versions
of drand48 in the assembly language of other computers or for other
programming languages clearly could be implemented, and some
output results have been tabulated to aid in testing and debugging
such newly coded subroutines. Timing results for drand48 on the
PDP-11/45, the PDP-11/70, the VAX-11/750, and the VAX-11/780
are also presented and compared.

I. INTRODUCTION

The work described in this paper arose when one day the author
found himself in need of a good, pseudo-random number generator
that would execute and produce identical results on two different
computers (in this case, the 16-bit PDP-11 and the 32-bit VAX-11,
both manufactured by Digital Equipment Corporation). Good, pseudo-
random number generators often require multiple-precision arithme-
tic; hence, to achieve speed they are usually implemented in assembly
language and are dependent upon the word length of the computer. If

* UNIX is a trademark of Bell Laboratories.
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this is not enough of a barrier to portability, add the fact that the
recoding of a pseudo-random number generator for a different com-
puter is an error-prone endeavor. The author has himself found bugs
in several pseudo-random number subroutines that were supposedly
“correctly” coded. (The author admits to being facetious, but do such
bugs make the output from a generator more or less random?)

This paper does not present a magical method to eliminate these
difficulties. However, it does present enough data and intermediate
results so that a person may code on any computer a good generator
based upon 48-bit integer arithmetic and then begin to test the new
version for bugs. In addition, we describe proper usage of routines
drand48, Irand48, mrand48, erand48, nrand48, and jrand48—C-lan-
guage callable functions to generate pseudo-random numbers—cur-
rently available at Bell Laboratories in the subroutine library of the
UNIX* operating system for the Western Electric 3B20, the PDP-11,
the VAX-11, and other computers.

The pseudo-random number generator considered in this paper is
based upon the well known linear congruential algorithm, e.g., see
Section 3.2.1 of Knuth.! The next number in the pseudo-random
sequence is generated according to the formula

Xos1 = (aXn + O)modm n=0.

We choose the value of m to be 2%; hence, 48-bit integer arithmetic is
required. The values of the multiplier @ and the addend c are chosen
as follows:

a = 5SDEECE66D,s = 2736731631558
Cc= Bla = 135

While other equally good choices for m are clearly possible, we chose
2% for the following reasons, based upon matters of taste and judgment.
The word length of many popular computers is a multiple of 16 bits;
hence, it seemed wise and convenient to choose logam to be an integer
multiple of 16. A period of 2* for the generated pseudo-random
sequence seemed long enough for most purposes, while 2** seemed
dangerously short. Assuming it takes 10~ second to generate a pseudo-
random number (see the timing results in Section IV), a period of 2*
corresponds to 893 years, while 2% would only require 119 hours for
the complete cycle to be generated. The argument for 48 bits becomes
even more compelling if we assume that a future processor or custom-
ized hardware might be a factor of 10 or 100 faster.

The value of a, chosen above, was one of the multiplier values
judged by Coveyou and MacPherson® to be satisfactory according to
the “spectral test,” one of the most demanding of the canonical tests

2054 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1982



for overall pseudo-random number-generator quality. The above val-
ues of @, ¢, and m ensure that the generated pseudo-random sequence
will have the maximum possible period, i.e., 2* (see Theorem A,
Section 3.2.1.2 of Knuth'). The testing done by Coveyou and Mac-
Pherson® was demanding enough and the properties of pseudo-random
sequences based upon the linear congruential algorithm are well
enough understood’ that further statistical testing of the generator
was deemed unnecessary.

The linear congruential algorithm with these choices for the param-
eters yields a generator that exceeds the requirements of most users
and is much better than many generators in common use today.
Obviously, this is not the “optimum” pseudo-random number genera-
tor; it will not meet all the requirements of any potential user, and the
author makes no such claims. However, in more than four years of use
in numerous programs at Bell Laboratories, it has served well, even in
situations where other generators have failed.

il. PSEUDO-RANDOM GENERATOR RESULTS

The pseudo-random sequence generator described and specified in
Section I was coded in assembly language three times—once on the
PDP-11 using the 16-bit integer arithmetic instructions “mul” and
“add,”® once on the PDP-11 using the 64-bit floating-point arithmetic
instructions “mulf” and “addf,”* and once on the VAX-11 using the
32-bit integer extended multiply and add instruction “emul.”* After a
bit of debugging, all three independent versions finally produced the
identical sequence of 48-bit pseudo-random integers. For purposes of
comparison with future newly coded subroutines, a portion of that
sequence is presented below (in hexadecimal) as Table I.

Since it is common practice to treat the output from a pseudo-
random number generator as a pure binary fraction, thus yielding a
uniform distribution over the interval 0 to 1, the numbers in Table I
were so treated and then multiplied by 4096 to yield the decimal

Table I—A portion of the pseudo-random sequence X; of 48-bit

integers
1234ABCD330E  657EB7255101 D72A0C966378  5A743C062A23  72534ABF62F2
5195D97A8D15 E2ECF94AEFFC  03FD3(D49657 95B6EFCA2D16  280C6 1DEF669
623B341D40C0 BOESA9AI11CB OF1160B4F57A E65CDA1020FD  29DE25BD59C4
28B8EBF5507F 8876EDDY9601E 9AA93190EODI  952BC3577F08  451CD3C24673
63F661075102 4BIC4CBD49E5S BEOC7218348C 4C6C2C9427A7  135676ABEC26
67ACF11EB039 DBTDIEF03ES0 F124D606681B A9AF4526958A D8B2A2FFATCD
00B48E98A054 765SE7CT7BBCF 8858368AF12E (9B2484004A1 43FF29D69E98
FB95SA6FE16C3 4E897866E312 99DIA468DAB5 9BD4COFFBDIC  3662639AACF7
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Table Il—Pseudo-random integers Y; corresponding to the X; in
Table |

291 1623 3442 1447 1829 1305 3630 63 2392 652
1571 2830 241 3685 669 651 2183 2474 2386 1105
1599 1201 3040 1222 309 1658 3511 3858 2714 3467

11 1893 2181 3227 1087 4025 1256 2461 2493 870
3628 1247 622 1383 1587 2636 3086 2472 2177 1881
2672 1340 3876 1507 3866 30 2115 1117 99 2424

839 3595 243 1068 1240 3651 2040 2908 1173 3542

2767 1877 3930 3173 1542 936 1452 1230 2743 2944

integers in Table II. More precisely, each integer Y, in Table II was
computed from the corresponding value of X; in Table I by the formula

Y: = [(X:)(27°)(4096) | = [27°X; .

For some purposes, Table II may be more convenient or appropriate
than Table 1.

Tables I and II should be valuable to a person attempting to code
and test a new version of the generator subroutine. After initializing
with X, = 1234ABCD330E;s, the new version, if correct, should repro-
duce Table I (or Table IT). The fact that three independent codings of
the 48-bit linear congruential algorithm gave the same results gives
the author substantial confidence that Tables I and II are indeed
accurate. In addition, Lawrence Rosler of Bell Laboratories has inde-
pendently verified Tables I and IT using both C- and assembly-language
code he produced for the Honeywell H6000 series of 36-bit computers.®

The author has found that an empirical but effective heuristic for
quickly evaluating the general quality of any pseudo-random number
generator is to display the output bits on a bilevel display device, and
this has been done in Fig. 1 for the generator defined in Section I of
this paper. (A bilevel display device consists of an n X m rectangular
array of dots, each of which can be made either white or black.) Figure
1 was generated using only the leftmost 32 bits of each 48-bit X;; 2
values of X; were generated, thus giving a total of 2'° bits. These bits
were displayed on a 512 X 512 crT display device with a 1 being
displayed as white and a 0 being displayed as black. Good quality
pseudo-random number generators produce displays similar in ap-
pearance to Fig. 1—random salt and pepper effect with no visible
patterning. For comparison, Fig. 2 shows the display produced by an
inferior generator.* Note the prominent nonrandom patterns visible in

* The author apologizes for the generally poor quality of Figs. 1 and 2 and assures the
reader that the result is much more striking and apparent when the original CRT or
ph?lmgraphlc plates are viewed. Glossy prints such as these simply do not reproduce
well.
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Fig. 1—Bilevel dot display generated by drand48.

Fig. 2, which was produced by a 1977 version of the library routine
“rand,” described in Section III of the UNIX Programmer’s Manual.
(This 1977 version used the linear congruential algorithm with m =
2% the version of “rand” currently in the UNIX library (1982) is better
since it uses m = 2*%)

lll. SUBROUTINES FOR USE WITH THE C PROGRAMMING LANGUAGE

As an example of how the calling sequences to the pseudo-random
number generator might be designed, we now describe some routines
that were coded for use with the C programming language.® So far the
author has himself implemented versions of these routines only for the
PDP-11 and VAX-11 computers. However, a version for other com-
puters that support the C language has been implemented by Rosler’
and is now in use on the Western Electric 3B20, the Honeywell H6000,
the IBM-370, and the Motorola MC68000 computers.

The pseudo-random number generator was implemented in assem-
bly language as one subroutine having nine entry points. Six of the
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Fig. 2—Bilevel dot display generated by an inferior pseudo-random number generator.

entry points generate the next pseudo-random X; in the sequence and
then convert the leftmost bits of it into the particular type of data
item desired—floating-point fraction, positive integer, or signed inte-
ger. The entry points erand48, nrand48, and jrand48 can be called
without first having to invoke a special initialization entry point. Calls
to the entry points drand48, Irand48, and mrand48 should be preceded
by at least one call to one of the initialization entry points—either
srand48, seed48, or lcong48.

3.1 Function drand48

Example C usage:
double fnext, drand48( );
fnext = drand48( );

The next pseudo-random number is returned as a non-negative
binary fraction in double precision floating-point format; i.e., the value
returned is 27*8X;. The values returned are uniformly distributed over
the interval [0, 1). Thus, in the above C-code example, the value range
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for fnext is 0 < fnext < 1. Either srand48, seed48, or lcong48 should be
invoked before calling drand48.

3.2 Function Irand48

Example C usage:
long int Inext, lrand48( );
Inext = lrand48( );

The next pseudo-random number is returned as a non-negative
integer in long integer format. The long integer is formed by taking
the leftmost 31 bits of X;, i.e., the value returned is [27'X;]. In the
above C-code example, the value range for Inext is 0 < Inext < 2%,
Either srand48, seed48, or lcong48 should be invoked before calling
Irand48.

3.3 Function mrand48

Example C usage:
long int mnext, mrand48( );
mnext = mrand48( );

The next pseudo-random number is returned as a signed integer in
long integer format. The long integer is formed by taking the leftmost
32 bits of X; to be a signed integer in two’s-complement format. Hence,
the leftmost bit of X; determines the sign of the output value. In the
above C-code example, the value range for mnext is —2*' < mnext <
2°'. Either srand48, seed48, or lcong48 should be invoked before calling
mrand48.

3.4 Functions erand48, nrand48, and jrand48

These functions are identical to drand48, Irand48, and mrand48,
respectively, in the characteristics of the data value returned. The
difference is that erand48, nrand48, and jrand48 allow, and require,
the calling program to provide the storage for the current 48-bit X;
value, while drand48, Irand48, and mrand48 provide this storage inter-
nally for themselves. For those programs that require only a single
stream of pseudo-random numbers, drand48, lrand48, and mrand48
are a little more convenient and simpler to use. However, erand48,
nrand48, and jrand48 allow multiple “independent” streams of pseudo-
random numbers to be generated, i.e., subsequent numbers in each
stream will not depend upon how many times the routines are called
by other parts of a program to generate numbers for other streams.
This property can be a big asset for certain statistical computations
and for program debugging.

3.4.1 Function erand48

Example C usage:
double fnext, erand48( );
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short int xsubi[3];
fnext = erand48(xsubi);

3.4.2 Function nrand48

Example C usage:
long int Inext, nrand48( );
short int xsubi[3];
Inext = nrand48(zsubi);

3.4.3 Function jrand48

Example C usage:
long int mnext, jrand48( };
short int xsubi[3];
mnext = jrand48(xsubi);

3.5 Function srand48

Example C usage:
long int seedval;
seedval = 0x1234ABCD;
srand48(seedval);

This is an initialization entry point that sets the value of Xo; the
multiplier a and the addend c are set to the values specified in Section
1. The leftmost 32 bits of X, are taken from the argument passed to
srand48 when it is called (seedval in the above C-code example). The
rightmost 16 bits of X, are arbitrarily set to 330E,s. Hence, the above
C-code example sets the value of X, to 1234 ABCD330Es.

3.6 Function seed48

Example C usage:
short int seed16v[3], *shp, *seed48( );
seed16v[0] = 0x330E;
seed16v[1] = 0xABCD;
seed16v[2] = 0x1234;
shp = seed48(seed16v); /* pointer to previous X stored in shp */
/* or alternatively, */
seed48(seed16v); /* pointer to previous X; just ignored */

This is an initialization entry point that sets the value of X, to the
48 bits specified by the argument passed to seed48; the multiplier a
and the addend c are set to the values specified in Section L. In
addition, the previous value of X; is automatically stored in a 48-bit
internal buffer, used only by seed48, and the value returned is a pointer
to this buffer. The argument is an array of three 16-bit integers. The
above C-code example sets the value of X, to 1234ABCD330Es.

The pointer to the previous value of x; is useful if a restart from that
point is desired at a later time. The 48-bit X; value must be copied out
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of the internal buffer before seed48 is called again or it will be
destroyed. The following code sequence, for example, restarts a pro-
gram with a saved value of X,.

short int newx[3], oldx[3], *shp, *seed48( ), i;

shp = seed48(newx); /* initialize with whatever is in newx */

for (i = 0; i < 3; i++) oldx[i] = shp[i]; /* save previous X; in
oldx */

seed48(oldx); /* reinitialize with oldx */
3.7 Function Icong48

Example C usage:
short int param(7];
param[0] = 0x330E; param[1] = 0xABCD; parem [2] = 0x1234;
param[3] = 0xE66D; param[4] = 0xDEEC; param[5] = 0x5;
param[6] = 0xB;
lcong48(param);

This is an initialization entry point that sets the values of Xy, a, and
c; hence, different 48-bit linear congruential generators may be created
by specifying different values for the multiplier a and the addend c.
The argument passed to lcong48 is an array of seven 16-bit integers.
The first three specify a 48-bit value of Xj; the next three specify a 48-
bit value of the multiplier @, and the last one specifies a 16-bit value of
the addend c¢. Hence, the above C-code examples set X, =
1234ABCD330E,s, a = 5DEECEG66S,6, and ¢ = Bis.

IV. TIMING RESULTS

Table III presents the time required to generate, using function
drand48, 10° pseudo-random numbers on five different computer hard-
ware configurations. More precisely, Table III gives the time required
to execute the following short C-language program:

main( ) {
register int i, j, h;

Table lll—Time required to generate 10°
pseudo-random numbers

Computer Time (sec)
PDP-11/45 440
PDP-11/45 with Fabritek cache 340
PDP-11/70 162
VAX-11/750 200
VAX-11/780 96
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double nfd, drand48( );
int 11i, 11j;
short int nn[500];
long int seedval;
seedval = 0x1234ABCD; srand48(seedval);
for(i = 0; i < 500; i++) nn[i] = 0;
1li = 1000; 1j = 1000;
nfd = 500;
for(i = 0; i < ILi; i++) for(j = 0; j < 1j; j++)
{h = nfd*drand48( );
nn(h)++;
}

Execution of drand48 accounts for 80 percent, approximately, of the
times listed in Table III. For the timing tests on the PDP-11/45 and
PDP-11/70, our version of drand48 that employs the floating-point
arithmetic instructions was used, since it is substantially faster than
the version that employs the integer arithmetic instructions. The first
three entries in Table III represent separate executions of the same
binary machine code; hence, the time differences reflect brute-force
speed differences of the processor and/or memory hardware. The same
is true for the last two entries in Table III. The comparison between
the PDP-11 and the VAX-11 is, however, more subtle since a complete
recoding of drand48 is involved here. Essentially, when comparing the
VAX-11 with the PDP-11 in Table III, we are comparing the time
required to accomplish the identical “function” on both computers
using a near optimally coded version of drand48 on each machine. The
faster time for the VAX-11/780 must be attributed to at least two
factors: a more powerful and capable instruction set than the PDP-11,
and faster basic hardware.

V. DISCUSSION

We have described the design of drand48, a good, pseudo-random
number-generator subroutine, and presented enough output data so
that this subroutine can be recoded for a new processor and quickly
tested for bugs. While the reproduction by a new drand48 implemen-
tation of either Table I or II surely is not a logically complete test of
correctness, it is, at least, a first-order indication that will catch many
of the common types of programming errors. The drand48 subroutine
is not a panacea, an “ultimate” generator for all purposes. There are
numerous other algorithms for generating pseudo-random sequences,
and each one has its advantages, disadvantages, advocates, and de-
tractors. The most sophisticated requirements will always have to be
met by custom design of the generator and extensive statistical testing.
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However, it is not at these most sophisticated users that drand48 is
aimed.

We live in an age when new computers are coming into existence
very rapidly. The UNIX operating system and the C programming
language are already running on the Western Electric 3B20 processor,
and the 3B05 is not far behind. Other new processors have been or are
being introduced by other manufacturers. As existing programs mi-
grate to these new machines, it would be desirable for the associated
pseudo-random number generator to continue to produce the same
output sequences. A subroutine written in a portable, high-level pro-
gramming language is one possible solution, and drand48 has proven
itself amenable to such an approach. However, for applications in
which speed is of paramount importance, subroutines written in assem-
bly language are useful. (The implementation of drand48 in the
“portable” dialect of C ran significantly slower’ than the assembly
language versions described in this paper.) The drand48 subroutine
has worked well on the PDP-11 and VAX-11 computers; the author
hopes that the information provided in this paper will make it possible
for new implementations of drand48 and its variants to be accurately
coded for at least some of the new computers that will ultimately
become popular in the future.
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