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Using a Markov chain model for the motion of a particle through
a V-node network, we consider the quantities n; which are the
average number of steps taken by the particle in traveling from an
originating node, i, to a destination node, j. A figure-of-merit, N, for
the entire network is introduced by averaging n; over i and j. We
investigate which networks minimize or maximize N, either when no
restriction is placed on the Markov chain, or when we restrict it so
that it corresponds to random routing. By the latter we mean that at
each node the particle “selects at random” lines from an undirected
network graph. We show that for random routing, the complete graph
has N = (V — 1) and is the minimizing graph. The maximizing graph
is unknown, but we establish that the worst behavior of N increases
at least with the cube of the number of vertices, but no worse than the
3.5 power. Properties of the class of graphs known as barbells are
useful here. The minimizing unrestricted chain corresponds to plac-
ing the nodes on a circle and proceeding unidirectionally from one
node to the next. Here, N = V/2.

I. INTRODUCTION AND RESULTS

Our work is set against the background of the Markov chain model
for the movement of a “particle” or “message” through a network of
V nodes. Thus, suppose a particle originates at node i and is destined
for node j # i. The particle wanders through the network toward its
destination via a Markov chain, going to node n from node m with
probability pm... The quantity pmn is the (m, n) element of the transition
matrix P of the Markov chain whose states correspond to the nodes of
the network. Denote the average number of steps required by the
particle to reach its destination by n;, and assume that any node is
accessible from any other (the Markov chain is irreducible). Then we
introduce the figure-of-merit, N, for any such chain by averaging n;
over the (V — 1) possible destinations and V origins of particles:
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Our problem is: Which chains minimize or maximize N, either for a
random-walk Markov chain or for an unrestricted chain?

An unrestricted chain means that no restrictions are placed on the
transition matrix P other than irreducibility and the requirement that
pii = 0 for all ;. The random-walk chain is a special case of interest and
is defined as follows. Draw any connected undirected graph on the V
nodes. If m and n are not joined by an edge of this graph set p,., = 0,
while if they are so joined set pmn, = 1/ln, where I, is the number of
edges of the graph leaving node m. Thus, at any node, the particle
chooses from the available lines “at random.” This random walk on
the graph has previously been used by Kleinrock in Ref. 1, where it is
referred to as random routing.

Our results are:

(i) For random routing, the average number of steps N is mini-
mized when the graph of the network is the complete graph. For this
case N=(V-1).

(i1) For the unrestricted chain, NV is minimized when the nodes are
placed consecutively on a circle and we proceed deterministically from
1to 2 to 3, etc. Here N = V/2.

(iiz) By choosing p12 = pa1 = 1 — €, € — 0, N can be arbitrarily large
for the unrestricted chain (when V > 2).

(iv) We have not been able to determine the “worst” graph for
random routing, but we can show for large V that O(V®) < Nyorst <
O(V?®), The barbell graphs of Mitra-Weiss® and Landau-Odlyzko® are
good candidates for bad graphs.

Il. THE MINIMAL WALK

In this section, we demonstrate that the complete graph is the only
graph which minimizes N for the random-walk problem.

The fact that the symmetry of the complete graph requires n; = N
for all ; # j allows a simple demonstration of the fact N = (V' — 1) for
this case. If the particle originates at node i, we go directly to our
destination j with probability 1/(V — 1), requiring only one step, or we
go to another node with probability (V — 2)/(V — 1) and then require
an average of (1 + N) steps to reach j from i. Thus,

1 V-2
N—V_1+V—_—1-[1+N]. (2)
Solving (2) yields N = (V — 1).
To show N > (V — 1) for other graphs is more involved. We first
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give properties of those transition matrices that correspond to random
routing, ending with (12) which gives the stationary probabilities for
those chains. We then derive (24), which is an expression for the
average of the first passage times with which we are concerned. Finally,
we obtain our result by giving a lower bound to (24).

Standard results on Markov chains or positive matrices may be used
without reference when needed. For the former, the reader may consult
Ref. 4, while Ref. 6 is a useful source for matrices.

In this paper, we denote transposition, complex conjugation, and
hermitian conjugate by the symbols T, *, and ', respectively.

For random routing, the transition matrix P is given by

P=DA, (3)

where A is the symmetric adjacency matrix of the graph and is defined
by
1 if i # j and i and j are joined
a; = by an edge
0 otherwise,

and D is a diagonal matrix with diagonal elements
di=1/1;, (4)

l; being the ith row sum of A and also, therefore, the number of edges
of the graph incident on node i. The matrix P is stochastic, that is, it
has nonnegative elements and the rows sum to one. Further, the
assumed connectivity of the network graph implies that P is irreduci-
ble. The facts that P is stochastic and irreducible imply that the largest
positive eigenvalue of P is unity and has multiplicity one. All other
eigenvalues of P have modulus less than, or equal to, one. Set A\; =1
and let A, - - -, Av be the remaining eigenvalues of P.

We now investigate the eigenvalue and eigenvector structure of P.
The matrices P = DA and @ = D'?AD"* differ by a similarity
transformation (P = DY?@QD™'/?) and so have the same eigenvalues.
Since @ is real symmetric, the A; are real. Further @ has a complete set
of orthonormal eigenvectors ¢’

) — Agj}ti)
¢"eV) = 8. (5)

If we denote the eigenvectors of P and P7, which correspond to A; by
U“ and W, respectively, then we clearly have

U(il — al_Dl/2¢(ﬂ
W(“ _ ai'lD*l/2¢{l')’
WOTUY = 5. (6)
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The «; in (6) are any convenient constants. In addition, we have the
spectral representation

\4
P= Y AUOWOT, )
=1

Since the rows of P sum to unity, the eigenvector U" may be chosen
to be

1
1
1
U[l) = . i (8)
1
The eigenvector W,
PTWY = WO, 9)
is then the stationary probability vector for the Markov chain
m
P2
we= ), (10)
Pv

obeying the normalization of (6).
Equation (9) is easy to solve when P corresponds to random routing.
Define a vector Y by (Y); = I, so DY = U™, Then, using (3),

PTY = ADY = AUY =Y. (11)

Thus, the stationary probability vector for the chain has components
4

i = >0, 12

pi=gr (12)

where L equals the number of edges in the graph. Using (12) in (6), we
find

©™); = Vp. (13)

We next derive the expression (24) for N that will be our point of
departure. Let f;(n), n =1, 2, . . - be the first passage probability from
node i to node j at time n. Then, if P" is the nth power of the transition
matrix P, we have (Feller, in Ref. 4, p. 352)

fi(1) = Py (14)

fo) = (P = 3 (Pfyn=B),

v
X}
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In terms of the generating functions, defined for |s| < 1 by

Fi(s) = 3 ful)s" (15)
Py(s) = 3 (P"ys", (16)
(14) is equivalent to
Py
F;J(S)=-1-TJP(-§—)(S—), |S|<1 (17)
)

Since all eigenvalues A; of P satisfy |A;| = 1, (16) shows that (17) may
be rewritten for i # j as

[ - sP];' i#]
[I-sP;° |s|<1.
Denoting the ith component of U* by U*', and similarly for W,
set

Fi(s) = (18)

U(#) W(pl b(p) (19)
and note from (8) and (10) that
by = pi. (20)

Then, using the spectral representation (7), (18) may be written

pi+(1—s) 2 b
,:—2 1- u
Fi(s) = T (21)
pi+(1—s) ggl— o\, b;’;]

In this form, F;(s) may be analytically continued to a neighborhood of
s = 1. Then, from (15) and a standard Abelian theorem we have

= dFj‘ s=1
n; = 3 nf;(n) =%- (22)
n=1
Using (21) to (22), we obta.in
n=o T 1oy (65 - ). @)
i u=

Finally, using the definition (1) and relations (6) and (19), we see that
the average number of steps, N, required to reach a destination with
random routing for V nodes may be written

2

] (24)
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Again, p; are the stationary probabilities of the Markov chain governed
by transition matrix P = DA. The A,, p = 2, are the nonunity
eigenvalues of P and @ = D?AD'” the latter matrix having ortho-
normal eigenvectors ¢*. Also ¢'”, the eigenvector of @ associated with
the eigenvalue A; = 1, is given by (13).

We now lower bound the right member of (24). A few known facts
about the quantities A,, ", and p; will be exploited, but their great
interdependence (they are all determined by P) will be ignored.

Set
2

a3 Lopp-L|n e (25)
j=1Di VI7 \/E
and rewrite (24) as
1 Y a
N= mp);z T (26)

We assert a, > 0, since, by Cauchy’s inequality,

(1) 2 (#) 2 (n)
p_, b i J ¥

However, equality can hold only if

(1)
X oc 1’

b

that is, if
P oc vy = o

Since ¢ is orthogonal to ¢ for u = 2, this cannot happen.!

With the positivity of the a, established, minimize (26) over the A,
holding the @, > 0 fixed. During this minimization, we only impose
two constraints on the A", First, A, < 1, and second ¥ /-2 A, = —1. The
first has been amply discussed already while the second follows from
the fact that the diagonal elements of the transition matrix P are zero
and so

|4
0=trP= 73 A. (28)

p=1

Since A; = 1, the second constraint follows. Introducing the second
constraint via a Lagrange multiplier (call it —f), we find that the
unique stationary point of

" Incidentally, 1f we write ny = ¥, 77/(1 — A,) it is not necessary that 7’ = 0.

However, 7 + 7} = 0.
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il BZA,, (29)

satisfying the two constraints, occurs when

\4

M=1-Va, [+ (30)
%, Va,
r=2
Therefore, applying (30) to (26) gives
1
N=vv—n (Ez J—) 3D

Next, use the fact that the arithmetic mean exceeds the geometric
mean:

Motivated by the definition of the a, [see (25)], introduce the real
symmetric matrix M having elements

1 1
M; = o 8 — T/ﬁ (33)
Then,
a, = ¢WM®. (34)
Note that
Mg = § (l 5 — — )J_, 0, (35)
i=1 \Di V \/_TE,
while we have already shown
oMo >0 if (o,0")=0. (36)
Thus, M is positive semi-definite, having precisely one zero eigenvalue.
Fixp;>0,i=1, ---, V and proceed to lower bound (32) by writing
H a, = min H YO, (37

=2

the minimum in (37) being taken over all orthonormal sets of vectors
Y which satisfy
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(‘P(.u), 1P(v)) = 8,‘..
(‘P(p], ¢’(1)) = O! H, v = 2: ] V (38)

An inequality of Ky Fan® implies that under the conditions of (38) we
have

14
min H ‘PMTM‘PM = fapz, 0ty Bv-1, (39)
=2
where p;, =1, .-+, V— 1 are the nonzero eigenvalues of the matrix M,

which was defined in (33). Thus,

V-1 —
% [papz +» o py—1]V" (40)

If g; are the components of an eigenvector of M associated with
eigenvalue p, the equation

N=

v
L Mig; = pei (41)
f=
yields, when (33) is substituted for M,
1
gi=k — T v (42)
()
Di #
k being a normalization constant. Since for p # 0 we must have
v v
0=2% gio" = 2 &:Vpi, (43)
we obtain, using (42),
v 1
E} =0. (44)

Equation (44) determines the (V — 1) positive eigenvalues p;. Clearing
fractions in (44) yields

Lo (2 0 5
=y —— = 4,
DEUE!_ (Pj 'u) “0)

J¥

with
V(1

D= ——=ul. 46
ils-ll (Pi 'u) (46)

The denominator D in (45) may be discarded and then the product of
the nonzero eigenvalues of M is simply read off the remaining poly-
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nomial. Since the coefficient of "' in the numerator polynomial in
(45) is V(-1

<

-
II

il
3|~

1

R (47)

M <

i=1j

i

~

The product of positive numbers having a fixed sum is maximized
when each number is the same, so we have

or

izt \1 = pi

Finally, the minimum of (48) subject to Y Y. pi = 1 occurs when p; =
1

1Y (v-1\"
lul"'ﬂV—IET,Z( ) . (48)

_v_,a or,
12 [V=1\""
.ul L .LI.V_I 2‘—/2 —"1— = Vv_l. (49)
i=1
1——
|4

Combining (49) with (40) produces our desired result:

1
NEK;.—I(VV‘I)ﬁ= (V=1). (50)

It is easy to work backwards through the argument to see that the
complete graph is the only one that can achieve N = (V — 1). Clearly,
equality in the last step of the argument can only be attained if p; =

%. Substituting this into (24) and using the orthonormality of the

¢ yields

(51)

which only equals the minimum when A, = _-VlTl’ p=2 -, V.

Using this, and the fact that A, = 1in (7) yields

P= U(l)waT _ 1 § U(i)W(I')T
v :

- =2
1 Y %
_ — V=1 21 U(!)WmT + v U(l)w(llT_ (52)
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The first dyad sum in the right member of (52) is the identity matrix,
while the last dyad in (52) is the matrix that has all elements equal to
1/V. Thus, P is precisely the transition matrix associated with the
complete graph.

lll. THE MINIMAL CHAIN

Now we turn to finding the minimum value of N for the unrestricted
chain. In the introduction we stated that for this we should place the
nodes on a circle and go unidirectionally from one node to the next.
Clearly, in this case, ¥'; n;; does not depend on i, and, in fact,

1 | %4
N——E nlj—ﬁ[1+2+3+---+(V—1)]=E. (53)

We must now show that no other setup can do as well. For this end,
expressions such as (23) are not useful since the A,, U and W may
be complex and it would be difficult to pick out even real combinations,
let alone positive ones that might be lower bounded. Rather, we retreat
to an obvious generalization of the argument we used to derive (2).
This generalization reads

= . . . i’j=1"":v
n; =py + %Pw(l taw), L (54)
kotf
or, since P is stochastic,
L . = i’j=1:"':V-
nU’ % pl-knkj 15 J # l (55)

]

Equation (55) is our new point of departure.

Let N j=1, ..., V, be the (V — 1) dimensional vector whose
components are n;, with j fixed and i # j. Also let B(j),j=1, ---, V,
be the (V — 1) X (V — 1) matrix obtained by crossing out the jth row
and the jth column of P. The B J) still have positive elements, but the
irreducibility of P implies that not all rows of P( J) can sum to one,
and so the largest eigenvalue of B(j) is strictly less than one. The
equations represented by (55) may now be written

[I_ﬁ(j)]NU,=u: j=1,°°°,V; (56)

where u is the (V — 1) dimensional vector having all components
unity. From (56),

N = [I - B(j)] ™ u=[I+Py)+ P*) + ---]u. (57)

If Px( 7) denotes the (r, s) element of the kth power of B( 7), then (1)
and (57) yield
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vV V-1 =

N=gr— 2 5, P, (68)
where by P°(j) we mean the identity matrix for (V — 1) dimensions.
Equation (58) succumbs to the application of the following:

Lemma: Let P be any stochastic V X V matrix and let B( jhJj=
., V be the (V — 1) X (V — 1) matrix obtained by crossing out the
Jjth row and jth column of P. Then

e 0 for k=0
2.2 P"(“’)>{V(V—k—1) for 0=k=v-2 9

Proof: The positivity of the sum for all k is trivial since P(j) has
nonnegative elements. If 2 = 0, P°(;) is the identity for all j, so the
sum of all its elements if (V — 1), and we obtain V(V — 1) when we
sum over j. Next consider £ = 1 and make use of the stochastic nature
of P, thatis Y, P = 1.

Y'Y B.(j) = E ZPW-E Y (1= Py

J s J i
8"]

=V(V-1)-33P,;+3P,=V(V-2).

Now proceed by induction assuming that the lemma is true for 2 and
show it true for (& + 1)

V v
E 2 Pk+1(1) = 2 2 P"l"zP"'-z"a e P"lc+l"k+2
J=1 ris=1 J nl‘-ij

et

= E E P"J“zpﬂzﬂu cor Prny,,

J ﬂ]_!‘f
N1
_Z 2 P"l"‘z"' P"A-ﬂf
7o
"k-:l#j
ZV{V'—k—l)—E 2 Pnlnz"'Pnh,.j- (60)

J onpnge-.

The inequality follows from the induction assumption (true for k) and
is further strengthened by extending the range of summation on the
negative term. In the negative term, the sums over j, e+, - - -, n2 yield
unity, and, finally, the sum over n, gives V. The conclusions of the
lemma follow.

Now apply the lemma to (59).
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1 V-2
Nzym—p 2 [zzﬁ m}

k=0 | j rs
1 V2 14
=—_— ViV—-k—-1 =3 61
ViV =1 JZ‘D ( ) (61)

as desired.

The condition for equality in (61) obviously requires that
2 Z_P’H“z"' O E E P"l"a
i n Jony

i

« Pn,j, k=1,...,V—-1. (62

Since all terms on the right member of (62) are nonegative, any term
present there but not appearing on the left must be zero. In particular,
we must have for any j

Pi=0 if k=1 (63)
Y P Poj=0 k=2 ...,V—1. (64)
ny- - -nk

These equations state that it is impossible to return to any initial state
J in less than V steps. This, plus irreducibility, implies the unidirec-
tional movement or a circle.

The reason why the lemma is exact in this case is that each B J)is,
then—except for a reordering of nodes—a canonical Jordan block with
all zeros in the matrix except for (V' — 2) ones on the appropriate off-

diagonal.

IV. THE WORST WALK

We have been unable to describe the worst setup for random routing.
For V = 3, 4, and 5, numerical work shows that arranging the vertices
on a straight line gives the worst cases. In fact, for V nodes on a
straight line it is possible to show that

Vi-1
3 ’
which is significantly worse than (V — 1), the best attainable with

random routing, However, for large V one can do worse than (65). Our
result for this situation is

O(V?) = Nuorst = O(V*?). (66)

In (66) Nyor: denotes the largest value of N obtained from any of the
connected network graphs on the V vertices.
For the lower bound, assume V = ém — 1 and consider the bar-

N =

(65)

2076 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1982



[ ]
[ ]
[ ]

Fig. 1—An 11-node barbell.

bell graphs described by Landau-Odlyzko.’ This class of graphs has
(2m — 1) nodes connected in a straight line with complete graphs of
2m nodes attached to each end of the line by a single edge of the graph.
If m = 1, this only describes a straight line, but for m = 2 or greater,
the barbell nature is evident. The case for V = 11 is shown in Fig. 1.

In Ref. 3 the authors show that for such graphs A, the second largest
eigenvalue of P = DA, satisfies

Y

Aa=1-— 7 (67)
1
with y =54 + O (T/’) Then from (26), (67), and (34),
1 a2 2 (DR (2)
= = M.
N Vil h o(V*)e ¢
= O(V?)py-1, (68)
pv—1 being the smallest nonzero eigenvalue of M. Equation (44) shows
.U,Vfl > . (69)
max p;

Since the nodes of the complete graphs in the barbell each have O(V)
incident edges and there are O(V?) edges in the barbell, (12) implies

1
that max p; = O (‘[—/) Equations (68) and (69) then give

N = 0(VH)O(V) = O(V?). (70)

Although we will not give the details here, it is possible to show that,
in fact, N = O(V?) for barbell graphs.

Our upper bound will be based on (57), but first we need the result
that the largest eigenvalue of B(j) satisifes

M) =M[P()]=1-0 (%) (71)

Just as t}}_e matrix f( j) was defined in Section III, now introduce
matrices D(j) and A(j) by eliminating the jth row and column of D
and A, respectively. Then,

P(j) = D(HHA(). (72)
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Also set
Qj) = D(HA)D()) (73)

so that @(/) is symmetric and has the same eigenvalues as P(j). In
fact, we have

MIP()T = M@U)] = max y'@())y

= max z'A(j)z = max x'Ax. (74)
Z!.'z?‘-l :rj—O
¥ lixl=1

Note that in (74) we have returned to the V X V adjacency matrix A
by introducing the constraint x; = 0. If S is the set of those (ordered)
pairs of indices which corresponds to vertices connected by an edge of
the graph, we have'

1
x"Ax = T amxa ==Y [xh + 22 — (X — x)7]
{m,n)es 2 S
1
= 2 I — = Z (xm — xn)2- (75)
m 2 S
Using (75) in (74) we easily obtain
. |
AM(j) =1—= min ¥ (xm — x)°. (76)
2 xj—() S
Thxf=1

Let xx be the component of x having the largest square. Then

1= Z lix? = (V_ 1)lmnxx%!: (77)
or
xj = 1 (78)
T laa(V—1)

where Inax (OF Inin) is the maximum (or minimum) of the I, i =
1,.--, V.

Now, from the connectivity of the graph, vertex j is attached to
another vertex ¢. So, using (76),

M(J) =1 -3, (79)
since x; = 0. If ¢t = k, (78) and (79) yield

. 1
Al(])—l_m (t=~F). (80)

If ¢ # k, there exists a chain of r distinct edges joing vertices ¢ and k.

" The remainder of this demonstration is entirely inspired by Ref. 3,
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Clearly, r < d, where d is the diameter of the graph. Then, using the
basic trick of Ref. 3,

xp — xe = (xp — xn,) + (X8, — Xpy) + - -+ + (xp,_, — X:) (81)

and so, by Cauchy’s inequality,

d
(X — x)? = E (Xm — xn)* = 3 3 (xm — xa)*. (82)
S
Equations (76) and (82) thus yield
URY-
M) <1 — %) (83)

d

Combine (79) and (83) by averaging and then minimize over the
numerical value of x, to obtain, with (78), for ¢ # &,

. 1 ,, (= x)? 1
=1l1--= —_—=1- .
M =1-3 [x‘ M B T T e
Both cases (80) and (84) are included in
1 1
=1-—;
2(1 + d)(V — 1)lmax 2v¥
sinced = (V—1) and lnax = (V — 1).
To complete the upper bound on N, start with (58) and write
(suppressing the j-dependence of the matrices in the notation)

MJ)=1- (85)

b et BT

N=gw-pg -l
[lu|? 1
V(V 1)g‘,II[I BPH1

T Z |51 - @D

"‘<

<-§‘.II BV DI U - Q17|

ﬁmu v 1
E 1-M3) (86)

From lnin = 1, lnax =< (V — 1), (85) and (86) we thus have
N=2V:JV -1, (87)

<:

IA

as desired.

Is it possible that the complete graph is optimal for random routing
because adding any edge to a graph decreases N? No. Many edges
must be added to the straight-line graph to form the barbell, but the
former has N = O(V?) while for the latter, N = O(V?).
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