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An important function of the Bell Laboratories Quality Assurance
Center and the Western Electric Quality Assurance Directorate is to
audit the quality of the products manufactured and the services
provided by the Western Electric Company to determine if the in-
tended quality standards are met. Until the sixth period of 1980, the
t-rate system was used to make inference on the product quality.
Starting the seventh period of 1980, the Quality Measurement Plan
(@MP) has been implemented. The QMP is based on an empirical Bayes
model of the audit-sampling process using the current and the pre-
ceding five periods of data. Because it ignores the time order of the
data, it is slow in responding to drifts in the process mean. The
Quality Evaluation Plan (QEP) has been designed to take into account
the time order of the data and to be more sensitive to drifts in the
process mean. In this paper we present the Quality Evaluation Plan,
which uses the entire time series of data on a given product to
determine if that product meets the quality standard. The time series
is modeled by a stochastic process, which allows for the possibility
that the process mean may drift or fluctuate around a fixed value. An
adaptive Kalman filtering theory is developed for filtering out the
sampling variance and obtaining the best estimate of the true defect
index and its confidence interval. Thus, in QEP the best estimate of
the true defect index is obtained by a combination of adaptive
exponential smoothing and shrinkage to the mean. The QEP compu-
tations are recursive, and the total computing efforts of QEP and QMP
are roughly equal. The paper contains several examples to illustrate
the QEP.

. INTRODUCTION

An important function of the Bell Laboratories Quality Assurance
Center and the Western Electric Quality Assurance Directorate is to
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audit the quality of the products manufactured, and the services
provided by the Western Electric Company to determine if the in-
tended quality standards are met. This is achieved by dividing the
products and services into some 3000 homogeneous classes. A small
sample is taken from each class during each period (there are eight
rating periods in a year). Based on this data, an inference is made in
each period regarding the compliance of each class to the quality
standard.

Until the sixth period of 1980, the ¢-rate system, evolved from the
work of Dodge and others,’ was used to rate the product quality.
Starting with the seventh period of 1980, the Quality Measurement
Plan (qMP) was implemented. The qmP, developed by A. B. Hoadley,”
is based on an empirical Bayes model of the audit-sampling process. It
uses the current and the preceding five periods of data. It represents
a considerable improvement in the statistical power for detecting
substandard quality as compared with the old rules based on the ¢-
rate. However, QMP ignores the time order of the observations, so it is
less sensitive to drifts in the process mean. The Quality Evaluation
Plan (QEP) has been designed to take into account the time order of
the data and to be more sensitive to drifts in the process mean.

The object of this paper is to present the Quality Evaluation Plan,
which uses the entire time series of data on a given class to determine
if that class meets the quality standard. The time series is modeled by
a stochastic process, which allows for the possibility of the process
mean to (i) drift or (if) fluctuate around a fixed value. An adaptive
Kalman filtering theory is developed for filtering out the sampling
variance and obtaining the best estimate of the true defect index and
its confidence interval. Some of the salient features of QEP are: (i) the
best estimate of the defect index is obtained by an adaptive exponential
smoothing process, making QEP more responsive to shifts and drifts in
the process mean; (ii) the QuP model is a special case of the general
model proposed here; and (iii) the computational method is recursive.

This paper is divided into nine sections. We describe the model in
Section II. Section III gives the Kalman filter solution of the model.
Adaptive estimates of the model parameters are developed in Section
IV, and in Section V we modify the Kalman filter solution of Section
III to reflect the fact that the model parameters are estimated. The
solution thus obtained is the adaptive Kalman filter. The construction
of the box chart for displaying the results, and the rules for the
exception report are spelled out in Section VI. The selection of the
starting values for the estimation of the model parameters and the
adaptive Kalman filter solution is discussed in Section VII. The
algorithm has been tried on a number of rating classes and also on
simulated data. We present representative examples in Section VIIL.
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Some numerical comparison between QEP and QMP is also presented in
that section. Finally, in Section IX, we discuss the features of the QEP
and other potential applications of the adaptive Kalman filtering
methodology developed in this paper. A summary of the QEP formulae
is given in Appendix C.

Parts of the derivation of QEP are heuristic. The heuristic has a
sound theoretical foundation under two assumptions: (i) the audit
sample size for a rating class does not vary in time by orders of
magnitude, and (ii) the maximum likelihood estimates of the time
series parameters fall within their feasible region. These assumptions
are satisfied in about 95 percent of the audit examples. QEP appears to
work for the other 5 percent as well, but this has not been fully tested.

Il. DESCRIPTION OF THE MODEL

Let 8; denote the true defect index in period ¢ for the particular
rating class under study. Thus,

Total number of defects present in
the production of period t

Total number of defects allowed in ‘
that production under the quality standard

In deriving the present @up, Bruce Hoadley” assumed that over a time
window of six periods the successive values of ¢, are independently and
identically distributed around a fixed mean, called the long-term
process mean. Consequently, the time order of the past observations
is ignored in estimating the current defect index. Hence, @QuP responds
to a drift in the defect index only through having the moving window,
which means a slow response. In our model we will overcome this
deficiency by explicitly allowing for drift and serial correlation.

The mathematical analysis of serially correlated data is greatly
simplified when the random variables involved are normally distrib-
uted. The audit problem can be put in this framework by the square
root transformation described in the following paragraph.

For the chosen sample, let e, be the expected number of defects
under standard quality, x, be the observed number of defects, and
I, = x,/e; be the observed defect index; then x, has a Poisson distribu-
tion with mean e,8,. It is well known that the distribution of Vx; can be
approximated by the Gaussian density with mean Ve,f, and variance
1. Let Y, = vI,. The distribution of Y; is approximately normal with
mean V6, and variance 0.25/¢,. We shall denote Vo, by {: and refer to
it as the transformed true defect index, or simply as the true defect
index.
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When the observations are defined in terms of demerits or defectives
we will take x; and e, equal to the observed and the expected equivalent
defects, respectively, as defined by Hoadley.? In this case the distri-
bution of x, is approximately Poisson with mean 6.e;, so we can still
use the square root transform defined in the previous paragraph.

Autoregressive-integrated-moving average models with appropriate
trend terms may be used to characterize a wide range of serial corre-
lations and trends. However, since the available data on each product
is limited, it is essential that we keep the structure simple, involving
only a few parameters. Thus, we propose the following model for the
variation of {:

e =m + vy, (1)

where m; is the trend term (including the mean) and vy, is the deviation
from the trend. The successive values of », will be assumed to be
independently distributed with zero mean and variance o3,.

Since the exact nature of the drift is not known to begin with, we
shall assume that m, is a random walk. We found in control engineering
literature® that the random walk model serves well in tracking a variety
of trends in unknown parameters, and therefore we chose to use it in
the present problem. Thus,

me = My + v, (2)

where », is a sequence of independently distributed random variables
with mean zero and variance o%. Further, the sequence » will be
assumed to be independent of the sequence »1,.

Equations (1) and (2) thus characterize the variation of the defect
index—the component m. describes the low-frequency (smooth)
changes, while », describes the high-frequency changes in ;. If we
take 0% = 0 and o}; = o = constant, then these equations imply that
the {’s and hence 6/s are independently and identically distributed.
Thus, the QP model is a special case of the general model of this
paper.

The transformed observed defect index, Y, is the transformed true
defect index plus the sampling error, 7:. Thus,

Y=L+ 0. 3)

As discussed earlier, the expected value of Y. is {; and the variance of
Y, is 0.25/e;, so n. has zero mean and its variance is equal to 0.25/e;.
We assume that the successive random variables 7, are independent.
Also, since the origins of 7., v, and vz are unrelated, we assume that
these three series are mutually uncrosscorrelated. Further, the distri-
butions of vy, v, and 1, are assumed to be normal. The justification
for this assumption comes from the fact that Y;'s are approximately
normally distributed.
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The problem at hand is to make an inference on 8, given data up to
and including the nth time period. In particular, we wish to determine
the posterior probability of the event that 8, exceeds one.

lll. KALMAN FILTER SOLUTION

In the Kalman filter terminology, {» and m, are the unobserved state
variables about which we wish to make inference using the observa-
tions Y3, - -+, Yu. Let us, for now, assume that the model parameters
0%, 0%, and o are known for ¢ = 1, -- - n and that the means and the
variances of {o and mp are known. Then the Kalman filter provides
recursive formulae for estimating the posterior means and variances of
¢, and m,. The derivation of the general Kalman filter may be found
in a number of books (e.g., see Jazwinsky” or Gelb?). A simple deriva-
tion for the special case of the audit model is given in Appendix A.
The desired recursive formulae are given below.

Conditional on the data up to time #, the distribution of m; is normal
with mean i, and variance g,

i.e., m:lt -~ N(?ﬁc, qt))

where i, = w1 + (1 — w2 Y: (4)
g = (1 — wa) (o} + ok) (5)

2 + 2
ot = ——p (6)

=32 2 2 -
o+ oy + 02 + e

Likewise, conditiongl on the data up to time ¢, the distribution of {;
is normal with mean {; and variance p,,

ile, G~ N(f.r, D),

where ft = wgfwurﬁ,_l + (1 - (IJZ.I.‘(I’H) Yt (7)
Dt = (1- wz,gmu)af’,; (8)

2

a
Wy = L (9

2 2 D) :
o + 01 + 0% + G

To use these recursive equations the starting values mo and go must
be specified. The choice of these values is discussed in Section VIIL.
For now, we note that as ¢ — oo, the effect of the starting values
reduces to zero.

Notice that eq. (4) is an adaptive, exponential smoothing equation.
The smoothing constant, ws, is a function of time and is determined
by the relative values of the different variances as given by eq. (6).
Observe that V(Y. m,) = o} + o% so that oi; + o} measures the
uncertainty in using Y, for estimating m; also, 63, = V(m.|m.-1) and
gi-1 = V(me|t — 1). Thus, 0% + g1 is a measure of uncertainty in
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using i, for estimating m,. It is clear from egs. (4) and (6) that the
weights given to Y, and .-, are inversely proportional to their respec-
tive uncertainties in estimating m..

Equations (7) and (9) are the analogous equations for computing
the posterior mean of {;. Note that V(Y;|{:) = o% is the uncertainty
in using Y, to estimate {. Further, V({|m:1) = o} + o3 and
V(m-1|t — 1) = @i so that o}, + 03 + g1 is the uncertainty in using
-1 to estimate {;. The weights on Y; and r,—; are thus seen to be
inversely proportional to the respective uncertainties.

From eq. (8) we note that the posterior variance of {; conditional on
data up to time £ is smaller than o2 by the factor (1 — wa:wy). Thus,
the factor (1 — wsewi,) represents the advantage of filtering in estimat-
ing {;. Similarly, from eq. (5) we see that the factor (1 — wz) is the
benefit of filtering in estimating m,.

To compare the QMP model given in Ref. 2 with the QEP model we
shall rewrite egs. (7) and (9) as follows:

f: = wpetit: + (1 — w1) Y

2
Oy

T o

Analogous to the QMP, eq. (7) expresses }; as a weighted sum of nt,, the
estimated current mean level, and Y;, the current observation. The
weight «;, is analogous to the shrinkage constant given in Ref. 2, and
we will also call it a shrinkage constant.

The discussion of this section was based on the assumption that o3;,
o3, and o2, are known quantities. However, in the audit problem o,
and o3 are not known and must be estimated from the observed data.
In the following section we will derive the estimates of ¢}, and o3, and
in Section V we will modify eqs. (4) through (9) to accommodate the
fact that ¢% and 0% are estimated.

IV. ESTIMATION OF THE MODEL PARAMETERS

Consider the case where o, = of = constant, 03 = 02 = constant,
and o% = o> = constant.

Let us define Z; = Y; — Y;-;. Under the assumed model E(Z;,) =0
and the autocovariances of Z; are given by

E(Z?) = 201 + 03 + 202, (10)
E(Z.Z) = —a} — &2, (11)

and
E(Z:Zi) =0, I=2 (12)
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Thus, Z, is a first-order moving average [MA(1)] process of zero mean,
i.e., Z; can be represented as

Zi=a, + Bai, (13)

where @, is a white noise series of variance o®. The parameters 8 and
o® are related to o, o2, and o> through the autocovariance function;
ie.,

E(Z) = (1 + BY)e® = 207 + o3 + 202, (14)
and
E(Z:Z,-)) = Bo® = —ai — o2. (15)
Solving egs. (14) and (15) we have
ol = —Bo* — o (16)
and
= (1+ B> (17)

The nonnegativity of o7 and the invertibility of the model given by eq.
(13) impose the following restriction on 8: -1 < f = —o2/0®. Thus, the
feasible region for 8 and ¢ is the one enclosed by the lines: 8 = —1,
Ba® = —o2, and o® = co. The region is shown in Fig. 1.

The parameters 8 and o® can be estimated using a suitable time-
series method. Once 8 and ¢® are known, egs. (16) and (17) may be
used to estimate o} and o3.

Contrary to the assumption made at the beginning of this section,
o%, 0%, and 0% may in fact vary from period to period. Through egs.
(14) and (15) this implies that 8 and ¢® may vary with time. In other
words, Z, is like a MA (1) process with changing parameters. Therefore,

B
o?

0 0.1 03 04 05
0 I —

ocl=o0, n:r11 +f30'2 0-<
ALINEWITH / /
of= CONSTANT
FEASIBLE REGION

ol=0.8=-1

Fig. 1—Feasible region for 8 and o”.
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we need an adaptive, recursive estimation method for estimating 8 and
o, rather than the usual time series estimation methods. The recursive
method of Phadke® will therefore be used here. The method discounts
the past data exponentially and thus can respond to changes in the
model parameters. The necessary recursion formulae are given below.
Appendix B gives the derivation of these formulae.

Bc=Bo— Ri'w. (18)
&2 = Su(B/A., (19)
where
ve = Ave—1 + 2a, %% (20)
Ri=ARi1+2 (%‘)2 (21)
ar=Z; — Boli-1 (22)
da: da,

d—B =—ar1— Bo B (23)
Si(Bo) = AS,1(Bo) + a? (24)
S(Be) = Su(Bo) + (B — Bo)ve + Ya(B: — Bo)’R: (25)

A=A+ 1. (26)

The choice of the starting values for these recursions will be studied
in Section VII. The parameter A, 0 < A < 1, determines how fast the
old data is discounted in estimating the model parameters. A = 1
implies that the entire past data is used. The smaller the A the faster

the past data is discounted.
The estimates 67 and B: are uncorrelated and have the following

approximate variances:
V(B:) = 263/R; (27)
V(62) = 26¢/A. (28)

The estimated values of ¢ and 8 may be substituted in egs.
(16) and (17) to compute of; and o3:. When oy, varies with time, we
should use the exponentially smoothed value, o5, as defined below:

02, = Ao 1 + (1 — Ao, (29)

in place of o2 in eq. (16). Thus,

A2 A A2 2
o = —ﬁtﬂc — Oy,
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and
o3 =(1+ Br)Q&g-
In the rare case of extreme variations (order of magnitude variations)

in 0%, eq. (29) has not been fully tested, so we urge caution for such
cases.

It is possible that egs. (18) and (19) would yield infeasible values of
Brand 7. In that case we propose the following truncation rules, which
take us close to the maximum point on the feasible boundary.

Step 1: Truncate B to the region [—1, 0]. Denote the truncated
value by B/, where

Bo—wv/R: if -1=Bo— /R, =<0
B?= 0 I.f Bﬂ_p[/Rt>0
—1 if ﬁn - V;/R: < -1

Step 2: Compute o} and &%,

0t? = Su(B?)/Ar = {Su(Bo) + (BT — Bo)ve + %(BF — Bo)’R:}/A.
6% = (1 + B#)* o’

Step 3: If B and o}? belong to the feasible region, i.e., if (—B¥a/**
- ;{c) = O then &t = ﬁ?: 612 = 0’?2, a.nd 621: = _3:&? - 0',2,,:.

Step 4: If 8 and ¢} do not belong to the feasible region, i.e.,
if (—Brat? — o2,) < 0, then set 53 = 0. Compute B; and 57 by solving
the following two equations:

6%1 = —Bz&? - 0’?}: =0,
and
6%1 = (1 + Br)zag

The resulting B: and 7 are given by

=2+ 6h/0%) + V(2 + Gh/on)’ — 4
2

B
and
6 =— o?,_,/ﬁ,.

Note that when these truncations are applied there will be a larger
degree of approximation involved in using egs. (27) and (28) for
computing the variances of B: and 57. However, these variances enter
only into the secondary terms of the adaptive Kalman filter to be
derived in the next section. Consequently, we may ignore the effect of
truncation.
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V. ADAPTIVE KALMAN FILTER

In deriving the Kalman filter solution of Section III, it was assumed
that 6% and o3 are known quantities. Since in the audit problem these
parameters are estimated using the observed data, we need to make
due modifications to the Kalman filter solution. We will refer to the
resulting formulae as the adaptive Kalman filter.

Consider the distribution of m, conditional on data up to time ¢:

!ﬁf = E(m.—|t) = EE(m,| t, U%:, 0%!) = E(“’er&t—l + (1 - le)Yt);

hence,
rﬁ, = 62;7;!.(71 + (1 - ézg)Yg (30)

where

6’%{ + O’it

= = . (31)
n + 0%&‘ + 0% + [+ [

A -
Wz =

The distribution of wy conditional on data up to time ¢ is very
complicated. So the expected value of w2 cannot be simply computed.
Therefore, in eq. (30) we have approximated E (wz|f) by &z, the
maximum posterior density point. This approximation would be very
good when f3, and &7 lie inside the feasible region. However, if B: and
62 lie on the boundary of the feasible region, w.; will be a less accurate
approximation of E (ws|¢). The extent of the inaccuracy will depend
on the values of R, and A,. For large R, and A, the likelihood of 8; and
o7 will drop very rapidly as one goes away from the feasible boundary
nearest to the maximum likelihood point. Thus, the inaccuracy would
be smaller for larger values of R, and A,.

Now consider the variance of m, given data up to time ¢:

ge = Vim|t) = EV(m|t, 0%, 03) + VE (m.|t, o}, 0%)

=E[(1- wae) (03 + Ui:)] + Viwaai—y + (1 — w2) Ye];
hence,

g = (1 — &a) (6% + oh) + (Y — 11)*V(w2r) . (32)

The effect of 3. and &7 lying on the feasible boundary will be to
introduce an inaccuracy in the term (1 — &2)(d5: + o) of eq. (32), as
discussed above. Knowing the variance of 8; and o7, the variance of
ws can be derived via the Taylor series approximation as follows. We
have

&%{ + Uf,t
ot + U?,z + 6% + Qi1

Wz =

2. =8, 2
—Biot — op + oyt

(1+8:+ B%)U? + g1 + Gﬁ: - 0,2“
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B do7

Hence, to the first-order approximation the variance of ws, is

2 2
V(ws) = (6;"’}) V(B:) + (‘;ﬁ) V(8?)

= {269[1 + Gu (1 + 2B8:)]/R.
+ 2648 + (1 + B+ BTt/ AL
+ (6% + 0% + 65 + qe1)”. (33)

=~ G + (‘3“’2‘) (Bo— o) + (ai) (02 — &3).

Note that the smoothing constant ws is restricted to the interval
[0, 1]. The most noninformative distribution on this interval is the
uniform distribution whose variance is %iz. The @2 computed by eq.
(31) clearly adheres to the interval [0, 1]. However, because of the
approximations involved, the computed V(wz) may come out larger
than Y2. In that case we propose to truncate it to %e.

When j; and &% lie on the boundary of their feasible region, the use
of the Taylor series approximation would yield inaccurate estimates of
V(ws). Since the contribution of this variance is secondary in comput-
ing V(m.|t), we may ignore the effect of truncation.

We can proceed in an analogous way to compute E ({;|t) = & and
V(| t) = p: to yield:

f: = a1ty + (1 — Dorct1) Yy, (34)
where
2
- Oyt
=3 35
it U%{ + U%g ( )
and
Dt = (1 - (-52:(-3“)03,: + (Yt - ?ﬁt—1)2v(w2tw1¢) ’ (36)
where

V(warwrr) = [26?(1 + 2&:)263%165%:/}21
+ 261 (1 + B + BHSHG% /Al
+ (6% + G%r + 0% + q:—1)2- (37)

For the reasons discussed in the case of V(ws), if eq. (37) yields a
value of V(wawwy,) > Y2, then we will truncate it to %e.

The effects of B; and &7 lying on the feasible boundary are similar to
those explained in connection with 7, and g..
V1. BOX CHART AND THE EXCEPTION REPORT

In Ref. 2 Bruce Hoadley has proposed a format for displaying the
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conditional distribution of @, given data up to time ¢. He has also
proposed exception rules in terms of this distribution. We shall use the
same reporting format and the exception rules.

The conditional distribution of ¢, will be summarized by a box chart
that shows the 99, 95, 5, and 1 percentiles of the distribution, the best
estimate of #;, denoted by 8,, the mean level, ﬂt, and the current
defect index I,. By applying the inverse square root transformation,
we have

Mt = n‘i? and 9; = E?.

The quantiles of 8, are once again obtained by squaring the quantiles
of {;. Since {; is restricted to be positive, and we have approximated its
density by the normal distribution, we may have to truncate some of
the extreme quantiles to zero. If we take this fact into account, the
desired quantiles of &, are:

Q. = 99% quantile = [max({, — 2.326vp,, 0)?
Q: = 95% quantile = [max({, — 1-645 Vp,, 0)]
Qs = 5% quantile = ({, + 1-645 Vp,)?
Q« = 1% quantile = ({, + 2-326 Vp)®.

A sample box chart is shown in Fig. 2.
The exception rules are:
(i) Below Normal: A rating class will be declared below normal if
the posterior probability of #; being larger than one exceeds 0.99.
(Zi) Alert: An alert will be declared for a rating class if the posterior
probability of #; being greater than one exceeds 0.95 but it is less than

or equal to 0.99.
Q,  1%QUANTILE
l a 5% QUANTILE
1

-6

xAI’

or——M QUALITY STANDARD

T Q, 96% QUANTILE
Q, 99% QUANTILE

DEFECT INDEX

0

Fig. 2—Sample box chart of the conditional distribution of 8,.
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So in terms of the quantiles derived above, we will declare below
normal if @, > 1 and alert if @, =<1 but §: > 1.

VIl. CHOICE OF STARTING VALUES

The Kalman filter solution described in Section III and the estima-
tion of model parameters described in Section IV are both recursive
procedures that must be appropriately initialized. Note that since each
of these procedures discounts the past data, the effect of initialization
diminishes to zero as more data is accumulated on any rating class. So
any biases introduced by the initialization process are transient and
temporary. The best way to choose the initial values is by analyzing
the historical data on all rating classes. Pending such an analysis, we
shall tentatively choose the initial parameter values, as follows.

We will take rfio = 1.0 and §o = 0.134. This amounts to choosing a
very diffused prior distribution on the mean level. On the square-root
defect-index scale the lower and the upper one percentiles of this
distribution are 0.149 and 1.851, respectively; while on the defect-index
scale the lower and the upper one percentiles are 0.022 and 3.428,
respectively. The mean and the median of this distribution are equal
to one on either scale. Consistent with this we will choose Yo = 1.0.

The parameter o-. should be taken equal to the variance of the
transformed defect index associated with the planned equivalent ex-
pectancy for a period’s sample for the particular rating class. In the
present analysis we will take e, = e, and a0 = 00 = 0.25/eo.

The parameter A determines how many periods of data are effec-
tively used in estimating the time series parameters 8: and a7 and,
hence, the parameters o, and 03,. We will take A = 0.95, which implies
that effectively 1/(1 — A) = 20 periods of data are used in estimating
the model parameters.

We also need to specify the values of Bo, ao, dao/dB, So(Bo), €0, Ro,
and A,. All these variables enter into the recursive maximum likelihood
estimation of 8 and o”. We shall take 8, = —0.6, which is an approximate
midpoint of the feasible range of 8. The quantities ao and dao/dg will
be taken equal to their respective expected values, namely, zero in
each case; and A, will be set equal to its steady-state value, namely,
1/(1 — A). We will take vy = 0, So(Bo) = 0.625/[en(1 — A)], and Ry =
200/ €o.

The above starting values imply that at ¢ = 0 the mean and the
variance of B are respectively —0.6 and 0.063. The variance of the
uniform distribution on the (=1, 0) interval is %2 = 0.083. Since the
feasible interval for B is smaller than (-1, 0), the variance of 0.063
represents a fairly diffused initialization.

Also, the above starting values imply that the mean and the variance
of o at ¢t = 0 are 2.5 o% and 0.625(c%)>. Therefore, by the gamma
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density assumption, the 95-percent confidence interval on ¢” is (1.2 0%,
4.28 o), which is a very wide interval.

The values of o7 and ¢7 implied by the above starting values are
0.5 03 and 0.4 o2, respectively.

Viil. ILLUSTRATIVE EXAMPLES

To illustrate the properties of the quality evaluation plan we shall
now present six examples. The first three examples are the simulated
examples, while the latter three use real audit data.

Example 1: Figure 3a shows the response of QEP to a sudden shift
in the quality level. For the first ten periods the observed defect index
fluctuates randomly around the fixed level 3.0. From the eleventh to
the twentieth period the observed defect index is fixed at 1.0. In each
period the expectancy at standard is 5.0. Notice that starting with the
eleventh period the estimated mean level rapidly approaches the new
mean level. Also, starting with the eleventh observation the product
gets off the exception report. Figure 3b shows the corresponding results
for QMP. It is clear that in terms of both M, and , the response of QEP
is quicker than the response of gMP.

Example 2: Figure 4a displays the response of QEP to a linear trend
in the quality level. As in the case of Example 1, for the first ten
periods the observed defect index randomly fluctuates around the fixed
level 3.0. From the eleventh to the twentieth period the observed
defect index has a linear downtrend, as plotted. In all twenty periods
the expectancy at standard is 5.0. Notice that both M, and 8, follow
the trend with a small lag. Also note that the QEP algorithm recognizes
that the process has a drift rather than random fluctuation. Conse-
quently, M, and 8, are very close while following the drift. Figure 4b
shows the results of QMP for the same data. Here again, M, and 8,
follow the trend, but the lag is much larger. This is manifested in the
fact that QEP gets the product off below normal in the seventeenth
period while with qmPp that happens a period later.

Example 3: This example illustrates that QEP and QMP have similar
behaviors when the defect index fluctuates about a fixed value for a
long period of time. Figure 5a shows the results of QEP when the defect
index fluctuates around the fixed level of 2.0, while Fig. 5b shows the
results of gMP with the same data. Note that both the methods declare
below normals and alerts in the same periods.

Example 4: Figure 6a gives the data for repaired remreed grids,
rating class OCO038TT, for periods 7801 through 7904. The periods are
numbered 1 through 12 in the figure. The QEP results are also shown
in the figure. Similar results with qmp are plotted in Fig. 6b. In
response to the drift in the quality we see that QEP attaches a heavier
weight to the current data. Consequently, with QEP the mean level, M,
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Fig. 3—Response to a sudden shift in the quality level for: (a) QEP, and (b) QMP.

follows the drift more closely than with gmp. In the period 5, recogniz-
ing the drift, QEP takes the product off the exception report while qmp
still calls it an alert. Also period 7 is an alert according to QMP while,
according to QEP, it is off the exception report. These differences
bhetween QEP and QMP are clearly seen to be the result of the fact that
QEP exponentially discounts the past data, while QMP considers every
observation in the six-period window to be equally important.
Example 5: Figures 7a and 7b give the results of QEP and qQMP,
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respectively, for the rating class OHO060CM, consisting of modular
telephone chords. The periods covered by the chart are 7701-7808. As
we saw in Example 4, QeP follows the drift more closely. In terms of
the exception report, there are several differences. In periods 8, 15, and
16 qmPp declares below normal, while QEP calls it only an alert. In
period 10 qmP calls it an alert while QEP does not declare any exception.
These differences are once again a result of the fact that QEP recognizes
the drift and hence heavily discounts the past data.
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Example 6: The last example to be considered is the rating class
MV104MJ. The results of both the methods are shown in Fig. 8. In
this example the quality fluctuates more or less randomly about a
fixed mean and, as expected, the two methods give comparable results.

The average values of the weights w;: and w, and the equivalent
expectancies e, for the three audit examples are tabulated in Table 1.
Notice that average value of ws, for OC038TT and OHO60CM is 0.48
compared with 0.55 for MV104MJ. This is a direct consequence of the
fact that MV104MJ does not exhibit a drift while the others do. The
high-frequency fluctuation about the mean function M, is depicted by
wy. Relative to the sampling variance (0.25/e;) OC038TT exhibits a
smaller fluctuation than OHO060CM. This concurs with the average
values of w,, for these rating classes.
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Fig. 6—Results for the rating class OC038TT, periods 7801 through 7904 for (a) QEP,
and (b) qmep.

Through the preceding examples it is quite apparent that QEP and
QMP could give somewhat different results. Now the key question is:
Which method yields a more precise estimate of the unobserved “true
defect index”? The only way to answer this question decisively is to
take a 100-percent sample of a number of rating classes to find out the
true defect indices and compare them with the QEP and QMP results.
This is obviously an impossible task. A feasible way to answer the
question is by using the models to predict one step ahead and compare
the mean-squared prediction errors. Note that M, isa predictor of 1.
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Fig. 7—Results for the rating class OH060CM, periods 7701 through 7808 for: (a) QEP,
and (b) QmP.

The mean-squared errors for the three audit data examples, viz
Examples 4, 5, and 6, are given in Table IL. For the rating class
0OCO038TT we notice that the mean-squared prediction error (m.s.p.e.)
of QMP is 33 percent larger than that of QEP; for OHO60CM the m.s.p.e.
of QMP is 11 percent larger, and for MV104MJ the m.s.p.e. of QMP is
only 3 percent larger. Thus, whenever there is a drift in the quality we
may expect QEP to perform better than qMP, whereas if the quality
fluctuates randomly around a fixed mean, both @uP and QEP would
give similar results.

Effect of truncation: In addition to the numerical examples cited
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Fig. 8—Results for the rating class MV104MJ, periods 7701 through 7808 for: (a) QEP,
and (b) QMP.

above, a limited numerical study was made with thirteen representa-
tive rating classes. Each rating class had about fourteen periods of
data. This represents a total of 182 test periods. Among these examples,
truncation occurred in only 7 percent of the periods. Except for one
case, all the truncations caused 43 = 0. These cases of truncation could
be recognized broadly as situations where the variance of the observed
defect indices was much smaller than that for the Poisson distribution.
In each case of truncation the confidence intervals computed by QEP
looked reasonable and comparable to those obtained by qmPp, so we
can tentatively conclude that the effect of truncation is negligible. Of
course, an extensive trial of QEP may suggest some modifications to
the truncation rules.

One such modification may be to view the likelihood function of 8,
and o? as the posterior-probability density function. Then the Bayes
estimates of 8; and o7 may be used in place of the maximum likelihood
estimates used in this paper. Because of the complexity of the feasible
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Table I—Computed Qepr weights for the
examples
Average Value of

Rating Class wyy way er
0C038TT 0.83 0.48 3.7
OH060CM 0.67 0.48 7.9
MV104MJ 0.75 0.55 4.6

Table l—Comparison of the mean-
squared prediction error

Mean Squared Predic-
tion Error
Rating Class QEP QMP
0C038TT 0.69 0.92
OHO060CM 0.94 1.04
MV104MJ 0.29 0.30

region, computing Bayes estimates would involve extensive numerical
effort, which may be unnecessary.

IX. DISCUSSIONS

In summary, the QEP model consists of two parts—the system model
and the observation model. The system model states that the trans-
formed true-defect index is equal to the process mean that follows the
random walk model plus process fluctuation, which is statistically
independent from period to period. The random walk model takes care
of the process drift. The observation model states that the transformed
observed defect index is equal to the transformed true-defect index
plus sampling error with a known variance. The different parameters
of the QEP model are estimated from the observed data by the recur-
sive, exponentially discounted, maximum likelihood method. The suc-
cessive transformed true defect indices and the process mean levels
are then estimated by the adaptive Kalman filtering algorithm.

From the derivation of the plan and the illustrative examples the
following advantages of QEP are apparent:

(i) The QEP model takes into account the time order of the
observations, while in quP the time order of the observations is
ignored.

(ii) The best estimate of the process mean level is obtained by an
adaptive exponential smoothing procedure. This makes QEP more
responsive to the shifts and drifts in the process level. This is evidenced
by the lower mean-squared prediction error for the examples discussed
in Section VIIL.
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(iti) The qMP model is a special case of the QEP model. However,
the two algorithms are quite different.

(iv) The computations are recursive. The entire past data are
summarized by ten numbers.

(v) The computational efforts of QEP and QMP algorithms are
comparable.

In the light of the advantages listed above it is proposed that QEP be
considered as a serious alternative to QMP for official rating. In prep-
aration for using QEP it is suggested that it be tried on all rating classes
for a number of rating periods, and the resulting exception reports
carefully compared with those from the QMP and the ¢-rate system.
Such a study would aid us in fine tuning the starting conditions,
quantifying the effect of truncation, and perhaps in making some other
minor modifications for improving the performance of the QEP.

For small expectancies, the square root transform of the Poisson
distribution has a significantly different variance than 0.25, assumed
in Section II. Since the audit samples can at times be very small it
would be necessary to use the correct variances. A study of this aspect
will be done in a later memorandum.

The adaptive Kalman filtering methodology derived in this paper,
with appropriate extensions and modifications, can be put to many
other applications. In the field of quality control, Phadke’ had devel-
oped a sequential empirical Bayes acceptance sampling plan. The
adaptive Kaman filtering method developed in this paper would be
particularly suited for updating the empirical prior distribution. An-
other potential application is in combining the traditional X and R
control charts into a single box chart. Here the adaptive Kalman filter
would permit one to take into account serial correlation in the data as
well as process drifts and shifts, and changes in the process variance.
Yet another application is in adaptive time series forecasting.
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APPENDIX A
Derivation of the Kalman filter solution

Let the conditional distribution of m,—, given data up to time £ — 1
be normal with mean ri;_; and variance g, i.e.,

me— | t—1~ N(rﬁt—l, qr-1). (38)

Eq. (2) expresses m; as a sum of two independent normal random
variables m;_, and »s. Since the mean and variance of v are respec-
tively 0 and o3, it follows that

m|t — 1 ~ N, 03 + qi-1). (39)
Substituting eq. (1) in eq. (3) we have
Yi=m:+ vy + 1, (40)
which implies that
Y:|m: ~ N(m., o1 + o3). (41)

In the Bayesian framework we may view eq. (39) as a prior distri-
bution on m,, and Y, as an observation of m, with the distribution
specified by eq. (41). Applying the Bayes theorem the distribution of
m, conditional on data up to time ¢ is seen to be

f(me|t) oc _(m.— me—1)? B (Y, — m.)?
m exp 2(03: + gi-1) 2(0% + U?,,)

o exp{— (m%qimr)z} ) (42)
where
my = wattte—1 + (1 — wa) Yy, (4)
war = (0% + 02) /(0% + 0% + ab + g1, (5)
and
q=(1- war) (03 + 0%). (6)

From eq. (42) it can be inferred that the distribution of m, conditional
on data up to time ¢ is normal with mean 7, and variance q:.

Equations (7) through (9), used for computing the conditional dis-
tribution of ¢, can be derived analogously as follows. First by substi-
tuting eq. (2) in (1) we have
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¢ =M + v+ va; (43)
hence,
&lt — 1~ N(the, ol + 03 + qi-1). (44)
From eq. (3) we have
Y| &~ N(&, ok). (45)

Treating eq. (44) as a prior distribution for {; and applying the Bayes
theorem, we readily obtain the distribution of {; conditional on data
up to time ¢ as

f($:|t) oc"‘”‘F‘{_

(§e = )’ (Y: - §:)2}

2(c} + 0% + qi—1) - 203,;
o< exp {— —(—g‘%} , (46)
where
§ = wiewartfie—1 + (1 — wiws) Yo, (7)
wiwar = 02/ (0% + o1 + 0% + qi1), (8)
and
pe= (1 — wiwa)ol. 9)

Thus, the f:onditional distribution of {; on data up to time # is normal
with mean ¢, and variance p,. Equations (7) through (9) form the
desired recursive equations for computing {; and p.

APPENDIX B
Estimation of g and o

Given the observed transformed defect indices Yo, Y1, Y3, -+, Y,
one can compute Z, = Y, — Y, fort =1, ..., n. The Z, series follows
MA (1) model given by eq. (13). The exponentially discounted proba-
bility density function of a;, ---, a. is given by
Aj

(47

play, -+, a0®) =] [ exp(—a§/2az)]

1
=1 | v2ma®
where A; = A"/, Thus, the exponentially discounted probability density
function of Z,, ..., Z; conditional on the knowledge of a, 8, and ¢ is
given by

t 1 ‘\j
eee 2y — —n? 2
pZy, -+, Zi|ao, B, 07) 1_131 [m exp(—aj/20 )] ;

(48)
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where @, is related to Z; and f via the recursion relation in eq. (13), i.e.,

- Baj-1. (49)
Thus, the conditional, exponentially discounted, log-likelihood func-
tion is

LB, 0*) = =%(A,In o + S,/d?), (50)
where
A= i} A7, (51)
and
S = ,—2’:. ANaj. (52)

By differentiating eq. (50) with respect to 8 and o® and equatlng the
derivatives to zero, it can be shown that L; lS maximum at (B,, 67),
where B, is the minimum point of S;(8) and &7 = S,( B /A, .

In the neighborhood of a point 8o, we can approxnnate a; by the
linear function:

da;(B)

ai(B) = a;(Bo) + (B — Bo) a |, (53)
Substituting this approximation in eq. (52) we have
Si(B) = Si(Bo) + (B — Bo)ve + (B — Bo)*Re, (54)

where », R, and S:(80) obey the recursmn relations shown in eqgs. (20)
through (26). It is easy to verify that B:, given by eq (18) minimizes
the approximate S;(f) of eq. (54), and eq. (19) gives 7.

The matrix of second partial derivatives of L, is

R,
— 0
_ |20
Al
20*

so by the Fisher-information theory, the estimates B: and & are
uncorrelated and their approximate variances are as given by egs. (27)
and (28).

The above recursive procedure also has a Bayesian interpretation,
as given by Phadke.’

APPENDIX C
Summary of the Formulae
C.1 Initial conditions
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Yo = 10
Bo= —0.6
A= 095
€= €
0.625
S()(Bﬂ) = m
Vo= 0
Ro = 200/80
Ao = 1/(1 - )\)

020 = 0.25/ep

C.2 Recursive formulae

I,= x:/e
Y= VI,
Zi=Y— Y
o2, = 0.25/e,
a:= Z; — Boa-1
da, P da;-;
ap /]
Si(Bo) = ASi—1(Bo) + ai
ve= A1 + 2a, Z—cz
R.=AR, ., +2 (iii‘)z
ap
A=A 1+ 1
B*=PBo—Ri'v, -—-1=BF=<0

S.(B¥) = Si(Bo) + (BF — Bo)ve + (B} — Bo)?R:

ot’ = SuB) /A
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o= Aot + (1= Ao,
6% = —Brot*— o2 G =0
6% = (1 + B)’at’
If — Bfot? — o =0, then
Bi=BF & & = aF’.

If - Bro}® — o2, <0, then

A —(2 + 6’2;/0??1) + V(2 + 6%:/0%)2 -4
Bf = and
2

a; = —Uﬁr/ﬁr-

o=

== 3

O’%r + Ggr

N ol + U?;r

Wy =

6%{ + Ugr + 6221 + g1
e = Opetfig—1 + (1 — @) Y
&= Gurmy + (L— ) Y,

(2651 + du(1 + 2B) /R

+ {264 B B + 2]’
[265(1 + 2B, &5/ Re]
Viowon) = —F [.36’(1; Bftﬁ%)é%@}/A:]; Vi) < -
(65 + 05 + o5 + gr—1) 12
g = (1 — &a)(6%: + o) + (Y, — 1)V (w2r)
pe= (1 — Sudedon + (Yi— 1-1)*V (wiwa)
C.3 Points for the box chart
Current defect index I
Best estimate of the defect index: f, = &
The mean level : M, =1}
99% quantile . @1 = [max(§, — 2.326 Vp:, 0))?
95% quantile - @, = [max(, — 1.645 Vp, 0)]?
5% quantile : Qs = (§ + 1.645 Vp)®
1% quantile - Qs = (& + 2.326 Vp)?
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