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The joint probability of occurrence of frequency-selective fades on
a pair of spatially separated receiving antennas is modeled for a
typical line-of-sight microwave radio path in the 6-GHz band. The
model was developed from observations of the transmission in a 24.2-
MHz band during all multipath-fading occurrences in a 30-day
period on a 26.4-mile path. By fitting the observations of every scan
on both antennas with a simplified three-ray channel modeling
function, the joint transmission at each observation is characterized
by six parameters, three for each antenna. The joint occurrence of
these six parameters is described by simple statistical distribution
functions, allowing one to associate with any pair of channel trans-
mission shapes the fraction of a year, or number of seconds in a year,
that such a channel state will be encountered. The model represents
the frequency selectivity or shape of the fades on the two antennas as
statistically independent. Only the average fade levels on the two
antennas are statistically related. Either antenna is more likely to
experience a fade deeper than the median when selectivity is observed
on it or when the other antenna is experiencing deeper fading than
the median. The (marginal) statistics of fading on each of the anten-
nas separately, as derived from the diversity model, are essentially
the same as those described by a nondiversity statistical fading
model, which has been used successfully to predict the multipath
outage of digital radio systems. The model developed here will allow
performance to be estimated in a diversity configuration.

I. INTRODUCTION

Occurrences of multipath fading limit the performance quality of
high-speed digital radio systems operating on line-of-sight microwave
radio paths. Extensive field measurement programs have been imple-
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mented to evaluate the performance of a number of digital radio
systems operating in different configurations under various condi-
tions.'® These studies have indicated the universal need for some form
of dynamic channel equalization, and for space diversity reception, on
many paths, to meet performance requirements. While field measure-
ments provide a good means of evaluating the operation of radio
systems, they require considerable time, effort, and expense. Further-
more, they suffer from the vagaries of nature in that multipath fading
is a randomly occurring phenomenon with variable characteristics
from month to month.>®

To reduce the need for field measurements, a statistical model of
multipath fading was developed.®” This model, used in conjunction
with characterization measurements performed on a radio in the
laboratory, allows predictions to be made of the system performance
under multipath conditions when operating in a nondiversity configu-
ration.’ ' The results presented here extend the previous work by
providing a statistical model for multipath fading in a space-diversity
configuration.

The data base used for modeling was obtained by transmitting a
wideband (8-PSK digital radio) signal at 6 GHz over a 26.4-mile path
from Atlanta to Palmetto, Georgia. The received power at a number
of frequencies in a 24.2-MHz band was measured simultaneously on
both a horn reflector and a parabolic dish antenna separated by 30
feet. Spectra were observed at rates up to five times per second during
the occurrences of multipath propagation in a 30-day period in August
to September, 1977. The received voltages on both the horn and dish
at each observation, relative to unfaded or free-space propagation
conditions, are represented as a function of frequency by the simplified
three-path modeling function that has the form

H(j2nf) = a[1 — be>"/=h], (1)

The diversity channel model provides a joint statistical representation
of the occurrence of the parameters of the function (1) as fitted for
both the horn and dish.

The choice of a modeling function for representing selective multi-
path fades over a restricted frequency band is not unique. Such a
function needs only to be capable of representing the characteristics of
a multipath fade. The parameter statistics will depend strongly on the
choice of function. Greenstein and Czekaj' have used a complex
polynomial in frequency to represent multipath fades and have devel-
oped statistics for the coefficients of the polynomial for a nondiversity
data base. Although other modeling functions have been proposed,'*"’
none has been successfully represented on a statistical basis. The
modeling function (1) used here has the virtues of providing an
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excellent representation of the observed multipath fades and of being
convenient for synthesis in the laboratory for the stressing of radio
systems for performance appraisal. In the present work we show that
a further advantage of this function is that the joint statistics in a
diversity configuration are well behaved and easily represented.

The statistical channel model is summarized in Section II. The data
base used and the fitting of observations with the modeling function
are described in Section III. In Section IV we provide the methodology
for developing and verifying the statistical model. Concluding remarks
are provided in Section V.

Il. MODEL SUMMARY
2.1 Modeling function

During multipath fading, the voltage transfer functions of the paths
to the horn reflector and to the parabolic dish antenna are modeled by

Hu(j2nf) = ap1 — bye 72/ ~ow'7] @
and
Hp(j2nf) = ap[1 — bpe 72"~ho)7], @)

respectively. These transfer functions are measured relative to the
unfaded, or free-space, transfer functions, which are both taken as
unity at all frequencies, f. For convenience and for consistency with
previous work we fix the delay 7 at 6.3 ns. These functions may be
interpreted as the responses of channels with direct transmission paths
with amplitudes ax and ap, and second paths with relative amplitudes
bx and bp, both respectively. The second path in each case has a
relative delay of 6.3 ns, and a phase of 2nfoyr + 7 and 27fop + 7
(independently controllable) at the center frequency of the channel.

A typical plot of the attenuation produced by such modeling func-
tions is shown in Fig. 1. The a and b parameters control the depth and
shape of the simulated fades, respectively. The parameters for and fop
determine the frequencies of the transmission minima, or notches, of
the simulated fades. With a simulated minimum within the channel,
the modeling functions can simulate a wide range of levels and notch
widths. With a simulated minimum out of the channel band, the
modeling functions can generate a wide range of combinations of
levels, slopes, and curvatures of the in-band responses.

For convenience we work with the following related parameters: the
fade-level parameters (in decibels)

Ap=-20log an (4)
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Fig. 1—Attenuation of channel modeling function.
and
Ap = —20log ap; (5)
the relative notch depth parameters (in decibels),
By = —201og(1 — bu) (6)
and
Bp = —20 log(1 — bp); (7)

and the notch frequency parameters, which we measure in degrees,

or = 360fouT (8)
and

¢p = 360fopT. 9)
With 7 equal to 6.3 ns, one degree in ¢ corresponds to 0.44 MHz. We
measure notch frequencies, ¢, from the center frequency of the channel,

so that ¢ covers the range from —180 to +180 degrees, corresponding
to the 158.4-MHz period of the functions (2) and (3).

2.2 Parameter statistics

The number of seconds in a year that the six parameters (Ag, Ap,
By, Bp, ¢u, ¢p) are in a differential element of the six-dimensional
parameter space is shown to be given by
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T(An, Ap, By, Bp, ¢u, ¢p)

= Topas(Au, Ap/Bu, Bp)ps,(Bu)ps,(Bp)pu(éu)po(én), (10)
where the functions p(.) are all probability density functions. The
time scale factor Ty, under the assumption that events scale with the

classical scaling of the incidence of multipath fading,'® is given by the
expression:

To = 52800c( f/6)(D/25)* (11)
where

f is the frequency in GHz,
D is the path length in miles, and
c is the terrain factor, varying between 0.25 and 4.

The probability density functions of horn and dish relative notch
depths are given, respectively, by

Ps,(Br) = 0.76711(2By)(0.10258) e ~0-10258B%
+ 0.23289(0.23281)e ~***41Bx  (12)

pa,(Bp) = 0.82295(2B ) (0.07668) e 0076555
+ 0-17705(0-21786)9_0'2”8639_ (13)

The joint probability density function of Ax and Ap is conditioned on
the values of By and Bp and is given by

-1 A _ 2
Pa/s(An, Ap|Bu, Bp) = [( H— gH)

1
exp
2nanapV1 — p* 2(1 - p?) o
N 2p(An — gu)(Ap — gp) + (Ap — gu)2

] o

OHOD 020
where
gn = gn(Bn) = 23.956(701.11 + B%,)/(1320.6 + B}) (15)
&p = gp(Bp) = 27.139(1223.8 + B})/(2650.9 + B}) (16)
and
on = 6.8268
op = 7.0272
p = 0.64995. (17)

The probability density functions for the horn and dish notch frequen-
cies are given, respectively, by
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5
B |ou| < 90
1080 (18)

pulon) = 1

and
8 |op| < 90
1620 éo

Ppoldp) = 1 (19)
1650 90 =< |¢p| < 180.

2.3 Interpretive discussion

The salient features of the model, which are verified in Section 4,
are easily stated. The selective components of multipath fading as seen
by the horn and the dish are modeled as independent processes. This
means that detailed knowledge of the transmission “shape” present at
a given instant on one antenna provides no information concerning
the shape that will be present on the other. The only coupling between
the fading on the two antennas is provided through the joint condi-
tional A-distribution of (14). The form of this conditional probability
density function implies that the fade-level parameters, or fading
levels, on the two antennas are related. Deeper fades on one tend to be
accompanied by deeper fades on the other. The conditioning on the
relative notch depth parameters implies that the fade-level parameters
depend on the fade shapes. This is similar to the coupling provided in
the nondiversity model®’ in that the fade-level parameter is correlated
with relative notch depth, or that deeper fades are more likely to occur
when shape is present. For the diversity model we find that the
existence of a shapely fade on one antenna is more likely to be
accompanied by deeper than average fading on the other.

There are two important limitations of the proposed model. The
most obvious limitation is that we have not explicitly represented the
variability in fading statistics that would accompany changes in rela-
tive spacing in the two receiving antennas. At first blush, we ascribe
this to the existence of only one data base for the particular configu-
ration tested; hence, the model is only valid for antenna spacings of
thirty feet. Upon closer inspection, one notes that the only coupling
parameter that is unique to the diversity configuration is the parameter
p in the joint conditional A-parameter distribution. (With p =0, the
model would factor into two independently fading probability models.)
One could, in principle, relate p to antenna separation by calculating
the single-frequency fade statistics of a simulated diversity switch as
a function of p and compare these results with the known results for
various antenna separations.” While an extrapolation of the model to

2190 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



HORN
RELECTOR

HORN
REFLECTOR

RX DOWN
A1) | I CONVERTER DIGITAL
| | RADID
! L IF COMBINER
I Iy \ AX DOWN e
! ! / CONVERTER DETECTOR
30MHz-=| / I ! I

I : 104t DISH o
I
| |

8-PSK DIGITAL | 330h

RADIO SYSTEM i

TRANSMITTING [ 260 ft
PSEUDO-RANDOM |
SEQUENCE !

2.2
MHz
200 _
kHz tee

|
|
I
|
|
I
|
|
; MULTIFREQUENCY

[
|
I
a1

. RECEIVER
A7 7
— 26.4 MILES- — l
ATLANTA GA. PALMETTO GA.
DATA ACQUISITION DATA

SYSTEM MIDAS TAPES

Fig. 2—Experimental configuration for diversity propagation measurements, August
8 to September 6, 1977.

larger separations is straightforward, one would expect that for suffi-
ciently small antenna separations the fade shapes observed on the two
antennas would be correlated, leading to a more complicated model.

The other model limitation results from the lack of phase informa-
tion in the channel probing measurements. We model the channel as
a minimum phase channel at all times; that is,”® we choose a solution
with 0 = & = 1 and assume a minus sign for the fr term in the
exponential in (2) and (3). This limitation makes it difficult to assess
the characteristics of the combined signal for a continuously adaptive
space-diversity combining algorithm.

. PROPAGATION MEASUREMENTS AND THEIR REPRESENTATION

3.1 Description of the propagation experiment

The propagation measurements used in this study were obtained
from an experiment conducted on a 26.4-mile path from Atlanta to
Palmetto, Georgia, during the period from August 8 to September 6,
1977. Many of the parameters of the experiment are summarized in
Fig. 2. The radiated signal source was a general trade 78-Mb/s, 8-PSK
digital radio operating at a nominal center frequency of 6034.2 MHz.
The signal was received at Palmetto on both a standard horn reflector
and a 10-foot diameter parabolic dish located 30 feet below the horn.
The spectral energy received by each antenna was measured at 12
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frequencies separated by 2.2 MHz and spanning 24.2 MHz. The receiv-
ing filter at each of these frequencies had a 200-kHz bandwidth.

During fading activity the received power at each frequency on both
antennas was measured either five times a second or once every two
seconds, depending on how rapidly the channel was changing. Sampled
power, quantized in 1-dB steps, was recorded by the Multiple Input
Data Acquisition System (MIDAS), constructed by G. A. Zimmerman.
During nonfading periods the power was recorded at a rate of once
every thirty seconds. Based on a two-hour measurement period span-
ning noon on each day, free-space, or nonfaded, received power levels
were determined for each frequency.

3.2 Diversity data base

Over the duration of this experiment, multipath fading occurred in
fourteen separate time periods. The measurements made in each of
these time periods were calibrated and collected into a computer data
base for further analysis. The overall data base includes 85,410 scans
of both the horn and the dish, and encompasses 44,386 seconds of
fading activity.

Although propagation was monitored for approximately one month
in the heavy fading season for this path, the observed fading activity
was about twice the amount that would be expected in a typical heavy
fading month. Figure 3 shows the time-faded statistics for the horn,; it
shows the number of seconds that power was faded to or below the
level specified by the abscissa. (For purposes of analysis, it is assumed
that measured or calculated parameters hold a constant value from
one observation time instant until the next observation time instant at
which the value may make a stepwise change.) The four curves shown
represent the power measured at a frequency near the upper end of
the frequency band, one near mid-band, and a third near the lower
edge of the band. The fourth curve represents the fading of the average
power, based upon a wideband measurement of the received signal.
We observe that the four curves are virtually coincident down to the
40-dB level, where the rms power characteristically rolls off more
rapidly. The coincidence of the curves indicates a good mix of fading
events with no dominant events causing an excess of fading activity at
any particular frequency in the band.

Also shown in Fig. 3 is the fading activity predicted for this hop in
a heavy fading month.”® The observed fading statistics match the
predicted L? slope of the predicted curve; however, for this period we
have obtained twice as much time at a given level as one would expect
in a heavy fading month.

Figure 4 shows the time-faded statistics as observed on the dish
antenna. The general observations made for the horn apply here also,
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Fig. 3—Time-faded statistics of received power on the horn reflector.

except that we note that the lower frequencies in the band show more
fading activity than the upper frequencies at fade levels near 40 dB.
The effects of this will become more apparent in Section 4.4. Compar-
ing the dish fading statistics with the predicted fading curve, we would
expect the observed fading activity in 2.5 heavy fading months.

As a further consistency check, we consider the in-band power
difference (IBPD) statistics, which have also been used for sizing data
bases of fading observations.” When fading is monitored at a number
of frequencies in a band, one can characterize the transmission shape
of an observed channel by IBPD, which is the difference, in decibels,
between the largest and smallest attenuation of the observed frequen-
cies at a given time. Figure 5 shows the 1BPD statistics for the horn and
the dish; that is, it shows the number of seconds that the IBPD equaled
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Fig. 4—Time-faded statistics of received power on the dish antenna.

or exceeded the value specified by the abscissa. As a reference curve
we also show, in Fig. 5, the 1BPD curve (see Ref. 8, Fig. 20) derived
from the data base used for the nondiversity model’ as scaled to a
heavy fading month. The reference 1IBPD curve was derived from 23
observed frequencies spanning a 25.3-MHz band. Although the 1BPD
ascribed to a given channel condition depends upon the frequency
band spanned by the observations and, to a lesser extent, on the
number of frequencies observed, the bandwidth difference is small,
and the effects of frequency spacing may be minimized by concentrat-
ing on the more modest values of 1BPD, 5 to 10 dB. Over this range of
IBPD there are 1.8 to 2.3 times as many seconds at a given level for the
horn, and 2.3 to 2.7 times as many seconds for the dish. The midpoints
of these ranges are very nearly equal to the scaling factors determined
previously from the time-faded statistics.
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Splitting the difference between the 2.0 and 2.5 months-of-fading
estimates for the horn and dish, respectively, the data base is taken as
representing 2.25 months of multipath fading. On the basis that three
heavy fading months are equivalent to the fading activity in a year, we
take the data base as representing 0.75 of the expected annual multi-
path-fading activity for this path.

3.3 Representation of spectral measurements

Each scan of the received power levels of the horn and dish is
represented by the channel transfer functions (2) and (3), respectively.
To obtain the parameters of the functions for each scan, we fit the
squared magnitudes of the functions to the received powers. The
fitting procedure minimizes the weighted mean squared error between
the observed power and the estimated power. The weighting function
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is proportional to the reciprocal of the square of the received power at
each frequency. This provides a weighting that is approximately log-
arithmie, to match the instrumentation errors which are independent
and approximately Gaussian on a logarithmic scale. The reader is
referred to Ref. 7 for additional details of the fitting procedure.
Figure 6 shows the fits to horn and dish scans observed concurrently.
At this particular instant there was a notch present on the horn at a
frequency of 4.4 MHz below the band center, and a 6-dB slope present
on the dish. The parameter values producing the fitting functions are
shown on the plots. The rms error between the observed levels and
the values of the fitted function at these frequencies may be taken as
a measure of the quality of the representation of the fade. For the horn
scan shown, the rms error is 0.68 dB, for the dish 0.50 dB. These values
are typical for the measurement system. The power measurement at
each frequency has associated with it a fluctuation, or noise, that is
additive and approximately Gaussian on a decibel scale. This noise is

2196 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



0.9999

0.2

0.1

0.06

0.01
0.005

FRACTION OF SCANS WITH RMS ERROR EQUAL TO OR GREATER THAN ABSCISSA

0.002
0.001

0.0001

RMS ERROR IN EACH FIT IN DECIBELS

Fig. 7—Distribution of rms fit errors.

independent both frequency-to-frequency and scan-to-scan, and is
large enough (0.6 to 0.7 dB) to mask quantization errors.

If the differences between measured and estimated powers were due
solely to Gaussian fluctuations with a standard deviation, o, the
quantity 12E%,/o* would be a x* random variable with nine degrees of
freedom,®” where Ems is the rms error in fitting a scan. Thus, one can
determine the quality of the modeling by comparing the distribution
of the values of Erms for all the horn or dish scans with that of a x°
variable. The distribution of the horn and dish rms errors are plotted
in Fig. 7 along with the x* distributions for several ¢ values. The excess
error, the difference between a sample distribution and a x” distribution
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that matches it at the median, is more than 0.1 dB for less than 1
percent of all scans. Because the time between scans is not identical,
there is no precise method of scaling the percentages in Fig. 7 to
seconds per year. However, an approximate scaling is achieved by
applying the percentage to the time covered by the data base and
interpreting the resultant time as representing 0.75 of a year. On this
basis the excess error in fitting the dish data exceeds 0.5 dB for about
40 seconds a year. For the horn data the excess error is less than 0.4
dB over the entire data base. We conclude that the fitting is excep-
tionally good for the horn and better than average® for the dish.

IV. VERIFICATION OF MODEL STATISTICS
4.1 Overview

We shall begin our discussion with a description of the general
modeling problem. By drawing on the properties of probability density
functions and on past experience in modeling-selective fading, we will
simplify the problem, somewhat. We conclude this subsection with a
statement of the objectives of the remainder of the section.

By representing each scan of the horn and the dish with (2) and (3),
we obtain a reduced data base consisting of 85,410 sextuples of values
of (Aw, Ap, Bu, Bp, ¢n, én). Each of these sextuples has associated
with it a time weighting corresponding to the time interval until the
next scan in the same fading event. We wish to describe this data by
a function, To(Ax, Ap, Bu, Bp, ¢u, ¢p), whose values are equal to the
number of seconds the six parameters were in a differential element of
the parameter space, centered on the point (Ax, Ap, By, Bp, ¢u, ¢n).
Normalizing Tp to the data base time span, we obtain a probability
density function,

P(An, Ap, By, Bp, ¢n, ¢p) = To(An, Ap, B, Bp, ¢u, ¢p)/44386. (20)

It is this probability density function that we wish to determine. We
will ultimately show that it may be approximated by the product of
the probability functions in (10).

To simplify (20), let us first rewrite it as

p(An, Ap, Bu, Bp, ¢u, ¢p)
= pan/s(An, Ap, Bu, Bp|ou, ¢pp)ps(du, ¢p). (21)

In previous work where multipath fading on a single antenna was
statistically modeled,®’ it was found that the notch frequency statistics
were not related to the relative notch depth statistics or to the fade-
level statistics. An examination of the current data base revealed the
same properties, that is, the statistics of ¢ do not depend on those of
Ap or By, those of ¢p do not depend on those of Ap or Bp. Under the
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assumption that a cross-coupling (between ¢x and Ap, for instance) is
even less likely, it was assumed at the outset that (21) can be written
as

p(An, Ap, By, Bp, ¢, ¢p) = pas(Au, Ap, Br, Bo)ps(én, ¢p).  (22)
We rewrite (22) as
p(An, Ap, Bu, Bp, ¢u, ¢n)
= pa/s(An, Ap|Bu, Bp)ps(Bu, Bo)ps($u, ¢p). (23)

In the remainder of this section we shall derive the functional form
of each of the probability density functions in (23). The ultimate
objective is to show that (23) can be represented by the factors
multiplying T, on the right-hand side of (10), with the various prob-
ability density functions as defined in (12) to (19). To this end, we
consider the joint distribution of By and Bp in Section 4.3; we show
that it can be represented as the distribution of two independent
variables with distributions given by (12) and (13). The form of the
conditional distribution pa,s(An, Ap|Br, Bp), as given in (14) to (17),
is derived in Section 4.3. In Section 4.4, we consider the notch fre-
quency distribution and show that it can be modeled by independent
random variables as given by (18) and (19).

As part of the process of developing a multidimensional statistical
model one must make many choices that may seem arbitrary. How-
ever, we have proceeded with the philosophy that we should represent
the data well whenever there is a significant degree of fading present
in either antenna. To accurately represent the most severe events, we
must develop our cumulative distribution functions from the more
severe to the less severe fades, i.e., the complement of the usual
cumulative distribution function. Our goal is to find the simplest
probability functions that match these distribution functions, where
we define simplest functions as those having the fewest possible
number of parameters. In assessing how well these objectives are
achieved, we view the composite data base as a member of an ensemble
of all possible data bases. Thus, the parameters obtained from the data
base must be considered as random variables of this ensemble of fading
events.

4.2 Notch depth statistics

The objective of the diversity model is to accurately represent the
transmission shapes present on both the horn and dish at any time
that deep or shapely fading was present on either. In previous work
with the nondiversity model it was only necessary to represent the
notch depth parameter at values large enough to produce several
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decibels of shape in the band. For the diversity model considered here,
we must represent the joint distribution of horn and dish notch depth
parameters at all values. (While one could give less importance to the
distribution in regions where both notch depth parameters are small,
this is found to be unnecessary.) We first develop the complement of
the cumulative distribution of the sample values of the horn and dish
relative notch depths, By and Bp, respectively. We define this two-
dimensional function, F(x, y), as the number of seconds in the data
base that By equaled or exceeded a value x, and Bp equaled or
exceeded y:

F(x, y) = Number of seconds: By = x, Bp = y. (24)

To provide a focus for the ensuing discussions, we develop the
function F‘(x, ¥), which is a smooth function fitted to the multiply-
discontinuous function F(x, y). Figure 8 shows a contour plot of the
surface ﬁ‘(x, y). It shows, for instance, that there are fewer than 20
seconds in the data base during which both the horn and dish notch
depths simultaneously exceed 10 dB. There are fewer than 5 seconds
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for which the notch depth on one antenna equals or exceeds 15 dB,
while that on the other is 10 dB or greater.

Figure 8 was derived by first determining the values of the function
F(x, y) on a square grid of points, x;, y,;, where

o[ 0o =1
! i—05 i>1

— 0 Jj=1
Yi=1j-05 j>1.

Since F(x, y) falls off approximately exponentially with increasing
values of x and y, we approximate it with F(x ), where

(25)

F(x, y) = exp (— ¥ am,.x"‘y"). (26)
m+n=N

The coefficients @, in (26) were determined by minimizing the mean
square error between In F(x, y) and In F(x, y) over all x;, y;, less than
24 dB, for which there were five or more seconds in the data base,
F(x:, y;) = 5. [The 5-second limit was chosen to avoid the region of
the x, y plane where data is becoming sparse, causing the sample
function, F(x, y), to have increasingly extensive flat areas.] Figure
8 shows the equal value contours of F(x, y) as defined by (26) with
N = 6, for which 28 parameters, am., were determined.

The function F(x, y) with N = 6 provides an excellent representation
of the sample function, F(x, y); the rms error between 1nF(x, y) and
In F(x, y) is approximately 0.092, which corresponds to an rms error
of 9.2 percent over the fitting region. While one can reduce the fitting
error by i mcreasmg the dimension, N, of F(x, y), the reduction is not
great. The minimum error, 6.7 percent, is obtained with N = 9 (55
coefficients, am.). Furthermore, the fitted functions, the F'(x, y)’s, lose
the appearance of distribution functions for N greater than 6. Note
that the distribution function, F'(x, y), must satisfy the inequality

F(x,y)=F(x',y') for x'=x,y'=y. (27)

It may be seen that F(x, y) for N = 6, as shown in Fig. 8, violates this
inequality for Bp near 1 dB and By greater than 12 dB.

An extensive study was undertaken to find a distribution function
that would fit F(x, y). While a function with a polynomial exponent
such as F(x, y) can be fitted by solving a system of (N + 1)(N + 2)/2
linear equations, the more general distribution functions were fitted
using a modified gradient search routine.! For practical reasons the
class of functions was limited to those having no more than eight
parameters. Of those tried, the best was of the form

Fu(x, y) = zole” 2 4 zee ) (e + zge BY). (28)
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Fig. 9—Contour plot of Fy(Bx, Bp), model cumulative joint distribution function of
horn and dish relative notch depths.

For the parameter values corresponding to those in (12) and (13), the
rms fitting error was 18.7 percent. The contour plot of this function,
shown in Fig. 9, is seen to match the smoothed function of Fig. 8 quite
closely. To show how well Fy(x, y) matches the original sample
distribution, we plot the distribution of horn notch depth conditioned
on dish notch depth in Fig. 10, along with the values of the sample
distribution, F'(x:, y;), being matched. A similar plot of the distribution
of dish notch depth conditioned on horn notch depth is shown in Fig.
11.

Comparing Figs. 8 and 9, we see that the model function, Fux(x, y),
has most of the properties of the function F(x, y). From Figs. 10 and
11, one obtains an appreciation of the irregularities in the trends in the
distribution of the data points; these irregularities contribute substan-
tially to the fitting error. While one could argue that the modeling is
acceptable on the basis of Figs. 8 to 11, there are more compelling
reasons for accepting this distribution function as representing the
data distribution, as we shall outline in the following paragraphs.

If the function used to represent the data distribution, F(x, y), can
be factored as a product of a function of x and a function of y, the
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Fig. 10—Distribution of relative notch depth for the horn, conditioned on that for the
dish.

resulting probability model will be one in which By and Bp are
statistically independent. We will first show that the modeling func-
tion, Fu(x, y), provides close to the minimum achievable error under
the factorability assumption. Subsequently, we shall show that there
is no reasonable alternative.

If the sample distribution were factorable, we could represent it
exactly by

N N
Fr(x, y) = c [exp(— ¥y amxm):l[exp(— ¥ b,,y")], (29)
m=1 n=1

since we are only representing the sample distribution at a finite
number of points. Fitting a function of the form (29) to F(x, y), as
described previously, we find that the minimum rms error is 17.4
percent for N = 7, which corresponds to 15 terms. For larger dimen-
sionality the error increases, presumably, because of loss of precision
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in the double precision solution to the set of linear equations for the
coefficients. The model solution achieves an rms error of 18.7 percent
with fewer than half the number of coefficients.

As a check of the ruggedness of the model solution, we varied the
region over which the model function was fitted. If the upper limit of
x and y is reduced from 24 to 22 dB, the parameters change by less
than one percent. If the region where both x and y are less than 5 dB
is removed, the change is even smaller. We conclude that Fy(x, y)
provides an accurate and stable approximation to F(x, y).

There is no way of testing whether By and Bp are statistically
independent. One check, which we can apply, is to estimate their
correlation coefficient. By examining the data base, we find that the
coefficient of correlation between By and Bp is 0.0306. While there are
standard tests for the significance of correlation coefficients,” they
pertain to the case of independent sets of samples, whereas the time
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series samples of the fading parameters we are working with are
correlated.”® In the appendix, we show that the effective number of
independent time samples of By and Bp in the data base is approxi-
mately 1516, and that one would expect a correlation of this magnitude
(0.0306) or greater about 27 percent of the time for this sample size.

Various subpopulations of the B-parameters were also examined for
correlations. For instance, consider the set of By and Bp observations
for which both were equal to or greater than 6 dB. The correlation
coefficient is —0.118 for this subpopulation. It is shown in the appendix
that a correlation coefficient of this magnitude or greater would be
expected to occur 53 percent of the time.

Thus, we have based our choice of the model function Fa(x, ¥) on
the following grounds: (i) the model function (Fig. 9) captures the
essential morphology of the sample distribution (Fig. 8); and (if) no
candidate distribution function providing correlation between By and
Bp and employing a similar number of parameters represents the
distribution function as well. While the rms error between the model
distribution and the sample distribution is considerably larger than is
that between the best functional representation, F(x, y), and the
sample distribution, this is to be expected because F(x, y) has many
more degrees of freedom and is not constrained to be a distribution
function. In other words, F'(x, y) represents the data within the region
of interest by following all minor irregularities; immediately outside
this region, this function exhibits large amplitude oscillations. By
examining the correlation of By and By for various subpopulations we
have established that there are correlations within these subpopula-
tions. These correlations correspond to variations in the sample distri-
bution surface that a factorable function, such as the model function,
is incapable of matching, but which have been shown to be without
significance. We conclude that there is no basis for choosing a more
complicated function than (28) for representing the sample joint dis-
tribution.

4.3 Fade-level stalistics

For the nondiversity fading model, the fade level or A-distribution
was Gaussian with a mean dependent on the relative notch depth. A
generalization of this, a two-dimensional Gaussian probability density
function, describing the joint probability of Ay and Ap conditioned on
By and Bp would be given by (14), with gu, gp, ou, op, and p being
functions of By and Bp. To obtain, for the diversity model, a proba-
bility density function that will easily reduce to that of the nondiversity
model, we assume that gy depends only on By, gp depends only on
Bp, and that oy, op, and p are independent of both Bx and Bp.

As the first step in verifying this hypothesis, we must determine the
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Fig. 12—Mean and standard deviation of Ay, fade-level parameter for the horn, as
modeled and estimated for horn relative notch depth in 1-decibel intervals.

functional dependence of the means, gy and gp, on their respective
variables, By and Bp. We do this by estimating the value of, say, gx at
a set of values of By, and fit a function to these sample means. The
value of g (x) is the average value of Ay for By equal to x. We estimate
gr(x) by taking the expectation, or average value of Ag in the data
base for all times that By is between x — § and x + 8. Specifically, we
work with 1-dB intervals and estimate gy by

- i + X
8u (%) = E{AH: xi<Bp= xi+1} ’ (30)

where E (.} denotes expectation, and the x;’s are defined by (25).
The values of gx(x) are indicated by squares in Fig. 12, which also
shows the function gu(Br) of (15), which we use as the conditional
mean of Ay in the model. We use a meromorphic function, gz(B#), to
represent this conditional mean to ensure that it approaches a constant
at large values of horn notch depth. Note that the accuracy of the
estimates of Sy decrease at large values of the horn notch depth
because the number of samples decreases. (The approximating func-
tion gy was obtained from a weighted least-squares fit to the estimates,
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Fig. 19—Mean and standard deviation of Ap, fade-level parameter for the dish, as
modeled and estimated for dish relative notch depth in 1-decibel intervals.

&n. The weighting was in proportion with the square root of the
number of seconds of data in the notch depth interval.)

Figure 12 also shows the results of estimating the standard deviation
of Ay conditioned on By in the same set of intervals. The straight
line represents the (unconditional) standard deviation (6.8268) of
Ay — gu(Bpy) for the whole data base. Figure 13 shows the results of
duplicating for the dish parameters the calculations leading to Fig. 12.

It is a simple matter to test the validity of the hypothesized model.
If Ay — gu(Bu) and Ap — gp(Bp) are jointly Gaussian with zero
means, correlation p, and respective standard deviations oy and op,
they may be linearly transformed into a pair of zero mean, unit-
variance, independent, Gaussian random variables. We shall develop
the transformation in two steps: a rotation of axes, followed by a scale
change. Taking advantage of hindsight, we plot in Fig. 14 contours of
the joint probability density for Ax and Ap of (14). The rotated axes
x and y are defined by the transformation:

x| _ cos@ sinf || Ax — gu(Bu) (31)
y| |—sin® cos@||Ap— go(Bp) |
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The chosen angle, 8 (= —43.7 degrees), satisfies the relation

2
tan 20 = 0 (32)
OH — 0D

which ensures that x and y are uncorrelated. Their variances are given
by

o2 = 0} cos®0 + o}psin®d + 2ponopsin 8 cos § (33)
and

o5 = o#sin’d + ohcos’d — 2poyopsin 8 cos 6, (34)

respectively. From the variances and correlation in (17) and the value
of 8 given above, we calculate the values of ¢, and o, as 4.097 and 8.900,
respectively. Note that the major axes of the ellipses of concentration
shown in Fig. 14 lie along the y-axis, and the minor axes along the x-
axis. By rescaling the x- and y-axes we obtain the desired zero mean,
unit variance, independent variables, u and v, as

u|_ (l/ex 0O x
HE KA H
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Fig. 15—Distribution of canonic sum parameter, v, conditioned on deciles of canonic
difference parameter, u.

One may generate the sample distribution of u and v from the data
base by calculating their values at each scan using egs. (15) to (17) and
(31) to (35). The conditional cumulative distribution functions of these
two variables are shown in Figs. 15 and 16. Each plotted curve
represents the cumulative distribution function of all values of one of
the variables conditioned on the other variable being in a given decile
of a Gaussian distribution; e.g., the first decile of u contains all u values
that are less than —1.28155. Figure 15 shows the distributions of u
conditioned on v; Fig. 16 shows v conditioned on u. Both families of
distributions are closely grouped and approximately Gaussian within
the range of —3 to +3 standard deviations. This is remarkably good
agreement for a sample of this size.
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Figures 15 and 16 provide good confirmation of the assumption that
Ay and Ap are jointly Gaussian variables. The only assumptions that
were studied further were those relating to the functional form of gu
and gp. The procedures outlined above were carried through under
the assumption that gy and gp were both functions of both By and
Bp. The resultant u and v conditional distribution functions were not
noticeably different from Figs. 15 and 16. The only notable difference
was that the value of oy was reduced from 6.8268 to 6.6815, that of op
from 7.0272 to 6.954, and the correlation coefficient increased from
0.650 to 0.681. This trivial difference in the coefficients would be
achieved at considerable cost in complexity because the probability
density function, (14), would become extremely difficult to use. The

2210 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



effect of this generalized assumption is not pronounced on the functions
gu and gp. For instance, the fractional variation of gn(Bx, Bp), as Bp
varied its values along any line of constant By, was on the order of 10
percent. Hence, the development of a more complicated distribution
cannot be justified.

4.4 Notch frequency statistics

As a first look for dependency between the horn and dish notch
frequency parameters, the correlation coefficient between these two
variables, ¢ and ¢p, was determined from the data base to be —0.0281.
Using the techniques described in the appendix, one would expect a
correlation magnitude larger than this value to occur 7.3 percent of
the time in a data base of this size if ¢x and ¢p were statistically
independent. While this correlation is small, it is large enough to be
considered “almost significant” and to warrant a more detailed study.

The simplest way to look for the existence of any interdependency
between the horn and dish notch frequencies is to plot distributions of
one conditioned on the other. For instance, one chooses all those time
intervals when the value of ¢p was between —85 and —65 degrees (or
fop was between 37.4 and 28.6 MHz below the center frequency of the
channel). One then plots the fraction of this time interval (2615
seconds) that the horn notch frequency exceeded a given value. The
resulting conditional distribution is labeled by octagons on the com-
posite plot of Fig. 17. The other distributions in Fig. 17 were obtained
by conditioning the notch frequency on other intervals of dish notch
frequency, as indicated. For reference, the span of the channel mea-
surements is from —27.5 to +27.5 degrees (+12.1 MHz).

Since the overall spread of this family of distributions is small (less
than 10 percent), over the range of ¢, we represent the entire family
by a single distribution, (18), shown dashed. Thus, we describe the
distribution as uniform at two levels with values of | ¢x| less than 90
degrees being five times as likely as values greater than 90 degrees.

Figure 18 shows a set of distributions of the dish notch frequency
conditioned on the horn notch frequency. This family of distributions
is very tightly clustered, implying that the horn notch position had no
influence on the distribution of dish notch position. The family of dish
notch distributions does not fit the two-level uniform approximation,
shown dashed in Fig. 18, as well as does the horn data. The relatively
large deviation (about 15 percent near —30 degrees) between the data
and the modeled distributions results from an asymmetry in the data,
where, on a physical basis, none should be found. For atmospheric
multipath, one expects transmission notches to be equally likely at any
frequency in the neighborhood; hence, the notch frequency probability
density functions should be symmetric and the cumulative distribution
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functions shown should be antisymmetric about the (0 degree, 50
percent) point.

In the central 60-degree region of the horn notch frequency distri-
bution, the distributions conditioned on positive dish notch frequencies
cluster separately from those conditioned on negative frequencies.
This is an integrated effect, in that it is not apparent in the conditional
probability density functions (not shown). There may be some relation
between this spread in the horn notch frequency distribution, the
spreading of the time-faded statistics for the dish (Fig. 4), and the
symmetry properties of the observed dish notch frequency distribution
(noted in Fig. 18). However, these differences are small and no attempt
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was made to isolate the events giving rise to these effects or to
incorporate them into the model.

V. CONCLUDING REMARKS

We have provided in Section II a statistical model of multipath
fading as observed in a diversity configuration over an extended period
of time. Supporting evidence of the accuracy of the statistical model
was presented in Section IV, along with a description of the method-
ologies employed. The transmission path to each antenna was repre-
sented by a function synthesizing a simplified three-path fade. While
one could statistically represent the joint occurrence of the parameters
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of these two functions in the observed data base with greater precision
using a more complex model, all attempts to establish the significance
of higher order extrapolations of the proposed statistical model have
been negative. There would seem to be little virtue in representing,
with a particular statistical model, features that would not be found in
a fading data base corresponding to a different observation period.

For the proposed model, the only correlation in the fading of the
two antennas is in the level of fade. This simplicity of dependence is a
direct result of the form of the function used to represent fading on
the two antennas. More, or different, interdependencies might become
apparent or significant with other fade representations. The limited
dependence is a virtue of the model since it places all of the impact of
diversity antenna separation in a single parameter, for separations in
the range of practical interest. However, for sufficiently small separa-
tion one would ultimately expect to see correlations in the shapes of
the fades observed on the two antennas.

The proposed model was only checked against the data; however, it
reduces to the form of the nondiversity model, which has been exten-
sively verified. A model representing fading on the horn is obtained by
integrating the model statistics over the dish parameters, and vice
versa. Some of the parameters of the horn and dish models derived
from the diversity model are different from those that have been
derived previously, but the differences are not great, on the order of 10
percent, at most. As a consequence, one would not be surprised by 20
to 30 percent differences between expectations calculated with this
model and corresponding expectations calculated with the nondiversity
model. This merely reflects the month-to-month and year-to-year
variability in the nature and severity of multipath fading.
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APPENDIX

Correlation and Significance

The purpose of this appendix is to develop the methods of testing
for the significance of the correlation between two random variables
when the sample values of each variable are taken from a time series
with known autocorrelation. Consider two stationary, independent,
Zero mean, unit variance random processes, x(¢) and y(¢). Assume that
we have samples of each at a large number, N, of time instants, where
the ith time instant is taken as

ti = iAt t=1,23,---,N. (36)
We are interested in the correlation coefficient of x and y as determined
from the set of samples x; = x(¢;) and y; = y(%), where
1 N
Py El XiYi. (37)

Because x(¢) and y(¢) are independent processes by assumption, the
expected value of p is zero:

1

XiYi = 0 (38)

MZ

ﬁ=

[
—

[

where the overbar implies an ensemble average.
We wish to determine the variance of the estimate (37). We write
the expected value of this sample variance as
) 1 N N

Op = P N2 b E XiYiXjyj. (39)

=1 j=1

Under the hypothesis that x(¢) and y(¢) are independent processes, we
may rewrite (39) as
N N N N

=zl LEGYY =1z L L e =jeli=j),  (40)
i=1 j=1 i=1 j=1
where
px(1) = XXe+i (41)
and
Py(i) = YrYr+i (42)

are the autocorrelation functions of x(¢) and y(¢), respectively, at time
difference iAt. We may rewrite (40) as

o} =17 [N+ 2% (V- k)px(k)py(k)} (43)

If the time samples of x(¢) and y(¢) were independent, the autocor-
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relation functions would be unity for £ = 0 and zero elsewhere, that is,

o§=% if pi) =p, (i) =0 for i#0. (44)

Let us define an effective sample size, Ny, such that, for a given sample
size, N, and given autocorrelation functions, p:() and p,(i),

1
p = - 45
0, e (45)
Then,
N N IN—-Fk
=1+2% ( ) px(k)py(k). (46)
eff k=1 N

Our object is to use (45) and (46) for the diversity data base. As
noted in Section ITI, the data base is not uniformly sampled. Further-
more, multipath fading is not a stationary random process. One may,
however, define a lagged autocorrelation function for the samples of
such a process™ at delay T as

G )G T TGer)- G T

where the sample denoted X is 7 seconds delayed from the sample
X, and the sums are taken over all M = M(7) pairs of samples in the
data base with a delay difference of 7.

Figure 19 shows plots of (47) for: (a) the relative notch depth of the
horn, and (b) the relative notch depth of the dish. Figure 20 shows
M(r), the sample size for the data base, as a function of the delay, T,
for delays of integer numbers of seconds. Using these two figures as
examples, we can approximate the quantity N/N.; We describe the
autocorrelation functions by

px(7) = axe /™ = afx (48)

px(7) =

(47)

and
py(7) = aye_fh'v = a,f35. (49)

The samples in the data base are taken nonuniformly in a set of
disjoint intervals. With 85,410 samples in 44,386 seconds we have an
average sample spacing of 0.5 second. Hence, we approximate the
uniform-sampling window function of (46), (N — k)/N, by taking an
approximation to M(7)/N, as shown in Fig. 20 and given by
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(b)F(‘iiigs.hIQ—Autocorrelation of lagged samples of relative notch depth for (a) horn and
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Fig. 20—Sample size for autocorrelation estimates in Fig. 19.

M(r) 35 11 T
M) = =__e/ 4 __(1—- = 4000. 50
N=—x=1° 17\ "000) " (50)
Using (48) to (50) with = 0.5 k corresponding to the 0.5 second
average sampling interval, we rewrite (46) as

N
;]V =142 Y M(k/2)ax(B:B)*? (51)
eff k=1
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or

N 2aa, [ 3.5re™® 11r 1
=1+ + -
N 17 {1 R 8000(1—r) |)’ (52)
where
r= (BxBy)o‘s- (53)

Consider the horn and dish relative notch depths, By and Bp,
respectively. Letting By = x and Bp =y,

Ay = Oy = 0.75
Bx = e—l/ﬁﬁ
By = e /%
r=0.98478. (54)

Therefore, from (51) to (54),

N 563, (55)
eff

For the data base, the calculated value of the correlation coefficient of
By and Bp was 0.0306 for the entire set of 85,410 samples. From (55),
N,z = 1516. Using this in (45), we find o, = 0.0257. Under the
unfavorable assumption® that the distribution of p is normal, we would
expect to find a value of |p| this large (1.19¢,) or greater to occur for
less than 27 percent of the samples of this size.

Similarly, for the case of a subpopulation of 1608 samples of By and
Bp, whose correlation coefficient was —0.118, we find from (65) that
N.s = 28.5, and from (45) that o, = 0.187. We would expect to find a
value of |p| this large (0.630,) or greater to occur for less than 53
percent of the samples of this size. One concludes that in neither of
these two cases does the correlation differ significantly from zero.
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