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A matrix method of analysis is developed for mildly nonlinear,
multiple-input, multiple-output systems with memory (e.g., nonlinear
multiport networks and multichannel communication systems). The
method is based on a Volterra-series representation whose kernels
are two-dimensional matrices rather than multidimensional arrays.
This is made possible through the use of the Kronecker product of
matrices, which results in a compact formulation. The response of
the aforementioned systems to multiple sinusoidal excitations is also
studied. Moreover, formulas are given for various system operations
(e.g., addition, cascading, inversion, and feedback), which can be
used to describe a complex system as an interconnection of simple
subsystems.

. INTRODUCTION

Communication, control, and instrumentation systems employ com-
ponents, such as amplifiers and mixers, which are inherently nonlinear.
Even when the nonlinearities are mild, as is often the case, they can
produce bothersome signal distortion that limits the system perform-
ance. The nonlinear components themselves, and the other linear
components used in the system, are generally frequency-dependent,
i.e., they have memory. Numerous studies are available in the literature
for the analysis of mildly nonlinear systems with memory through the
use of Volterra-series expansions."' The classic paper by Bedrosian
and Rice,” the recent paper by Chua and Ng,'* and the book by Weiner
and Spina'’ cover that subject very thoroughly. Also, the paper by
Gopal, Njakhla, Singhal, and Vlach' is interesting in that it evaluates
the range of accuracy of the Volterra-series approach by comparing it
with a nearly exact, but quite involved, method of analysis. The book'®
and paper' by Schetzen deal mainly with random inputs. The condi-
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tions for the existence of a Volterra-series representation have recently
been studied rigorously by Sandberg.*’

For the most part, the studies mentioned above are limited to
systems with one input and one output, i.e., “scalar” systems. This
scalar representation is usually not easily applicable to Multiple-Input,
Multiple-Output (MIMo) systems. Such systems include, for example,
nonlinear multiport networks, multichannel communication systems,
and transmitting or receiving systems employing multibeam antennas.
In principle, one can represent these systems by a set of dependent
scalar Volterra equations. This was done, for example, in the papers
by Narayanan® and by Bussgang, Ehrman, and Graham,” where node
equations were used to analyze nonlinear, two-port network models of
bipolar transistor amplifiers. This method of analysis is tractable only
when the numbers of nodes and of nonlinear elements in the network
are small. For example, when the above authors considered the analysis
of two-stage transistor amplifiers, they were forced by the complexity
of the cascade equations involved to assume that the interaction
between the stages, i.e., the loading effect of one stage on the other, is
linear. While this might have been a reasonable approximation in their
particular case, it is not valid in general. A symbolic matrix inversion
algorithm that simplifies the computational aspects of the nodal
method of analysis was recently discussed by Thapar and Leon.'>'®

To conveniently handle the problem of two-port networks, or to
analyze nonlinear multiport networks in general, one needs to use a
black-box representation of the network, as is usually done in linear
networks. For example, consider a nonlinear, two-port network, which
has two independent port variables (e.g., the port currents) and two
dependent port variables (e.g., the port voltages). One should be able
to express the latter variables in terms of the former (e.g., by a
nonlinear impedance representation). Furthermore, one should be able
to perform transformations among various network representations
(e.g., from impedance to cascade parameters), and to carry out the
computations involved in interconnecting several networks together to
form a complex network (e.g., through cascading). The same operations
are also needed in the analysis of other nonlinear MIMO systems.

The purpose of this paper is to develop a method for analyzing
mildly nonlinear MiMoO systems with memory. This method, which
employs Volterra-series whose kernels are two-dimensional matrices,
facilitates the systematic performance of various useful system oper-
ations, such as addition, cascading, inversion, and feedback. The
application of the results of this study to the analysis of mildly
nonlinear multiport networks will be the subject of a future paper.

Actually, Weiner and Naditch,'” and Gopal, Nakhla, Singhal, and
Vlach!? used multidimensional arrays of Volterra kernels to represent
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nonlinear, two-port networks. The same was suggested by Chua and
Ng' for extending their results to multiple-input systems. All of these
analyses can also be generalized to multiport networks and other MmiMo
systems. The resulting notation is similar to the index notation dis-
cussed in the beginning of the next section and in Appendix A. This
notation, though more natural in its initial formulation, turns out to
be cumbersome when attempting to perform the aforementioned sys-
tem operations.

Il. REPRESENTATION OF NONLINEAR MEMORYLESS MIMO SYSTEMS

A nonlinear, memoryless scaler system is characterized by its in-
stantaneous input-output transfer function. When this function is
analytic, as is the usual case encountered in practice, it can be repre-
sented by the power-series expansion

w=P% +P%*+P¥%*+ ..., (1)
where u = u(t) is the input, w = w(t) is the output, and P* k=1, 2,
3, ---, are system constants. The corresponding representation of a
nonlinear, memoryless, MIMO system with n inputs, u; = u;(¢), j =1, 2,
+«+,n,and m outputs, w; = wi(t),i=1,2, ... ,m,is

n

n n
;= . CNETIRTY
wi = E P'jlufl + 2 E Pljl!zuhulz

=1 h=1J=1
n n n @)
+ Z 2 E Pi}lfzfauixulzufa +---,1=12,---,m, (2)
h=1Jja=1 =1
where P} ;i k=1,2,8, ..., are (k + 1)-dimensional m X n X -

X n arrays of system constants. The notation used in (2) will be
referred to as the “index notation.” It is similar to that used in Refs.
10 and 12, but the superscripts and subscripts are interchanged. We
now proceed to represent (2) in the “matrix notation.”

Let

_u1(t) wi(t)
ua(t) wa(t)
u=ut)= | | ,w=wt)= | ° (3)

be the n X 1 and m X 1 input and output vectors, respectively. The
first (i.e., linear) term in (2) can be written as an ordinary product of
matrices in the form w = P".u, where P'" is the m X n matrix
[P.']. We will now show that the remaining terms in (2) can also be
written in a matrix form through the use of the Kronecker product of
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matrices.22? Appendix B defines this product and gives some of its
useful properties. Actually, Harper and Rugh' employed the Kro-
necker product in conjunction with state variables to study factorable,
scalar, nonlinear systems. Also, Brockett®” used a reduced form of
the Kronecker product (to be explained shortly) in the state-variable
representation of scalar, time-varying, nonlinear systems that are
linear in the control variable.

As is explained below, the elements of the (& + 1)-dimensional,
m X n X .-- X n arrays, {P{.. 4}, can be reorganized to form
two-dimensional, m X n* matrices, {P"*'}, such that (2) can be written
in the matrix form

w=PYu+P? (uxu) +P%(uxuxu)+-.--, (4)

where “X” is the Kronecker-product sign. As mentioned in Appendix
B, we will employ lef¢ Kronecker products.

To understand (4), we note from (61) that the k-fold Kronecker
productu X u X ... X uresults in an n* X 1 vector whose jth element
is given by

[uxux---Xul,=uju, - u, (5)
where j1, J2, - -+ , Jx are uniquely determined from
j=h+n(e—1+ - +0*(—1). (6)

Thus, to make (4) equivalent to (2), the i-j element of the m X n*
matrix P*' should be given by
[P*®); = Py (7

where j is given by (6).
For example, if m = n = 2, (5)-(7) give

"ululuf
Ual U
[75175] Ul
UzU Ualially
uxu= ' Suxuxu= , (8)
Uz 17307517 5]
Uzll2 Uali1 U2
U Uz2U2
atiaue
2 2] 2 2
P(2) — (11)1 izllpgl)zp 2)2 (9)
= 2 2 2
PEPRPRPY: |
3 3 3 3 3 3 3 3
po _ [ PRuPEP PP B haP (P s (1)
= 3 3 3 3 3 3 3 N
PP 3PP PP 5P P
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Note that each of the Kronecker-product vectors given in (8) has
redundant entries. In Brockett’s notation cited earlier, these entries
would be removed. For example, the 4 X 1 vector, u X u, would be
replaced by the 3 X 1 vector [u?, u;us, u3), and the corresponding 2 X
4 matrix, P®, given in (9) would be reduced to a 2 X 3 matrix, etec.
However, when the system has memory, no redundant entries occur,
since, as can be seen for example from (11), one needs to evaluate
Kronecker products of the form u(#) X u(f), etc., where ¢, # ts.

In the remainder of the paper, we will employ the compact matrix
notation used in (4) rather than the index notation used in (2).
However, on some occasions, it is helpful to keep track of the interre-
lation between the two notations. Thus, some key equations in the
paper are rewritten in Appendix A in the index notation.

. REPRESENTATION OF NONLINEAR MIMO SYSTEMS WITH MEMORY

The usual Volterra-series expansion used to represent nonlinear,
time-invariant, scalar systems with memory'® can be generalized
through the use of the notation of (4) to represent MIMO systems by
the matrix equation

wit) = J pP(n)-ul(t — m)dm

+ JJ pm(‘rl, 1‘2) [u(t - T]) X u(t - Tz)]d‘f]d’fz

+ J’JJ p("”('n, T2, T3)

Jult — 1) X u(t — 72) X u(t — 73)]dridT2drs
4 ..., (11)

where u(¢) and w(t) are, respectively, the n X 1 and m X 1 input and
output vectors given by (3), and where p*'(ry, -+., ), B =1, 2, 3,
.-+, are two-dimensional, m X n* matrices of system kernels. Note
that if p*(r, +-+, ) = P®8(r)) +.. 8(7x), where 8(r) is the unit
impulse function, then the system becomes memoryless, and (11)
reduces to (4).

As is the case for linear systems, it is more convenient to represent
(11) in the frequency domain. To do this, we introduce the dummy
time variables, ¢, t;, - -+, t, and rewrite the kth order output com-
ponent in (11) as
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w(k)(tlg trt tk) =J' e Jplkl(fl: R ] Tk)

Julty = 71) X «o0 X u(te — ) ]dry - drr. (12)1
Thus, (11) becomes
wi(t) = wh(t) + w2, O +w(t, t 1)+ -0 (13)

Now, we introduce the single-dimensional Fourier-transform pair

X(f) =J x(t)exp(—j2nft)dt, (14a)

x(t) = j X(frexp(j2= ft)df, (14b)

to represent the transformations u(f) < U(f) and w(t) < W(f).
Similarly, we introduce the multi-dimensional Fourier-transform pair

Y(ﬁ:"')fk)='[ "'Jy(th"'ytk)

.exp[—j2n(fiti + - -+ + fale)]dts - -- dtx, (15a)

y(t, ---,tk)=J ---J’Y(fl, ey fa)

explj2n(fity + - -+ + fate)]dfr -+ - dfx, (15b)

to represent the transformations p*(r1, ---, ) © P¥(f1, -+, f&)
and W(ty, -+ -, tr) & W (f1, .-+, fa). It can be shown from (14) and
(15) that (12) can be written in the frequency domain as (see Refs. 1
through 4, 7 through 9, 14 and 17)

WE(fy, ey fi) =PB(fi, oo, o) [U(f) X - X U(fw)]. (16)

The Fourier transform of the output becomes

W(f)=W(f) + J WE(f1, f— fidf

+J' jwm(fl, fo, f— = f)Afidfs + -+ . (17)

t All equations in the paper marked by a dagger are rewritten in the index notation
in Appendix A, where the same equation numbers are used.
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Fig. 1—A nonlinear, time-invariant, MIMO system with memory having n inputs and
m outputs.

Fig. 2—Interrelations among the input, output components, and total output in the
time and frequency domains for the nonlinear MmiMo system of Fig. 1. The numbers in
parentheses represent equation numbers in the text.

Note from (13) and (17) that the single-dimensional Fourier transform
of w*'(t, -+ - , t) is given by the kth term in (17), which is not equal to
W (f oo, f)unless k= 1.

A schematic diagram of the system represented by (11) through (17)
is given in Fig. 1. The interrelations among the input, the output
components, and the total output in the time and frequency domains,
and the corresponding equation numbers, are indicated in the flow-
chart of Fig. 2.

IV. KERNEL SYMMETRIZATION

The representation of the response of a nonlinear scalar system to
sinusoidal and Gaussian excitations is greatly simplified if each of the
kernels, P*' f,, - -+ | fx), or equivalently, p*(r, - - - , 74), is a symmetric
function of its arguments.”*!* The generalization of this symmetry
requirement to nonlinear MIMO systems is somewhat more involved.
Following the reasoning given in the aforementioned references, one
can show that it is the output components, W*'(f,, ---, fi) given by
(16), or equivalently, w*'(¢,, - .- , tx) given by (12), that are required
to be symmetric functions of their arguments. For example, for 2 = 2,
it is required that W®(f,, f2) = W® (£, f1); and thus, from (16),

P(fi, £)- (w1 X wa) = PP(fz, fi)-(uz X wy), (18a)
where U(f;) is replaced by u; for generality. Similarly, for & = 3, it is
required that W (£, £, fa) = W?(f., fs, f,); and thus, from (16),
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P(-’ﬂ(f], fZ! f3)'(u1 Xuz X u-’:l) = P(a)(fab f_;ﬂ, fr)'(ua X ug X u‘r‘)! (18b)

where a, f8, y assume all permutations of 1, 2, 3. For a scalar system,
(18a) and (18b) are indeed equivalent to requiring the corresponding
system kernels to be symmetric functions of their arguments, as
mentioned above.

To find the symmetry requirement implied by (18) on the kernels of
a MIMO system, we need to introduce the n? x n? “reversing” matrix,
R, and the six n? X n® “permutation” matrices, ®,;,, where a, 8, v
assume all permutations of 1, 2, 3. These matrices have properties such
that if u;, u; and us are n X 1 vectors, then

R-(u; X uz) = uz X uy, (19)
D, - (W X Uz X Ug) = s X Ug X 1,y (20)

Appendix C defines these matrices and gives some of their useful

properties.
Finally, (18) through (20) give the required symmetry conditions of
the kernels as

P?(f, ) =P(f, fi)-R, (21a)’

Pm)(ﬁi le ﬁ]) =P(3](ﬁu f,ﬂ: fy)'q)uﬁy- (21b)1‘

The generalization of (21) to higher-order kernels requires the intro-
duction of permutation matrices of more than three indices.

If the given system kernels, say, P®(f,, f2) and P(f, fz, f3), are

unsymmetric, they can be symmetrized, ie., made to satisfy (21),
through the use of the relations

P2(fi, ) = % [PP(f, £) + P?(£, fi)-R], (22a)"
POfi, i) =% 3 POL, fo, £,) - Py, (22b)'
a By

where the summation is performed over a, 8, y assuming all 6 permu-
tations of I, 2, 3. These symmetrization relations are generalizations
of those discussed in Refs. 7, 9, and 14 for scalar kernels.

V. RESPONSE TO SINUSOIDAL EXCITATION

The response of a nonlinear scalar system to multiple-sinusoidal
excitation has been studied by several authors including Bedrosian
and Rice,” Goldman,? and Chua and Ng."* Here we generalize some of
their results to nonlinear MIMO systems.

5.1 Multiple-exponential excitation

Let the input vector be
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]
u(t) = ¥ wexp(j2nfit), (23)

where the u/s are time-independent, complex, n X 1 vectors. The
Fourier transform of u(¢) is

1
U(f) = X wd(f - f). (24)

=1

Substituting (24) into (16), and using (15b), one obtains the Zth order
output component
!

!
w(k)(t) = W‘k](t: Tty t} = E tes E {[P(k)(fip Tty ﬁg)
i\=1 i=1

s, X oo Xug)expl 27(fi, + -+ + fi)t]}.  (25)

Finally, the output, w(t), is obtained from (13), i.e., by summing w'*(¢)
from & = 1 up to any desired order. Note that (25) is valid whether
or not the system kernels are symmetric.

5.2 Single-frequency excitation
Let the (real) n X 1 input vector be
u(z) = Realla exp(j2nft)]
=% a exp(j2nft) + Yea*exp(—j2uft), (26)

where the asterisk refers to complex conjugation. Comparing (26) to
(23), one obtains I = 2, u; = %2 a,us = % a*, fi= f, and o = —f. Thus,
using (25), and assuming that the kernels are symmetric, i.e., that (18)
is satisfied, one obtains the following expressions for the various kth
order output components:

w'(t) = % [PY(f)-alexp(j27ft)
+ % [PP(—f)-a*]exp(—j27ft). (27a)
w?(t) = % [P?(f, —f)-(a x a*)] « (d — ¢ term)
+ % [PO(f, f)-(a X a)lexpl27(2/)t]
+ U[P?(=f, —f)-(a* x a*)]exp[—/27(2f)t].  (27b)
w(t) =% [PY(f, f, —f)-(a x a X a*)]exp(j27 ft)
+ % [PY(—f, —f, f)-(a* X a* X a)]exp(—j27ft)
+ % [P f. fl-axax a) Jexp[ j27 (3f)t]
+ % [PY(—f, —f, —f)-(a* X a* X a*)]exp[—s27(3f)t]. (27c)

Note that the asterisks on the a’s correspond in number and location

MATRIX ANALYSIS 2229



to the negative signs in the frequency arguments of the associated
kernels.

If the system is real, i.e., if p®(r, ---, ™), k=1,2,8, -+, arereal,
then it can be shown from (15) that

P(k)(fls tty ﬁe) = [P(M(—fl’ ety _ﬁl)]* (28)

As expected, (28) implies that all the output components given in (27)
are real. In that case, it can be shown through generalizing (27) that
the total mth harmonic output term, wn(¢), m =0, 1, 2, ---, is given
by

k
) wlk—m
wn(f) = enReal [exp(;zwmf) ¥ {2 h —5
k=m,m+2,- -
_P(k)( fioeosf —f, o+ _f).[a[(k+m)/2] x (a*)[(k—m).fz]] (29)
1 ’ L bl H b
(k+m)/2 (k—m)/2
where a'’! is the [-fold Kronecker product a X ... X a, € is the

Neuman factor (which is equal to 1 when m = 0, and is equal to 2
when m # 0), and P is defined to be zero.

Because of the symmetry conditions of (21), the kernels used in (27)
and (29) satisfy the relations

PA(f, /) =P?(f, )R, (30a)’
PO(f, —f) = [P?(f, -N]*R, (30b)"
PO, f, =) =PO(L, f, =) - ®as, (30c)"
PO f, ) = PO, [)Dapy- (30d)’

In addition to the kernel symmetry requirement, (30b) is based on the
assumption that the system is real, ie., that (28) is satisfied. The
implication of (30) is that the elements of each of the system kernels
are not all independent. For example, if n = 2, (30a) through (30d)
imply, respectively, that (i) columns 2 and 3 of P (£, f) are equal; (ii)
column 2 of P (f, —f) is the complex conjugate of column 3, and
columns 1 and 4 are real; (iii) columns 2 and 3 of P?(f, f, —f) are
equal, and so are columns 6 and 7; and (iv) columns 2, 3, and 5 of
P®(f, f, f) are equal, and so are columns 4, 6, and 7. It is worth
mentioning that (30a) and (30d), respectively, would also be satisfied
by P® and P® of the memoryless system represented by (4).

5.3 Two-frequency excitation
Let the (real) n X 1 input vector be

u(t) = Real[a exp(j27fat) + b exp(j2nfst)]. (31)
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We assume that the system is real, and that the kernels are symmetric,
i.e., that (28) and (18) are satisfied. One can use (25) to obtain the
output corresponding to (32) by following the same steps used to derive
(29). The leading terms at some of the various output frequencies are:

W(t) |a-c = W[PP(fo, —fa) - (a X @*) + PP(f,, —f,)- (b X b*)].  (32a)
w(t)|s, = Real{exp(j27fut)[P"(f.)-a
+ VP fo, fu, —f2)-(a X a X a*)
+ %PY(fo, for —fo)- (8 X b X b¥)]). (32b)
w(t)|27,~7, = Real{% exp[ j27(2f. — f5)¢]
P fo, far —fs)-(a X a X b*)}. (32¢)

w () |1, +ms, = Real {2‘“’"” (l -:m) exp| f27(Iifa £ mfe)t]

PO fay ooy far £ for oo, £ fo)-[a1T X (bi)l"”]}, (32d)

! n

where [ > 0 and m = 0, and where we defined b* = b and b™ = b*.

5.4 Three-frequency excitation
Let the (real) n X 1 input vector be

u(t) = Real[a exp(j27nft) + b exp(j27fst) + ¢ exp(j2nf.t)]. (33)

Again, we assume that the system is real, and that the kernels are
symmetric. Following the same steps used to derive (29) and (32), one
can obtain the following leading terms at some of the various output
frequencies:

W(t)|a-c = B[P (fa, —fa)- (a X a*) + PO(fi, —f3)
-(b X b*) + P(f,, —f.)-(c X c*)]. (34a)

wi(t)|, = Real{exp(ijrfut)[P“'( fa)-a + %P L, fu, —f)
-(ax axa*)+ %P fo, fo, —fs)-(@a X b X b*)
+ 3/ﬁl:'('r”(fa, foo —=f)-(@axX e X c*)]}. (34b)

w(t)|,+1,-r. = Real(% exp[ j27(fu + fo — fo)t]
PO fo fo, —f)- (@ X b X c*)}. (34c)

MATRIX ANALYSIS 2231



W (L) | s, 215, © mf,

k !
~ Real {2-tk+i'+m—1] ( ;-—‘;;rm) exp[jzﬂ’(kfa + lfb® mfc)t]
'P{k+[+M)( fu, "t faa iﬁ?! Ty _'fb’®f"’ ) @ﬁ
k {
_[a[k] x (bi)[” % (c®)[’"]]}, (34d)

where k, [, m = 0, but at least one of them being nonzero, and where
the sign symbols + and@ are each consistent throughout the equation,
but are otherwise independent.

VI. SYSTEM OPERATIONS
6.1 Operational notation

Let the input-output relations given in (11) through (17) be written
symbolically as

Wm = {Pgsz,,n}OUn ’ (35)

where “0” means “operating on.” The frquency dependence has been
omitted for simplicity. The subscripts n and m are included to empha-
size the numbers of inputs and outputs. On some occasions, these
subscripts will be eliminated.

If the system is linear, i.e., if P*® = 0 for 2 > 1, the operation in (35)
reduces to an ordinary matrix product. Thus,

W = {(P"}oU =P".U. (36)

The operational notation of (35), and the three system operations of
addition, cascading, and inversion, which are discussed in the next
three subsections, form an algebraic structure that permits a shorthand
description of complex interconnections of nonlinear MIMO systems.
The laws of this algebra' are identical to the algebra of linear systems
(i.e., the algebra of matrices) with two important exceptions—the left
distributive law does not hold, and the laws of multiplication by a
scalar constant are more complex.

6.2 Addition

Two systems, (P} and {Q%,}, having the same number of inputs,
n, and the same number of outputs, m, are said to be “added” if they
share the same input vector, U,, and if their respective outputs are
added to form the final output vector, W,. This operation, which is
shown schematically in Fig. 3, is represented by
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L {sm }

[Fk}g 3—A schematic representation of the addition operation {Si»)} = {Pith} +
{Qn.n)

= (P¥)oU, + {Q%h)oU,
= [Pk} + {Qmn}loUn

= (S} oU,. (37)
The kernels of the sum system,
(Stn} = (P} + {Qn), (38)

are given by
SE(f, vee , ) =PP(f, oo, )+ QP (A, oo, f), (39)

where the plus sign refers to matrix addition.

One can define a subtraction operation in an obvious manner. A
multiplication operation,'* which is more involved, can also be de-
fined.

6.3 Cascading

When the output vector, W, of a system, {P?,}, is used as an input
vector to a second system, {Q{%,}, whose output vector is X,, the two
systems are said to be in “cascade.” This operation, which is shown
schematically in Fig. 4, is represented by

——— 1
=t () 5t (o)
— —

~<| k)
)

Fig. 4—A schematic representation of the cascade operation (T = (Q%) * (P&,).
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X[ = {QS,’i,’.}on
= {Q) o[ {Prk)oU.]
= [{QR) * (PRh}1oUn
= (T} oU,, (40)
where the asterisk refers to the cascade operation. The kernels of the
cascade system,

{TH) = (QR) « (P}, (41)
can be obtained by substituting the output expression of the first
system into the system equations of the second system, as was done in
Refs. 3 and 9 to derive the cascade relations of scalar systems. This
procedure is straightforward, but somewhat tedious. A simpler ap-
proach is to employ the harmonic probing method discussed in Refs.
7 and 9, and the expression for the response of nonlinear vector systems
to multiple-exponential excitation given in (25). The resulting relations
for the cascade kernels are

T f) = QV(A)-PU(f), (42a)'
T®(f, £) = QV(A + £)-PP(f, f)
X + QP(f, £)-[PV(A) X PU(£)],  (42b)
TOf £ £) = QV(A+ £+ /) PYA, £, £)
+ QP(fi, o + £)-[P(f)) x POf, fi)]
+ QP (fi + fo f)-[PP(fi, ) X PV(f)]
+ QY A, fo £)-[PY(A) X PU (L) x PU(H)].  (428)

A generalization of (42) for arbitrary % is given in Appendix D.

If the kernels of the cascaded systems are symmetric, i.e., satisfy
(21), then it can be shown that the resulting second-order kernel given
by (42b) is also symmetric. However, the resulting third-order kernel
given by (42¢) is not symmetric. This fact is indicated by the presence
of the circumflexes.

As mentioned in Section IV, it is desirable to deal with symmetric
kernels. Thus, using the symmetrization relation given in (22b), assum-
ing that the kernels of the cascaded systems are symmetric, and
employing the properties of the reversing and permutation matrices
given in Appendix C, one obtains the symmetric form of (42¢) as

T(fi, fo, ) = QV(fi + fo + £)-PP(A, £, )
+ %(QP(fi, fo + f)-[PV(f) X PPy, fi)]
+ Qm(fz, ﬁi + fl)'[P(”(f2) X P(Z)(ﬁs, fl)]'(DZHI
+ QP fi + fo, £)-[PP(fi, ) X PV ()]}
+ QY (fi, for f5)-[PV(A) X PU(L) x PU(£)],  (42¢)

where @, is defined in (68) and (69).
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If the first system, {P},}, is linear, (42) reduces to

TO(fi, -+ fid = QP(fiy -+, fi)-[PV(fi) X -+« X PU(fi)]. (43)

On the other hand, if the second system, {Q{%}, is linear, (42) reduces
to

T(k)(f]: Tty ﬁ) = Q(M(fl + .. +f’¢)'P(k)(fls tety fk)' (44)

6.4 Inversion

Let the numbers of inputs and outputs in the system represented by
(35) be equal, i.e., m = n. Suppose that it is required to find the input
vector, U,, in terms of the output vector, W,. This inversion operation
is represented by

U, = {(P%) oW, = (Qi2}oW.. (45)
To find the kernels of the inverse system,
Q%) = (P}, (46)

it is helpful to use the interpretation given in Fig. 5, which defines the
inversion operation in terms of the cascade operation and the identity
system, {1,}, where 1, is the n X n identity matrix. Thus, applying the
symmetric cascade relations of (42) to Fig. 5b by interchanging the
roles of P and Q, setting T = 1,, and T** = 0 for £ > 1, and solving
for Q"*, one obtains the symmetric inversion relations

QU(f) =[PU(AI (47a)
g —'y’['"}
s ) e L) - U
I |
(a)
[ —— ()
e (o) - () e ) e

(b)
Fig. 5—Two equivalent interpretations of the inversion operation (@4} = {P/5) ™"
(a) {(Q¥) * (P®) = (1.), and (b) {P{})} * (1)) = (1.}, where {1,} is the identity
system.
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Q?(fi, ) = —QV(fi + £)-PP(fi, £)-[Q(A) X QV(£)], (47b)
QV(fi, oo £) = —QV (A + o + f)-CH{PP(A, i + f)
QM (f) x QP( £, f2)]
+ PO(fy, fo+ £)-[QV(f) X QP fi, fi)]-®on
+PP(fi+ £, ) 1QP(fi ) X QP (£)]}
_ +POS, £, £)-[QV(A) X QV(£) x QMV(A)]).  (47c)
Note that the inverse system exists if and only if P'”( f) is nonsingular.

6.5 Feedback

As an application of the three system operations discussed in the
previous subsections, consider the nonlinear, feedback, MIMO system
shown schematically in Fig. 6, where both the forward, {P%),}, and
reverse, {Q),}, branches are nonlinear. Using the operational notation
of (35), one obtains

W, = {P¥}oX,, (48a)
X, =U. + {(Q%.} oW, (48b)

where U, X, and W, are the n X 1 input vector, the n X 1 intermediate
vector, and the m X 1 output vector, respectively. Substituting W,
from (48a) into (48b), solving for X, in terms of U,, and substituting
the result in (48a), one obtains the feedback system equation

W, = {F}oU,, (49)
where
{Fih) = (P} » [{1a) — {Q¥) = (PWa) ] (50)

Thus, the kernels of the feedback system can be obtained by applying
the subtraction, cascade, and inversion operations discussed above.
However, the explicit formulas for these kernels will not be given here.

. — 1
(D= (] %
|
|
|

u}_’kl ko——
| ) NE
- — '

Fig. 6—A schematic representation of a nonlinear MmiMo feedback system.
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Actually, special cases of these formulas have been obtained for scalar
systems in Refs. 2, 6, and 7.

Note from (50) and Section 6.4, that the feedback kernels exist if
and only if the n X n matrix [1, — Qn(f) - Pia(f)] is nonsingular.
Note also that if m = n, and if P{%( f) is nonsingular, then (50) reduces
to

(F&Y = [{(PE) " — (@) (51)

If the system in Fig. 6 is changed to a negative feedback system,
then the minus signs in (50) and (51) should be changed to plus signs.

Vil. CONCLUSIONS

A method of analysis has been presented for mildly nonlinear MIMO
systems with memory. The method utilizes Volterra series whose
kernels are two-dimensional matrices. The analysis was made possible
through the use of the Kronecker product of matrices, which is a
simple but powerful tool in matrix theory. This results in a compact
representation of the system equations, and facilitates the systematic
performance of various useful system operations, such as addition,
cascading, inversion, and feedback. These operations can be used to
describe a complex, nonlinear MIMO system as an interconnection of
simple subsystems.
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APPENDIX A

Index Notation

Here we rewrite, in the index notation, some of the key equations
marked by a dagger (') in the body of the paper. The same equation
numbers are used here as are used in the text. Before doing so,
however, we note from (7) that, for MIMO systems with memory, the
matrix kernels used in the matrix notations are related to the array
kernels used in the index notation by the relations

[ptk)(‘rla Y, Tk)]ij =pff1)'--fk(711 rrty, Tk): (52)
[PH(fi, -\ fi)ls = P il iy ==+ fo), (53)

where j is given by (6).
A list of the equations in question follows.
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w:'k)(tls *rty tk) {J pr_ﬁi .H:(Tl R k)

cuj (b — 1) - - wy(te — Ty - dn} (12)°

W (fuee = 3 o % Plalf e )

71=1 Jp=
CUL(R) +or U(fi). (16)°
Py (f ) = PEli(fe, o). (21a)!
P (i for ) = P i (foo fin £)- (21b)’

Py (fi, ) —'/z[Pif.’,z(fl, £)+ P2 ()] (223

Py hy foy ) =2 z B fus fir ). (22b)’
P2 .(f. ) =P2,(f ) (30a)"

P f =) = [PRLF =] (30b)!

POl f =) = PGl h £ =) (30¢)"
Py f n= PP D). (30d)"

T3(f) = 2 QL (AP (42a)"

Tl f £) = X Qu(f + BIPfir £)

+ 2 E QI fiy RYPILAIP A fo). (42b)

a=1 f=1

9 i for i) = 2 QU + i+ P i hiy o )

+ 2 E [QUk(fiy fo + P A)Pin fo fo)

a=1 fi=1

+ QUL fi + foy P L fir B)Pga( )]
+ E 2 2 QL. (fi, for HPILAPURIPL(f).  (428)

a=1 =1 y=1
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T fis for f3) = E Qi (fi + o+ RIPG il fis Foy o)

+ = 2 >: [QZp(fi, o + LYPG(LIPS i fo f3)

a—l Bp=1

+ Qizp(fo, fi + RAVPG(RIPRAf, f)
+ Qiok(fs, fi + RIPR(BPG A, f)]

+ E E 2 QI (i, fos HIPGAIPILIPI(f).  (42¢)

a=1 fi=1 y=1

APPENDIX B
Kronecker Product of Matrices

Here we define the Kronecker product of matrices and summarize
some of its properties that are used in this paper. More extensive
coverage of this topic is given in Refs. 22 through 24.

Let A = [a;,;] and B = [b;,;] be m, X n, and m, X n, matrices,
respectively. Their Kronecker product results in the m.ms X na.ns
matrix, C = [¢; ], given by

Aby  Abp ... Abin,
Abs  Abs Aby,,
C=AxB=[ ) L (54)
Ab:,,hl Ab;n,,z e Ab;nbn,,
where “X” is the Kronecker-product symbol. Thus,
cij. = aijbij, (55a)
where
le = la + Malis — 1), (55b)
Je=Ja+ na(js — 1). (55¢)

Note that, since i, = m, and j, =< n,, (65b) and (55c) have unique
solutions for i., i, J« and Jj, in terms of i, and j.. Actually, (54) and
(55) define the left Kronecker product.” One can also define a right
Kronecker product,”** which, however, is not used in this paper. In

general,
AXB#BXA. (56)
It can be shown that the Kronecker product has the following
properties:

2240 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



AXxBxC=AxB)xC=AxBxC. (57)

(A+B)xC=(AxC)+ (B xC). (58)
Ax(B+C)=(AxB)+ (AxC). (59)
(A-B) X (C-D) = (A x C)-(B xD). (60)
(AXB)'=A"'xB. (61)

(A xB)T=ATx BT (62)

In the above equations, “T” refers to matrix transposition, and the dot
implies ordinary matrix multiplication. The dimensions of the various
matrices are arbitrary, but of course, should be consistent with the
requirements of the inversion, addition, and ordinary multiplication
operations, where applicable.

APPENDIX C
Reversing and Permutation Matrices

Here we define the n? X n? reversing matrix, R™, and the six n* X
n? permutation matrices, (DE,BY, which satisfy (19) and (20). The super-

script “(n)” is used in this appendix to emphasize the dimensions. It
can be shown from (19) and (55) that R™ is given by (cf. Ref. 24)

RH—n(J—ll k+n(l-1) = 8 ik s la J! k» l= 1: 2) LRI () (63)

where 8,4 is the Kronecker delta, which is equal to 1 if « = B, and 0 if
a # f8. For example,

1000
@ _| 0010
R™=10100 (64)
0001
It can be verified that
R™ = [R™]" = [R"], (65)

where “T” refers to matrix transposition. Moreover, if M, and M; are
m X n matrices, then

R™.(M; X My)-R™ = M; X M, (66)

which is a generalization of (19).
It can be shown from (19), (20) and (60) that

o1 = [PfEh]" = [P] 7 = 1w, (67a)
o = [DH]7 = [@3] =1, x R"™, (67b)
@) =[] = [@]) = R™ X 1, (67c)
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O = [@§H]7 = [®§] " = [1, X R™].[R™ X 1,], (67d)

o) = [@H1]" = [®#] " = [R™ X 1,]-[1. x R™], (67e)
of) = [®H]7 = [@H1] ' = [1. X R”].[R™ X 1,]-[1, x R™]
= [R"™ x 1,)-[1, X R™].[R™ x 1,], (67f)

where 1, and 1,: are the n X n and n® X n? identity matrices,

respectively. Also, it can be shown from (20) and (55) that, if a, 8, y are

any permutation of 1, 2, 3, then the i-; element of ®Y, is given by

[‘I)(ﬁv [/ 6‘1116‘2128'313’ (683)
where
i=i,+n(z—1)+n@E, - 1), (68b)
J=n+n(:—1) +n’(s—1), (68¢c)
and where iy, j1, i2, J2, I3, Js =1, 2, - - - , n. For example, (67d) and (68)
gives
F 1 0 00 0 0 0 07
0010 0O0O00O0
0 00 01 O0O0O0
00 00 O0O0T1O0
2) _ 2) 1T —
DZ) = [DFL] 0100000 0 (69)
0001 00 O00O0
00 0 0 01 00
. 0 0 0 00 0 0 14

It can be verified that if M;, M: and M3 are m X n matrices, then
fr?;« (M] X MZ X M3) [ ]T = Ma X Mﬁ' X My: (70)

which is a generalization of (55). Also, if M and N are m X n and
m? X n® matrices, respectively, then

O (M X N)-[@E]"=NxM, (71a)
@Y. (N x M)-[®§,]" =M x N. (71b)

Moreover, if M and K are m X n and m X n® matrices, respectively,
then

R™.(M x K)-[®%]"=K x M, (72a)

R™.(K x M).[®}]" =M x K. (72b)

Finally, if M and L are m X n and m?® X n matrices, respectively, then
®f!-(M x L)-R™” =L x M, (73a)

- (L x M)-R™ =M X L. (73b)
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APPENDIX D
General Cascade Relation

Here we give a generalization of the unsymmetric cascade relations
given in (42a), (42b), and (42¢) for arbitrary &, (cf. Refs. 7 and 9 for
scalar systems)

k E—I+1
T(k](fl!”':ﬁ?)zz { Z Q[”{fl'.' "t +ﬁ1) fkl+1
=1 Rykg- - - =1
(Ry+hot- . . +Ri=k)

H oo b fophy sy froner + oo F )PE(f, e, i)

% P“’z](fk,ﬂ, cee, fk]+h2) X oo XP(k’)(fk—k,ﬂ, . fk)]} (74)

Note that the second summation contains (]; 1) terms, and that the

-1
frequency arguments always appear in the order fi, fz, ---, fr- As is
the case with (42é), the cascade relation of (74) does not preserve
kernel symmetry for 2 = 3. The symmetric form of (74), which would
generalize (42c), will not be given since it requires the use of permu-
tation matrices of more than three indices, which have not been
introduced yet.
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