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Using the technique of Gaussian quadrature rules, a new estimator
is proposed for approximating the distribution of a random variable
given only a finite number of its moments. The estimator is shown by
numerous examples to be accurate on the tails of both continuous and
discrete distributions. Efficient algorithms exist for computing the
estimator from the first 2N moments of the random variable. A robust
implementation of the estimator is presented, along with rules that
provide additional protection against computer roundoff errors.

I. INTRODUCTION

In this paper we present a method for computing the Cumulative
Distribution Function (cDF) of an arbitrary random variable. Using
the theory of Gaussian Quadrature Rules (GQRs), we derive an esti-
mator that converges asymptotically to the true cpF. In practice,
convergence is obtained without excessive computation. A general
estimator is developed here that is applicable to a wide class of
problems.

Section 2.1 begins with a review of GQR analysis as it has traditionally
been used for numerical integration. Several authors have shown the
existence of extremely efficient algorithms for computing the param-
eters of the cQR. An efficient and robust procedure for obtaining the
GQR parameters is presented in the appendix. Two CDF estimators
based on GQR are derived in Sections 2.3 and 2.4. The first estimator
is most suited to numerical integration schemes and estimation of
discrete distributions, while the second is appropriate for continuous
distributions such as Gaussian noise or crosstalk. Section III gives
numerous examples that show the inherent accuracy of the technique
for continuous, discrete, and mixed distributions. Computational meth-
ods for deriving the required moments are discussed, along with
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modifications that tend to mitigate the roundoff errors that plague
GQR analysis of nonsymmetric distributions.

Il. THEORY AND PROPERTIES OF GQR
2.1 Classical use of GQR

The GQr has traditionally been used as a numerical integration
procedure and is particularly efficient for computing integrals of the
form

b
f fx)w(x)dx

where the integrand has been factored into a non-negative term w(x)
and a strongly continuous term f(x).

The first application of GQr in the communications literature' was
motivated by the work of Golub and Welsch? and Sack and Donovan®,
who showed that the non-negative factor w(x) need not even be
completely known to compute the desired integral. Only a finite
number of the moments of w(x) are required to find the desired
integration rule. Benedetto et al.! noticed that the problem of error
probability evaluation in the presence of intersymbol interference (1s1)
could be posed in this form. Other applications of the GQR technique
can be found in Refs. 4 through 9.

In this paper, we apply the cqQr technique to a larger class of
problems where f(x) need not be continuous. We begin by reviewing
a fundamental result in the theory of GQr.

Theorem: Let w(x) be a non-negative weight function defined on (a,
b). Then if f (x) has continuous derivatives up to order 2N (see Refs.
10 through 13),

b
J=J’ f(x)w(x)dx

N
=Y Af(t:) + Rn(f) a<é<b
i=1

a<t;<b (=1,2...-N, (1)
where
I A 3]
Rn($) = )™ a<i{<b, (2)

f®(x) is the 2Nth derivative of f(x) and (2N)! is 2N factorial. The
nodes {t;} are the distinct real roots of the unique Nth degree
polynomial
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N
pn(x) = kn I;.[1 (x — t:), kn>0. (3)

The polynomials p,(x) are orthonormal with respect to w(x), i.e.,

b
[ wtpnteptnias={5 =2

The strictly positive weights (or Christoffel numbers) are in turn
given by

—kna 1

A.‘= '=1:2"'N, 4
kn  pna(t)pn(ts) t (4)
where
dpn(t)
’ ) =
p(t:) 7

t=t;

The 2N-tuple {A;, ¢}, is known as the N-point rule corresponding to
w(x).

If f(x) is a polynomial of degree (2N — 1) or less, the remainder
Rn(%) equals zero and the cqQR is exact. This affords the maximum
degree of precision (i.e., the maximum degree polynomial that is
integrable with no error for an N-point rule) possible with a quadrature
formula of the form of (1).!%'> When the remainder is not zero, it can
be bounded in magnitude to obtain upper and lower bounds on JJ. The
bounds obtained in Ref. 1 for the 181 and Gaussian noise problem are
often loose though, and convergence of the N-term summation in (2)
is usually much faster than might be inferred from bounds on Ry(£).

2.2 Methods for computing GQR

Several algorithms are known for efficiently computing the rule for
an arbitrary weight function w(x). Extremely useful procedures have
been discovered by Golub and Welsh,> Sack and Donovan,® and
Gautchi.'" The outstanding merit of these techniques is that the N-
point rule corresponding to a given w(x) can be computed from the
moments

b
Wi = J x'w(x)dx. (5)

Because explicit knowledge of the weight function w(x) is not required,
the GQR procedure is a powerful tool for the analysis of communications
systems.

Details of an algorithm for computing GQR are given in the appendix.
Our algorithm is a modification of Gautchi’s procedure,"* which tends
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to reduce computer roundoff errors. The critical stage in the algorithm
is the Cholesky decomposition of a positive definite matrix of moments.
The standard Cholesky decomposition used in Refs. 1 and 2 fails when,
because of limitations of machine accuracy, the matrix is no longer
positive definite due to roundoff errors. Improved accuracy is obtained
by using an alternate method of performing the Cholesky decomposi-
tion* that avoids taking a square root at each step in the algorithm."
Combining the alternate Cholesky decomposition with the modified
moment algorithm of Gautchi yields an extremely stable method for
obtaining GQRr. Further discussion of techniques to mitigate computer
roundoff errors is found in the appendix.

2.3 Computing the distribution of a random variable via GQR

In Ref. 1 cqRs are used to obtain the exact probability of error for
digital transmission in the presence of 1s1 and Gaussian noise. The
problem was reduced, via the GQR approach, to computing the mo-
ments of the 181 and letting f(x) in (1) be the probability of error
caused by Gaussian noise conditioned on the 1s1. The 1sI moments can
be computed via Prabhu’s method'® when the data symbols are inde-
pendent. For a large class of correlated data, the moments can be
efficiently computed via the modified Cariolaro-Pupolin algorithm.'"*®
Both of the above procedures are easily implemented and have a
complexity that grows only linearly with pulse duration.

While there have been numerous applications of GQR to problems in
the literature, all those known to us have had the restriction that the
function £ (x) has continuous derivatives up to order 2N. Presumably,
this is because of the desire for strict bounds on the error term in (2).
If we are willing to forego the analytical error term and consequently
accept an empirical convergence of (1), we can apply the GQR technique
to a larger class of problems with excellent results.

The following theorem shows that no continuity requirements need
be imposed on f(x).

Theorem: (see Ref. 19) If W(x) is a fixed, nondecreasing function with
infinitely many points of increase and the Riemann-Stieltjes integral

b
j f(x)dW(x)
exists, then
b N
J’ f(x)dW(x) = Alri_glm 2 Af (), (6)

* Applying the alternate Cholesky decomposition to the GQr problem was suggested
by L. Kaufman. Subsequently, the same approach was found to have been independently
proposed in Ref. 4.
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where {A; t:}Y., is the GQr corresponding to the moments
b
p,,-=J‘ x‘dWi(x) i=012 ... 2N.

The function f(x) is arbitrary as long as the integral in (6) exists.
Because the cDF of a random variable is a nondecreasing function,
we write the statistical expectation of the function f(x) as

b
E[f(x)] = f f(x)dWi(x), (7)
where W(x) is a probability measure with infinitely many points of
rise. Choosing f(x) to be the indicator function
f(x) = da(x)

l x=a
-{0 15 ®

we obtain the distribution function of the random variable as

b
f da(x)dW(x) = lim Y A,
a N=zx oo
= lim Wi(a), (9)
where
Wyla) = ¥ A; (10)
SN
and
Sy = {i|ti= a}

is the set of indices for which ¢ < a.

Since the rule can be obtained from the {u;}7%, we have a means of
constructing an approximation to the cDF of a random variable from
its moments. In the limit as N approaches infinity, eq. (9) is exact at
each point a.

This leads us to propose the following estimator

Wix) = Waix) = ¥ A. (11)

sy
This estimator gives a staircase approximation to the true cumulative
distribution that becomes increasingly fine as N increases. Equiva-

lently, each (A;, t) can be considered a point mass of a discrete
approximation to the true probability density function.
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While Szego’s theorem proves the asymptotic convergence of the
estimator to the true cpF when W(x) has an infinite number of points
of rise, a different result holds for a discrete distribution with a finite
number of points of increase.

Theorem: If W(x) is a fixed, nondecreasing function with M < o
points of increase, then

b
f da(x)dW(x) = lim Wy(a). (12)
. NoM

Proof: An alternate formulation of Gaussian Quadrature' is as the
purely algebraic solution to

N
w=Y Aty j=0,1,.2M. (13)
=1
Now we assume the unknown discrete PDF is of the form

M
w(x) =Y Adb(x — ;).

=1

The moments of this random variable are given by
M
¥ Adt),
i=1

which is identical to (13) for N = M.

Finally, we consider the behavior of the cqr for N larger than the
number of points of increase M. The result is that the algorithm breaks
down entirely. This is because a discrete distribution that takes on
exactly M values is completely characterized by its first 2 moments
and the addition of redundant moments to the problem causes the
procedure to fail when the Hankel matrix of moments [eq. (21)]
becomes nonsingular.

2.4 A modified GQR estimator

The following is a modification of the estimator Wi(a) that has been
found to be more accurate in many applications. Instead of assuming
that the approximation PDF is composed of point masses, we assume
that each area of mass A; is more accurately modeled by a narrow,
even symmetric, distribution centered around the point #. Thus, we
propose the smoothed estimator Wk(a) which, when evaluated at a
node, equals

° A;
Whit:) = Wn(t:) — Ch (14)
Between nodes, W#(a) is given by any “smooth” interpolation routine.
A simple linear interpolation was found to be sufficient in the examples
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Fig. 1—Convergence of GQRr estimator for Gaussian PDF.

that follow. This estimator does not have the jump discontinuities of
the estimator Wx(a) and is intuitively more satisfying because it fits
a smoother distribution to W(x). W(«) has been found to give more
accurate results when applied to known continuous distributions and
to discrete distributions when M is much greater than N.

Ill. APPLICATION TO ARBITRARY DISTRIBUTIONS
3.1 Known continuous random variable case

To show the convergence properties of the GQr technique, we
illustrate the behavior of Wx(a) and W#(a) with some examples. We
begin with the Gaussian distribution. Assuming a zero mean, unit
variance random variable X, we compute the GQR estimators for
various values of N in Fig. 1. Reasonably accurate results were obtained
at the 107° point for N > 10. This empirical rate of convergence is also
typical of distributions that have near-Gaussian statistics. The GQR
algorithm, using the Cholesky decomposition described in the appen-
dix, returned accurate results for all N < 60, where N = 60 was the
dimensionality limit in the computer program.

In general, the cQr algorithm performs well for zero mean, symmet-
ric distributions. To illustrate the problems that can occur with non-
symmetric distributions, consider the lognormal distribution related to
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the Gaussian distribution by Y = e*. Straightforward computation of
the moments yields

ue = exp(k?/2). (15)

Using these moments in the GQR algorithm, the algorithm breaks down
at N = 17 because of roundoff errors in computation. This problem is
solved by a transformation that symmetrizes the distribution. We then
compute the GQR corresponding to the symmetrized distribution and
take the inverse transform to obtain the original distribution.

For the lognormal distribution, we form a new PDF

we(y) = 1/2[w(y) + w(=y)], (16)

which corresponds to the even part of w(y). The moments of w.(y)
are obtained by setting the odd moments of w(y) equal to zero. The
symmetric moments are then used in the QR algorithm to obtain
W.(y), which is easily transformed back to the desired cDF via the

relation
2 —_
W(y) = {OW(”’ br=0 an

Experience with these procedures suggests that it is well worth the
effort to transform distributions that are not symmetric and even (see
Fig. 2). The modified moments produce the same robust accuracy seen
with the Gaussian distribution above.

As another example, consider a uniform distribution deﬁned on the
interval (—1, 1). The convergence of the GQR estimator Wa(a) is shown
in Fig. 3. Since the distribution has only finite support, by eq. (1) we
know that all the nodes will lie in the interval (=1, 1). In the limit as
N — o, the nodes will become more densely packed in this interval
and

lim [max |&]} = 1. (18)
Thus, the GQR algorithm can be used to find the maximum value that
a random variable attains, i.e., the largest node ¢max. This can be used,
for example, to find the maximum eye degradation in a digital regen-
erator caused by correlated intersymbol interference.

All the examples so far have been trivial applications since we knew
the real distributions a priori. A more interesting application is deter-
mining the distribution of the sum of K lognormal random variables.
This problem has a long history and no closed form solution is known.
This pDF is related to the distribution of crosstalk power in paired
cable transmission systems and also results from transmission over
certain types of fading channels. Utilizing the GQR technique, we can
find the desired distribution if we can compute the necessary moments.
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Fig. 2—Convergence of GQR estimator for lognormal PDF.
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Fig. 3—Convergence of GQR estimator for uniform PDF.
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Fig. 4—Sum of K lognormal (K = 1, 2, 4, 8).

Assuming that the lognormal random variables are independent, and
following Prabhu,'® we find that the moments of

K
Vk=Y Y:
i=1
are given by the recurrence relation

E[(Vi)] = Zl] ( )E[(V“)’]pu, (19)

1

where {1;}2 are the moments of the independent, identically distrib-
uted lognormal random variables. Figure 4 shows the resulting distri-
butions for K = 2, 4, 8, and 16. As we mentioned above, the distribution
was symmetrized and inverse transformed to reduce the effects of
roundoff errors. This technique can be applied to any number of
arbitrary distributions for which the required moments can be com-
puted.

3.2 Known discrete random variable case

In this section, we apply the GQR estimator W%(a) to discrete
distributions. First we consider the case of a mixed distribution com-
posed of a Gaussian distribution plus discrete components. The weights
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Fig. 5—Mixed Gaussian distribution.

and nodes of the estimator are shown in Fig. 5, where the second
moment of the discrete part equals ten times that of the Gaussian
component. As we can readily discern, the GQRr procedure is useful in
identifying the discrete components of a PDF.

As the final example of a known distribution, we consider the sum
of nine equally spaced delta functions

9
w(x) =1/9 Y 8(x — x) xi==b+1i i=1,2 :--9. (20)
i=1

The convergence of the GQR estimator W(x) is shown in Fig. 6, where
the N = 9 estimator is exact since the distribution is uniquely defined
by the first 2N = 18 moments. For N > 9, the algorithm breaks down.

IV. SUMMARY

An estimator based on cQr has been proposed, which converges
rapidly to the cpF of a random variable and requires only knowledge
of the moments of the random variable in question. The technique is
generally applicable to a large class of communications problems and
provides a practical solution to many analytically intractable problems.
The technique works equally well for discrete and continuous distri-
butions and assumes no a priori knowledge of the distribution.
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Fig. 6—cqRr for discrete distribution.
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APPENDIX
Details of the GQR Algorithm

In this appendix, we outline the algorithm used to compute Gaussian
Quadrature Rules. The procedure combines Gautchi’s modified mo-
ment technique'* with the Cholesky decomposition suggested by Mar-
tin et al."” The resulting algorithm has been implemented using double

precision arithmetic and has proven stable and robust.

To compute the 2N unknowns {4;}~, and {t;}};, we first form the

matrix of modified moments

my, Mz« MiN+
ma,

M= . . ,
M2 N+1 =+ MN+1N+1
where m;; is given by the inner product

mi = (Tiy, Tj-1)

b
= J TioixX)Tjor(x)dW(x) ,7j=1,2---N+1

DISTRIBUTION OF RANDOM VARIABLE
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and {Ti}~, are the first N + 1 members of an arbitrary set of
polynomials satisfying the recurrence relation
xTi(x) = a;Tjni(x) + b;T;(x) + ¢Tia(x) j=0,1,2, --- N
T-1(x) =0, a; #0. (23)
The orthogonal Tchebycheff polynomials determined by (23) consti-
tute a convenient choice, with

a=1
g=ci=% j=12.-.
bi=0 j=12.... (24)

The modified moments m; in (23) are simply linear combinations of
the moments

b
W= J' x’dW(x)

and can be simplified for the case of the Tchebycheff polynomials by
using the relation

Ti(x)Tj(x) = %{Tius(x) + Tif(x)} 1=]. (25)
Thus, if we define

vp = j Tk(x)dW(x),

then
my = 1/2{]'},'4.];2 + .V;'—j} ) :_bj. (26)

It is not necessary in theory for the Tx(x) to be orthogonal. The
formulation by Golub and Welsch® used the unmodified moments
corresponding to T(x) = x* and, hence, @, = 1, b;= 0, and ¢; = 0 for all
j. As Gautchi shows," the use of modified moments results in less
sensitivity to computer roundoff errors.

We next form the tridiagonal matrix

ay B 0
ﬁl a2 Bz
J= B - - , (27)
an-1 By
0 Bn-1 an
where
I ri-ij .
aj=bj+ Jdﬂaj— I aj-1 _]=1,2---N
Tij Tj-1,j-1
Firt i
B =12, j=1,2...N—-1.
ryj

2258 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



The r;; are found from the relation
M=R'R. (28)

The matrix R is an upper triangular matrix and theoretically is
positive definite if M is positive definite. In practice, however, M can
be ill-conditioned and finite precision arithmetic will cause the matrix
to appear singular.

The elements of R are related to the moment matrix M by the

relations
i-1 1/2
2
riy = (mii - 2 ?‘ki)

k=1

i-1
ry = (mij_ D rkarkj)/rii i<j
k=1

i,j=1,2--- N. (29)

In practice, the computation of R from (29) will fail at relatively small
values of N when the square root of a negative number is attempted.

A refined Cholesky decomposition'® overcomes this problem by only
requiring square roots to be computed at the end of the decomposition
and not at each step as in (29). If we define R* by the relation

R = R*diag(ra),
then R* will be a unit upper triangular matrix and
M=R"R
= R*"diag(r})R*
= R*"DR*, (30)

where D is a positive diagonal matrix. Then, defining the auxiliary
quantities
m§ = rid;, (31)

the following solution is obtained

-1

mi=mj— Y mhrf j=1,2.--i-1
k=1
=1

di=mi— E mbr . (32)

k=1

The advantage of the alternate decomposition is that square roots
are not required until the final step, when the positive diagonal matrix
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Table I—Comparison of three implementations

Alter-  Alternate

Stand- nate Cholesky
ard Cho- Cho- Modified
lesky lesky Moments

Gaussian Random Variable 17 60 60
Uniform Random Variable 13 40 38
Lognormal Random Variable — 17 14
Symmetrized, Lognormal Random Variable — 60 60

D in (30) is factored. Along with the modified moment procedure, the
alternate Cholesky decomposition yields accurate results even for large

values of N.

Several implementations of the cqQr algorithm have been examined
to elucidate the features that contribute to the reduction of computer
roundoff errors. These include:

(i) Standard Cholesky

(it) Alternate Cholesky
(iti) Alternate Cholesky with modified moments

(iv) All of the above using symmetrized moments.
Each approach was evaluated in double precision arithmetic.

The value of N at which the Cholesky decomposition fails was
chosen as the measure of robustness for a variety of input probability
density functions. Some of these results are tabulated in Table 1. The
standard Cholesky consistently had the poorest performance for all of
the distributions considered. For symmetric distributions, the alternate
Cholesky scheme provided a significant reduction of computer error.
For the Gaussian distribution, the procedure was accurate for all
N = 60, where 60 was the dimensionality limit imposed on the com-
puter routine by storage requirements. The addition of the modified
moment approach resulted in virtually no improvement relative to the
alternate Cholesky implementation alone. None of the first three
approaches proved satisfactory for nonsymmetric distributions (e.g.,
lognormal). The solution to this obstacle for one-sided distributions is
to symmetrize the distribution according to (16), find the GQR estimate
for the symmetrized distribution, and then obtain the desired distri-
bution using (17). As we see in Table I, this renders the lognormal
estimate as robust as the symmetric Gaussian distribution.

The final step in obtaining the nodes and weights involves finding
the eigenvalues and eigenvectors of the matrix o in (27). The eigen-
vector g; corresponding to the eigenvalue ¢; is found from the equation

Jgi=tq, j=12,..-N. (33)

The eigenvalues {t;},; are the nodes of the cqr and the positive
weights are given by
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Fig. 7—Flowchart of GQR algorithm.

A= q%fp-ﬂa (34)
where

g7 = (qv, gz - -+ qn.)-
A flowchart of the steps used to compute GQR is shown in Fig. 7.
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