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Current models for isolated word recognition perform very well on
small vocabularies of distinctly different sounding words. However,
when we are confronted with vocabularies of similar sounding words
(e.g., the letters of the alphabet), the performance of isolated word
recognizers decreases dramatically. By carefully reexamining the
model used for isolated word recognition we have identified some of
the inherent deficiencies. In this paper we propose an improved word-
recognition model that is inherently capable of accurately recogniz-
ing words from almost any vocabulary. We have investigated a simple
implementation of the model that preserves most of the structure of a
linear predictive coding (LPc)-based version of the canonic isolated
word model. In an experimental evaluation of the improved model,
using an alpha-digit vocabulary, recognition accuracy improvements
of from 1 to 5.7 percent were obtained for four talkers. The improve-
ments were due to changes in both the analysis model and the
decision procedure. The strengths and weaknesses of the improved
model are discussed.

I. INTRODUCTION

Although the goal of continuous speech recognition by machine
remains far out of reach, the one area of speech recognition that is
practical with today’s technology and understanding is that of isolated
word recognition."® What is interesting about this area is that the
general approach used to solve the isolated word-recognition problem
(i.e., the statistical-pattern-recognition approach) bears little relation-
ship to the way in which humans understand speech. As a result the
vocabularies for which the isolated word recognizers can achieve good

* Work performed while a consultant to Bell Laboratories.
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performance are severely constrained in both size and complexity.” If
we are interested in using a vocabulary for which the performance of
the isolated word recognizer is less than perfect (e.g., the letters of the
alphabet), then we have to rely on the syntax and semantics of the
recognition task to provide the desired level of performance from the
overall system.*"’

In an effort to improve word-recognition accuracy for arbitrary
vocabularies, we have re-examined the word-recognition model and
proposed a somewhat more general structure. The proposed changes
in the model include an improved feature analysis in which both long-
time and short-time features are measured, and an improved decision
box in which the two-pass decision rule of Rabiner and Wilpon'' is
adapted to the speaker-trained case.

The implementation of the improved word-recognition model, which
we have studied, is based on the standard linear predictive coding
(Lpc) word recognizer as originally proposed by Itakura.' In an effort
to retain as much of the original structure as possible, we have used
the standard LPc analysis as the long-time features, and a new LPC
analysis based on 15-ms frames as the short-time features. Experimen-
tation with the improved model, using a 39-word vocabulary of the
alphabet, the digits, and three command words in a speaker-trained
mode, showed improvements in accuracy of from 1 to 5.7 percent for
four talkers. An analysis of the results showed that the improved
feature analysis provided only small improvements in accuracy (from
0 to 1.3 percent), whereas the two-pass decision rule provided some-
what larger improvements in accuracy (from 1 to 4.4 percent).

The outline of this paper is as follows. In Section II we briefly review
the canonic isolated word-recognition model and discuss its strengths
and weaknesses. We also discuss, in this section, the implementation
of the model based on LPc feature analysis and an LPC distance
measure. In Section III we present the improved word-recognition
model and discuss how it was implemented within the structure of the
Lpc-based recognizer. In Section IV we describe the experimental
evaluation of the improved model based on the alpha-digit vocabulary.
Finally, in Section V we discuss the results and their implications for
practical systems.

Il. THE CANONIC MODEL FOR ISOLATED WORD RECOGNITION

Figure 1 is a block diagram of the canonic (statistical-pattern-rec-
ognition) model for isolated word recognition. The three basic com-
ponents of the model include:

(i) Feature measurement in which the speech signal is analyzed to
provide a set of @ features (e.g., filter bank energies, LPC coefficients,
etc.) once every M samples. If the isolated word is of duration L X M
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Fig. 1—Block diagram of standard isolated word-recognition model.

samples, then a total of L sets of features characterize the word. The
matrix of @ X L features is called the test pattern.

(ii) Pattern similarity measurement in which a score (similarity or
distance) relating the similarity of the test pattern to each of a set of
V reference patterns is computed. Pattern similarity involves both
time alignment (registration) of the test and reference pattern, and
distance computation along the alignment path. The output of the
pattern similarity box is a set of V distance scores, i.e., one for each
reference pattern.

(iit) A decision rule in which the distance scores are used to provide
an ordered (by distance) list of recognition candidates. Generally, the
candidate with the smallest distance is chosen as the “recognized
word.”

Rather than dwelling further on the canonic model we now review
the LPc implementation of this model, as we will be relying on this
structure throughout this paper. We will return to the canonic model
in Section 2.2 when we discuss its limitations and propose the improved
model.

2.1 The LPC-based implementation of the word recognizer

Figure 2 is a block diagram of the feature measurement for an LPc-
based analyzer. The digitized speech signal (digitized at a 6.67-kHz
rate) is first preemphasized using a simple first-order digital network
and then blocked into overlapping frames of N (300) samples with
consecutive frames overlapping by 200 samples. Thus, a frame spacing
of M = 100 samples is used (i.e., 67 frames/second). Each speech frame
is then windowed by a 300-sample Hamming window, and a pth-order
(p = 8) autocorrelation analysis is performed. A full LPc analysis
(using the autocorrelation method") is then performed giving the set
of (p + 1) LPcC coefficients as the features for each frame.

The pattern similarity processing is carried out using a dynamic
time-warping (DTW) algorithm in which the test pattern is simultane-
ously time aligned with each reference pattern, and a distance along
the time-alignment path is computed. One of the major features of this
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Fig. 2—Block diagram of LPc analysis system.

processing is the local distance measure, which relates the distance
between a frame of the test pattern and a frame of the reference
pattern, of the form'

(1)

apVrak
d(T, R) = log [aTVra':r]’
where arp and ar are the Lpc feature sets of reference and test,
respectively, and Vr is the autocorrelation coefficient set of the test.
The distance measure of eq. (1), called the Lpc log-likelihood measure,
can be computed using only ( p + 1) multiplications and additions, and
one logarithm.'” Furthermore, the LPc distance of eq. (1) has been
shown to have reliable and well understood statistical properties.'*'”
In particular, if both ar and ar are derived from the same underlying
stationary random process, then d(T, R) is precisely x* distributed
with p degrees of freedom. This statistical behavior of the Lpc distance
holds for fricative sounds. For voiced speech, although the model is
inexact on a frame-by-frame basis, the statistical properties are ap-
proximately correct on a time-average basis.
To compute the pattern similarity between the test and each refer-
ence pattern using the pTw algorithm with the distance measure of eq.

(1), a solution to the minimization of

NT
D* = Hl(ll’)l [ E d(Tn, Ru-tn})] (2)
win n=1

must be found where NT is the number of frames in the test, and w(n)
is the warping function relating frame n of the test to frame w(n) of
the reference. Efficient recursive procedures for solving eq. (2) have
been described in the literature.''%"®

Finally, the decision box orders the distance scores for each reference
pattern and chooses either the reference with the minimum distance
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(the nearest neighbor rule) or the reference whose average of the K-
best scores (for multiple-template systems) is minimum (the K-nearest
neighbor rule) as the recognized word. When the recognized word is
unique (i.e., only a single reference gets a small distance score), this
simple decision rule is sufficient. However, for complex vocabularies,
generally several references achieve small distance scores, and reliable
recognition using the smallest distance cannot be achieved. In such
cases a two-pass decision rule'' has been shown to increase accuracy
by deferring the final recognition decision to a discrimination analysis
in a second pass of the decision rule. This discrimination analysis has
only been applied to speaker-independent systems because of the
problems associated with obtaining appropriate word discrimination
weights."

2.2 Strengths and limitations of the word-recognition model

The strengths of the canonic word-recognition model of Fig. 1 are as
follows:

(1) It is invariant to different speech vocabularies, users, feature
sets, pattern similarity algorithms, and decision rules.

(zf) It is easy to implement.

(ii7) It works well in practice.

The weaknesses of the model include:

(i) The feature analysis only adequately represents long-time sta-
tionary events in the speech signal; nonstationary and transient events
are only poorly represented.

(i) The model does not perform well for complex vocabularies with
acoustically similar words.

We now consider the first weakness of the model. By way of example
Fig. 3 shows waveform plots of the beginning regions of two distinct
words. Word 1 shows a silence followed by the onset of voiced speech.
Word 2 shows a short (15 ms) transient of low-level, unvoiced speech
(e.g., a plosive sound) followed by the onset of voiced speech. Figure
3 also shows the placement of the first two long-time speech segments
(frames), which contain identical data except for the first 15 ms of the
first segment, in which one frame has silence and one frame has a short
plosive. It should be clear that for a long-time analysis such as the LPc
model of Section 2.1, the low-level differences in the first 15 ms of
frame 1 will be swamped out by the high-level voiced speech in the
last 30 ms of the frame. Thus, in a long-time stationary framework
accurate recognition of differences between short transients and other
nonstationary regions (e.g., as occur during onsets and offsets of
voicing) is greatly limited. Thus, to ameliorate this weakness, the
feature-detection algorithm must be enhanced to include some repre-
sentation of short-time nonstationary events.
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Fig. 3—How a short transient in a word can be swamped out by a voiced region in the
long-time analysis model.

Consider now the second weakness of the model. The reason that
acoustically similar words are easily confused is that the pattern-
similarity measure (the pTw distance) gives equal weight to all frames
of the word. For differentiating words of one equivalence class from
words of another equivalence class this procedure is reasonable. How-
ever, within a class of acoustically similar words a discrimination
analysis rather than a straight recognition is required. Such an analysis
has been proposed by Rabiner and Wilpon'' for the case of speaker-
independent recognition of words.

For speaker-trained recognizers this two-pass decision rule must be
modified so that the optimal weighting curves for word discrimination
could be obtained directly from the robust training procedure."

With the incorporation of the expanded feature analysis, a modified
pTw algorithm, and an expanded decision rule, the basic weaknesses
of the canonic word recognizer can be overcome to some extent. In the
next section we describe an “improved” model for word recognition
and show how the improvements can be incorporated directly into the
Lpc framework of Section 2.1.

lll. THE IMPROVED WORD-RECOGNITION MODEL

Based on the discussion of Section 2.2, the improved word-recogni-
tion model would have a structure of the type shown in Fig. 4. The
major differences in the model, from that of Fig. 1, are:

(i) The feature measurement box is expanded into three sub-
blocks, namely long-time feature measurements, short-time feature
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Fig. 4—Block diagram of the improved, isolated word-recognition model using both
long-time and short-time features, and a two-pass discrimination model.

measurements, and a stationarity profile. The long-time features are
essentially those of the original model, although the rate at which they
are measured will generally be higher for this new model than for the
original model. The short-time features are intended to characterize
transients and other nonstationary events in the speech signal. Some
typical short-time features include zero or level crossing counts over
short-time intervals, wideband (short-impulse response), filter bank
analyses, short-time LPcC analyses, etc. The stationarity profile decides
which feature set (either long-time or short-time) is used to character-
ize a given frame of speech, and hence is used for the distance measure
of the pattern-similarity algorithm.

(it) The prw algorithm is expanded to use both long-time and
short-time patterns, for both test and reference pattterns, in determin-
ing similarity of a given reference pattern to the test pattern. The
stationarity profile is used to guide the alignment and to choose which
feature set is used in making a given distance computation.

(iif) The decision box is implemented as a two-pass decision. In the
first-pass decision the distance scores for each reference pattern are
ordered, and if the best distance is smaller than the second best
distance by a threshold T*, the decision phase is terminated. If,
however, the top two or more references are within 7* in distance, a
second-pass decision rule is used in which the similar words are
compared using a discriminant analysis and the recognized word is
chosen on the basis of this analysis. To implement the discriminant
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analysis, a set of distance-weighting curves discriminating word i from
word j (for all #, /) must be saved along with the reference patterns.
We now describe how the improved model was implemented in the
framework of the LPc analysis system.

3.1 The LPC basic improved word-recognition model

Using the Lpc analysis framework, the expanded feature measure-
ment was implemented as follows. The long-time analysis was imple-
mented as described in Section 2.1 except that the shift parameter, M,
was changed from M = 100 to M = 33, and the analysis frame length,
N, was changed from N = 300 to N = 297. Thus, for the long-time
analysis, analysis frames were computed every 5 ms rather than every
15 ms, thereby giving a frame rate three times larger. The analysis
frame was changed to 297 samples so as to be an integral multiple of
M, the shift parameter. We denote the long-time LPc features as Trr.

For convenience the short-time analysis was implemented with the
same processing (i.e., that of Fig. 2) as that of the long-time analysis,
except that N was changed to 99 (15-ms analysis frames) and M was
again set to 33 (5-ms frame shifts). The order of the Lpc analysis was
kept at 8 for the short-time as well as the long-time analysis. We
denote the short-time LPC features as Tsr.

To understand how the stationarity profile, p, is generated within
the framework of the LPc analysis, we must first define a characteri-
zation of the types of speech segments that are encountered. For this
purpose we define two binary features that characterize the source and
the dynamics of the vocal tract. The first feature describes the exci-
tation for the frame of speech and we denote voiced speech as V, and
unvoiced speech as V. The second feature describes the vocal tract
dynamics and we denote the stationary, steady-state case as SS, and
the nonstationary, time-varying case as SS. Thus, a given frame of
speech is characterized by the notation (V/V, SS/SS).

The determination of whether a frame is voiced or unvoiced is fairly
straightforward and is readily obtained from any number of pitch-
detection algorithms. The determination of whether a frame is station-
ary or nonstationary is somewhat more complicated. This computation
is made as follows. The basic idea is to compare both the long-time
and short-time features of frames j and i, where j represents the frame
occurring 15 ms before frame i. A distance comparing frames i and j is
made as

d[Trr(@), Ter(j)] + d[Ter(j), Tor(i)]
+ d[Tsr(i), Tsr(j)] + d[Tsr()), Tsr(i)]
4 3

o = (3)
i.e., the average of the long- and short-time Lpc distances between
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Table |I—Feature sets used for similarity determination

Test Frame Frame Spac-
Status Feature Set ing Speech Example
(V, 8S) LT analysis 15 ms Vowels, steady-state sounds
(V, §8) LT analysis 5 ms Onset, offset of voicing transitions
(? SS) LT analysis 15 ms Steady fricatives
(V. 8%) ST analysis 5 ms Transients

frames i and j and between frames j and ¢ (recall that the Lpc distance
is not symmetric). The distance score, a;, is then compared with a
threshold (different for voiced and unvoiced frames), and the station-
arity value is given as
1 if V and a;=THV
SS {

1 if V and a;=<THU (4)
0 otherwise,

where 1 represents a stationary frame, and 0 represents a nonstationary
frame, and THV and THU are voiced and unvoiced thresholds, re-
spectively.

__Once a frame has been characterized with the two-feature code, ( v/
V, SS/SS), the only remaining step is to specify which feature set and
frame spacing should be used in the DTW distance computation.

It should be clear that for voiced frames, (V, —), the long-time
analysis should be used to avoid potential bias caused by the pitch
period. Similarly, for all nonstationary frames, (—, 585), a frame spacing
of 5 ms should be used to track the fast dynamics of such frames.
Finally, for unvoiced, nonstationary frames, (V, SS), the short-time
analysis is most appropriate to follow transients and other brief events.

Table I shows a summary of the feature sets and frame spacings, for
each of the four types of frames, as used to determine word and
reference template similarity.

To illustrate the above analysis, Fig. 5 shows a series of plots of (a)
the waveform, (b) the log energy (in dB), (c) the pitch, and (d) the
average of long- and short-time LPc distance [eq. (3)] for the word
/B/. It can be seen in Fig. 5a that the LpPc distance becomes large at
the beginning of voicing (point A in the plot), at the termination of
voicing (point B in the plot), and at the end of the word (point C in the
plot). Such frames (and their neighborhoods) are the nonstationary
regions of the word, and generally correspond well with transients,
onset and offset of voicing, and rapidly varying vocal-tract dynamics.

To determine the stationarity thresholds intelligently, THV and
THU, histograms of the behavior of «; for voiced and unvoiced frames,
had to be measured. Such histograms are shown in Fig. 6. The data in
this figure were obtained by computing a; every 5 ms for all the frames
of a 39-word vocabulary of letters of the alphabet plus the digits. Based
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Fig. 5—An example (the word B) showing: (a) the waveform, (b) its energy profile,
(c) its pitch contour, and (d) the Lpc distance comparing adjacent frames.
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Fig. 6—Histograms of values of (a) Lpc distance for voiced speech, and (b) unvoiced
speech. Thresholds THV and THU are chosen to give desired percentages of nonsta-
tionary classification.

on the data of Fig. 6, values for THV and THU can be chosen, so as to
obtain any desired average probabilities of occurrence of voiced or
unvoiced classification. For example, if we assume that, on average,
only 10 percent of the voiced frames should be classified as SS, then
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a threshold of THV = 0.2 should be used. Similarly, for non-voiced
frames a threshold of THU = 0.3 yields an average of 10 percent of the
frames being classified as nonstationary. If the thresholds, THV and
THU, are both set to infinity, then all frames are classified as stationary
and hence the feature analysis is essentially identical to that of the
original model. Similarly, if the thresholds are both set to zero, all
frames are classified as nonstationary and a 5-ms frame spacing is used
with both short- and long-time feature sets.

3.2 Modifications to the DTW algorithm for the improved word model

As discussed above, the basic changes made in the feature measure-
ment were inclusion of both short- and long-time LPc analyses, and an
increase in the frame rate of the analysis from once every 15 ms to
once every 5 ms. These analysis changes required some modifications
to the pTwW algorithm to properly handle the raw data structure. The
modifications primarily involve reformulation of the local path con-
straints to account for the diffferent possible frame spacings (i.e.,
nonuniform sampling in time), and modifications to the distance
computation to handle both long- and short-time LPc distances and
their appropriate weights.

We denote the long-time test pattern as {Tir(n), n =1, 2, -..,
NT}, the short-time test pattern as {Tsr(n),n=1,2, ..., NT}, and
the stationarity distance (on which the stationarity profile is based) as
{ap,n=1,2, ..., NT}. Similarly, we denote the long-time reference
pattern as {Ryr(m), m =1, 2, ..., NR} and the short-time reference
pattern as {Rsr(m), m=1,2, ..., NR}.

We wish to solve for the optimum warping path of the form m =
w(n), defined for values of n that satisfy either of the following
conditions:

n-1)®3=0 (5a)
or
a,>TH or a,-,>TH or a,-2>TH. (5b)

Equation (5a) says we solve for m = w(n) at each standard 15-ms time
slot. This constraint essentially guarantees a grid spacing, between
adjacent DTW frames, of no more than three frames. It also guarantees
that, in the limit, as the entire word is classified as stationary, the new
analysis becomes identical to the previous analysis. Equation (5b) says
we solve for m = w(n) at each frame, n, in which the stationarity
distance, a,, of that frame or either of its two predecessors falls below
the specified threshold, TH. (For voiced frames the threshold TH is
set to THV, and for nonvoiced frames the threshold TH is set to
THU). Cases in which eq. (5b) is satisfied (i.e., one of the distances is
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above threshold) correspond to voiced frames with a rapidly changing
spectrum (transitions), or unvoiced frames with nonstationary excita-
tion.

For each frame n that satisfies one of the constraints of eq. (5) we
must solve the DTW recursion

Da(n, m) = w(n — ny)d(n, m)

+ min [Da.(n — nL, mo)], mr=m=muyg, (6)

Aip<=mo=mp

where

n;, = last value of n for which a DTW recursion was done.
A1 = next-to-last value of n for which a DTW recursion was
done.
w(n — n.) = weighting function on the local distance to account for
the nonuniform frame spacing.
d(n, m) =local frame distance for reference frame m and test
frame n.
ri; = smallest value of m at n = n; from which a valid path
can go to the grid point (n, m).
riig = largest value of m at n = n, from which a valid path
can go to the grid point (n, m).
my;, = smallest value of m at frame n for which DTW recursion
is solved.
my = largest value of m at frame n for which bTW recursion
is solved.

The values of m; and my are determined from the global path con-
straints which specify that all valid bTw paths must lie within a
parallelogram defined from lines of slope 2 and slope 1/2 beginning at
grid point (0, 0) and ending at grid point (NT, NR). Thus, m. and mp
satisfy the path constraints

mr=max[(n —1)/2+ 1,2 X (n — NT) + NR, 1] (7a)
mg=min[2 X (n — 1) + 1, (n — NT)/2 + NR, NR]. (7b)

The values of 77, and riy are those which guarantee that the path to
grid point (n, m) satisfies the local constraint that the average slope be
no less than one half nor more than 2. If we define a path increment

function, A(m), as
A(m) = increment in m along the best path to grid point (nr, m),

i.e., if the best path to grid point (n., m) comes from grid point [7i., m
— A(m)], then values of m, in the DTW recursion [eq. (6)] must satisfy
the local path constraint
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B0 < Amo) + m = mo) < 200 = 7). @

Since A(my) also satisfies the constraint
A(mo) =2 (nL — Ag), (9)

we can rewrite the inequalities of eq. (8) as

Yiw — M) EM (10a)

my=m — 2(n — nr). (10b)

Equation (10a) must be checked for each possible m value to find its
solution, whereas eq. (10b) can be used directly.
The weighing function w(n — n.) is simply

w(n —ng) = (n — n) (11)

to give more weight to longer frame separations, and the distance
d(n, m) of the form

d[Trr(n), Rir(m)] if (V, 8S), (V, SS)
&(n, m) = or (V, .§§) (12a)
d[Tsr(n), Rsr(m)] if (V, SS). (12b)

The complicated form of the DTW recursion is due to the nonuniform
sampling rate at which the recursion is solved. If we translate eqs. (6)
through (12) into words we can say that for each frame n for which the
recursion is solved we compute Da(n, m) for a range of m from m = m.
to m = my, as determined by the global path constraints. For each m
the optimal path is determined as the weighted local distance,
d(n, m)w(n — ny), (as determined by the stationarity profile at frame
n) plus the best accumulated distance to a predecessor frame that is a
valid candidate for a path to frame m (i.e., i, = mo =< riig). The range
on my is chosen to guarantee that the local path constraints of a
warping curve slope of between 1/2 and 2 are met. Since the number
of frames between the current frame n and the predecessor frame n,,
for which the DTW recursion was last solved, is variable (ranging from
1 to 3), the local path constraints must use this range, along with
information as to how much the local path rose [A(m)] at frame (n.,
my) to set the local path constraints correctly.

The pTW recursion of eq. (6) is solved for all valid points from n =
1 to n = NT, and the total bTw solution is then given as

D* = Da(NT, NR) (13)
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and the average path distance is
D4(NT, NR)

NT (1)

1_)=

3.3 The improved decision rule

As we discussed earlier a two-pass decision rule is used to improve
recognition accuracy. The task of the first-pass decision rule is to
determine the set of vocabulary words that are acoustically similar to
the test word (i.e., the set of confusions). The task of the second-pass
decision rule is then to resolve these confusions.

The key idea behind the operation of the second-pass decision rule
is that the pTw distance scores between the test pattern and those
reference patterns that are acoustically close to each other and to the
test pattern consist of a x* random component and a Gaussian random
component. The x* random component is associated with the averaging
of distance scores between frames with the same basic spectrum, and
therefore has a x” distribution with p degrees of freedom. The Gaussian
random difference is associated with the averaging of large distance
scores between frames with dissimilar spectra.

In cases where the size of the dissimilar region is small (such as in
comparing a /B/ to a /D/) compared to the size of the similar region,
the x* component distance often outweighs the Gaussian component,
thereby causing potential recognition errors.

The purpose of the second-pass decision rule is to enhance the role
of the Gaussian component associated with spectrally dissimilar re-
gions in determining the final decision. This is accomplished using a
distance-weighting function that enhances the discrimination power of
the frame-by-frame distance scores.

By way of example, consider a simple confusion list of two references,
R; and R;, for test word 7. Let the DTW frame-by-frame distance and
warping path be specified as

di(n) = d{T(n), R[w(n)]} (15)
and

wx(n) = Warping path comparing frame n of the test with reference
R:.

We now define two distance-weighting functions,

{(W"(n),n=1,2, ..., NR}}

{W#(n),n=1,2, ---, NR;},
whete W*/(n) is the weighting to discriminate R; from R;, and W/¥(n)
is the weighting to discriminate R; and R;. (Reference 11 shows that
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these weighting functions are generally not symmetric). We defer a
discussion of how the weights are generated, in a speaker-trained
system, to Section 3.4.

The basic hypothesis is that the test pattern, T, corresponds to
either R; or R;, and we wish to come up with a discrimination score
that aids in this decision. If we define a discrimination score, 8(T, R;|
T € R;), as the weighted distance between the T and R;, assuming
that T actually corresponds to R;, then we get

NT
Y W wi(k))d{T(k), R{w(k)]}

8T, R|TER,) == - . (18)
Z, W]
and similarly we get
NT B
Z W w;(R)]d{T(k), R;[w(k)])
8T, R|TER) =" - (17)
Y W wik)]

k=1

The weighted distance corresponding to the hypothesis T € R, [i.e.,
eq. (16)] is shown in Fig. 7. The frame-by-frame distance is multiplied
by the weighting function reflected through the warping curve to give
the discrimination score 8.

The discrimination distances of eqs. (16) and (17) have the following
important property. If T and R, are from the same word (different
replications) then the frame-by-frame distances, d(-, ) are all x*
distributed (theoretically) and thus §(T, R;|T € R;) will be theoreti-
cally “independent” of the weighting function. If, however, T and R;
(instead of R;) are from the same word, then 8(T, R;|T € R;) will
reflect to a greater extent the Gaussian-distributed component of the
original distance score, d(T, R;), since it primarily consists of distance
in regions where R; and R; differ significantly, even though they may
be quite short.

Thus, in the simple case of a confusion between two references, R;
and R;, the final decision is made on the basis of the discrimination
scores of egs. (16) and (17).

More generally, if the confusion list associated with test pattern T
has @ candidates, {R,,, R.,, - - -, Ri,}, then the following procedure is
followed:

(i) Compute all pairs of discriminations

E(T,Ri"]TERi,,)yb?éaaa’b=112a "'1Q}-
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Fig. 7—The time warping plane of a test and reference pattern along with the distance
of each frame and the weighting curve on distance.

(iz) Form the average discrimination distance

_ 1 Q

(T, Ri") =T1 bE &(T, Rinl T= Rib)’ a=12..-,Q.
=1
b#a

(iii) Define the most likely candidate, R;, as the candidate with the
minimum average discrimination distance, i.e.,

6M1N = min {(S_(T, R,‘a)} .

Similarly, a least likely candidate with maximum distance is defined
as

Smax = max {S(Ts Rfﬂ)}

(iv) Given the original (i.e., first-pass) distance scores for all €
candidates, d(7T, R;,), with smallest distance dw and largest distance
dwuax, a second-pass set of distances scores is computed by retaining
second-pass ordering with first-pass distances. This procedure is illus-
trated in Fig. 8. A reference with second-pass discrimination score
8(T, R;) is given distance d(T, R;) by linearly interpolating along the
line of Fig. 8.

3.4 Determination of the weighting curves in the speaker-trained case

The determination of the weighting curves, W/‘ and W*/, is readily
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Fig. 8—Linear transformation between second-pass distance score and second-pass
discrimination score.

performed in the training phase for speaker-trained systems. Given
reference templates R; and R;, as obtained using the robust training
procedure of Rabiner and Wilpon,' a simple way of obtaining W/ is
to warp R, to R;, giving

WHi(k) = d{R;(n), R{win)]}, (18)

where w,(n) denotes the warping path. Thus, the frame weights (W)
are essentially the frame-by-frame warped DTW distances between the
reference templates. Figure 9 shows weighting functions for references
corresponding to the words /I/ and /Y/. When compared with the
speaker-independent weights of Rabiner and Wilpon,'' we immediately
see the statistical effects of small samples. It is evidence that the
curves of Fig. 9 need some smoothing to reduce the statistical variance.
The resulting of applying a 3-point smoother (a triangular window) to
the data of Fig. 9 is given in Fig. 10. A good deal of the statistical
variation in the curves is smoothed out.

An alternative, more statistically meaningful, way of obtaining
smoother weighting curves is to use all P replications of each word in
the training set to determine the weights. Basically, we obtain a
weighting function for each pair of training tokens such that each
token is close in distance to the appropriate reference. The final
weighting curve is then obtained by averaging the individual weighting
curves, with appropriate time alignments. We use the term subweights
to denote the set of weights obtained by averaging all training tokens,
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(a)

— TvsY

WEIGHT

(b)
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0 1 | | L L 1
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Fig. 9—Typical weighting curves for (a) I vs Y, and (b) Y vs I, derived from the
robust training tokens.

and we use the notation S to refer to this set. Figure 11 illustrates the
(sub) weighting curves for I, Y comparisons based on a set of five
training tokens for each word.

IV. EXPERIMENTAL EVALUATION OF THE IMPROVED MODEL

To measure the performance of the improved, Lrc-based, isolated
word-recognition model, a small evaluation test was performed. Each
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(a)
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WEIGHT

(b)

1 120
FRAME NUMBER

Fig. 10—Smoothed weighting curves for (a) I vs Y, and (b) Y vs I, derived from the
robust training tokens and a 3-point smoother.

of four talkers (two male, two female—all experienced with speech-
recognition systems) trained the recognizer on a 39-word alpha-digit
vocabulary by saying each vocabulary word five times during the
course of a single training session. The word-reference patterns, the
normal discrimination weights, W, and subweights, S, were determined
from the training data using the robust training procedure of Rabiner
and Wilpon."
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Fig. 11—Subweight curves for (a) I vs Y, and (b) Y vs I, derived from using all
training tokens.

For evaluation purposes the 39-word vocabulary was spoken 10
additional times by each of the four talkers in two distinct recording
sessions. Thus, a total of 390 words were used in each recognition test
for each talker.

4.1 Recognition test results

The overall results of the evaluation tests are given in Table II,
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Table Il—Recognition accuracies as a function of the stationarity
thresholds and the number of recognition passes for the four talkers

Talker Number
(THU, THV) 1 2 3 4
Pass 1 Alone (—o0, o0) 94.9 94.9 90.5 86.7
(—.3,.2) 95.4 94.9 91.8 86.4
(0., 0) 94.9 94.9 91.5 85.4
Pass 2 With Weight W (—oe, ) 96.7 95.6 94.1 87.2
(—.3,.2) 96.4 95.6 94.9 88.5
0., 0 95.6 95.4 94.4 86.4
Pass 2 With Subweight S (—oe, o0) 95.6 95.9 95.4 87.2
(—.3,.2) 95.4 95.4 96.2 879
(0., 0) 95.4 95.6 95.1 87.2

which shows recognition accuracy as a function of stationarity thresh-
olds, talker, and analysis condition. Three analysis conditions are
shown, namely Pass 1 alone (no discriminant analysis), Pass 2 with
weights, W, derived from single reference tokens, and Pass 2 with
subweights, S, derived from all reference tokens.

The results of using Pass 1 alone show only a 0.4-percent improve-
ment, on average, in recognition accuracy for the four talkers when
comparing the old stationary model (where THU = —o, THV = o)
with the new stationary model (where THU = —0.3, THV = 0.2).

The results of using Pass 2 with weights W show an average of 2.1-
percent improvement in recognition accuracy for the four talkers over
the old stationary model (when THU = —0.3 and THV = 0.2). When
subweights S are used in Pass 2, the improvement in recognition
accuracy is an average of 2 percent.

Table IT also shows that when Pass 2 is used the recognition accuracy
with stationarity thresholds set to (—0.3, 0.2) is, on average, about 0.5
percent higher than with stationarity thresholds set to (—o, ). This
result indicates that the improved model provides a consistent recog-
nition accuracy improvement of about 0.5 percent, with or without the
second-pass weights.

V. DISCUSSION

The results presented in Section IV are both encouraging and
discouraging. They are encouraging in that real improvements in
recognition accuracy were obtained when a nonstationary analysis
framework was used in place of the purely stationary framework used
in earlier work. They are discouraging in that the average improvement
resulting from the nonstationary model (0.5 percent) was considerably
smaller than the average improvement resulting from the discrimina-
tion analysis of the second pass (1.6 percent).
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There are several points worth noting that have bearing on the
discussion and results of this paper. The first concerns the anticipated
improvement in performance for the improved word-recognition
model. If one carefully considers the sources for recognition errors
with the alpha-digit vocabulary, it should become clear that the
anticipated improvement resulting from the nonstationary analysis
should be small unless some extra weighting is applied to the nonsta-
tionary regions. This is because words that are strongly affected by
the nonstationary analysis (e.g., p, d, ¢, k, etc.) are easily confused with
similar words in the vocabulary (e.g., b, v, g, a, etc.), and since the
nonstationary regions are only a small subset of the word patterns, the
improved analysis will be swamped out by the word-similarity regions.
This is the original motivation for the discriminant analysis model
used in the two-pass word recognizer."' Hence, the results of Section
IV, which show a small (but consistent gain) for the improved analysis
model and a somewhat larger gain for the discriminant model, are
entirely consistent with the anticipated results given above.

A second point of note is that the implementation of the improved
word model was more of a convenient one, rather than one that
naturally followed from the theory. Thus, the short-time features were
LPC coefficient sets derived from a short-time window. This implemen-
tation was straightforward and required only minimal modification of
the recognizer structure. A more reasonable implementation of the
short-time analysis in the model would have been something like a
filter bank model, or a basilar membrane model. Such features would
then have complemented the long-time LPc features and would have
provided a better vehicle for testing and evaluating the improved
model. The problem with using these alternative short-time feature
sets is that there is no simple way of combining LPc and filter bank (or
basilar membrane model) features and deriving from them a distance
measure with good physical properties. The problem of combining Lprc
and energy features has already been investigated by Brown and
Rabiner,” and it was shown that no simple metric existed even for
such a simple case. The main point in the above discussion is that the
small gain of the improved word model is more impressive when one
considers the simplicity of the short-time analysis used to provide the
performance gain.

The third point of note is the fact that the simple weighting derived
from the robust training procedure seemed to provide the same per-
formance improvement as the more sophisticated weighting obtained
by using multiple tokens in obtaining the weights. The obvious conclu-
sion to be drawn from the result is that the gain obtained from the
second pass (which is due primarily to small regions of extreme spectral
difference) is manifested in any pair of training tokens and that simple
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smoothing (to eliminate statistical variability) is as good as using
multiple tokens.

When one takes into consideration all of the above points, the results
of Section IV provide a reasonable basis for believing that the improved
word-recognition model is a reasonable one and that both the nonsta-
tionary analysis of the first pass, and the discrimination analysis of the
second pass provide real performance gains.

VI. SUMMARY

An improved word-recognition model was proposed in which the
standard long-time analysis features of the model are combined with
a set of short-time analysis features. A stationarity index is also
computed for each speech frame indicating which set of features (long-
time or short-time) best characterized the current frame of speech.
Appropriate modifications to the DTW algorithm were required to
handle the enhanced analysis feature set. Also incorporated in the
recognition model was a speaker-trained version of the discriminant
analysis, two-pass model proposed by Rabiner and Wilpon."

An evaluation of the model based on an LPc implementation of both
long-time and short-time feature sets showed the overall improved
word model had from 1- to 5.7-percent improvement in recognition
accuracy across four experienced users of speech recognition systems
using an alpha-digit word vocabulary. On an average the nonstationary
feature set alone led to a 0.5-percent improvement in accuracy, whereas
the two-pass discriminant analysis alone led to a 1.6-percent average
improvement in accuracy. The two improvements were almost inde-
pendent and the overall recognizer had, on average, a 2.1-percent
improvement in word accuracy.

The above results are considered encouraging and indicate that the
improved model should be considered with alternative short-time
feature sets.
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