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A Theoretical Model of Transient Heat Transfer
in a Firestopped Cable Bundle

By P. B. GRIMADO
{Manuscript received April 7, 1982)

A mathematical model of heat transfer in a firestopped vertically
oriented cable bundle is derived to assist in planning fire test exper-
iments and to enumerate how changes in geometric and thermophys-
ical properties affect the temperature rise in the cables when subjected
to standard furnace fire tests. The analysis indicates that the primary
heat transfer mode to the cable array is from the flow of hot furnace
gases up through the void spaces between the individual cables. As
expected, the most practical and effective way of reducing the heat
transmission characteristics of a cable bundle is by tightly packing
the firestop, which reduces the void space between cables and provides
heat sinking to the cooler environs.

I. INTRODUCTION

In this paper a mathematical model of heat transfer in the cable
bundle of a firestopped vertical cable assembly is developed to assist
in planning experiments and to evaluate the relative influence of the
geometrical and thermophysical properties of this portion of the fire-
stopped configuration. A representation of this complex cable bundle
geometry in terms of an approximate transient one-dimensional,
lumped parameter model is obtained through heuristic arguments.
This is accomplished in a systematic way by first deriving a simplified
model for a single conductor wire and progressing up in scale, by
averaging and lumping parameters, to arrive at a heat transfer model
of a single cable. The heat transfer in a cable bundle is then treated
using the single-cable model. Cable-to-cable heat transfer is handled
through boundary conditions at the contact surfaces of the individual
cables. A set of coupled transient one-dimensional equations results,
with as many equations as cables in the array. The model is then
exercised to compute transient temperature distributions within a
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Fig. 1—ASTM E119 standard temperature vs time curve.

vertically oriented firestopped cable bundle when exposed to the
ASTM E119* temperature variation shown in Fig. 1.

Properties of three generic-type cables (terminating, switchboard,
and power cable) are used to suggest how physical and geometrical
characteristics of the cables influence the effectiveness of a firestopped
cable closure. It should be noted that an absolute evaluation of a
firestop using the approximate heat transfer model developed here is
beyond the capability of the model. This can only be attempted when
considering potential nonlinear combustion modes of the polymeric
cable materials, which is beyond the scope of this paper.

Il. HEAT CONDUCTION MODEL OF A SINGLE CABLE

. A cable consists of a core containing the insulated wire conductors
and an outer protective sheath. In general, the cable core will contain
a loose array of copper wires (which constitute 40 to 50 percent of the
core) covered with a thin, polymeric insulating layer. The dominant
path of heat conduction, because of their high conductivity, is in the
longitudinal direction of the copper wires. Heat is also transferred
radially, through the porous array of wires, by virtue of thermal
radiation and heat conduction through contact points along the length
of the wires, as shown in Fig. 2. The cable core cannot be considered
a continuum because of the noncontiguous nature of the wires; hence,
in developing the governing equation of heat conduction it is desirable
to consider the individual wires as microstructural elements. This
concept, as will be seen, permits interaction of the wires and leads, in

* Standard Methods of Fire Tests of Building Construction and Materials, American
Society of Testing Materials.
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Fig. 2—Heat transfer modes in firestopped cables.

the limit, to an approximate continuum representation of heat con-
duction in the cable core. This development follows.

Consider the individual conductor wires as composite cylinders with
copper wire radius r. (see the appendix for a list of parameters) on
which is affixed an insulating material with thickness (rs — rc), as
shown in Fig. 3. When radial symmetry prevails, Fourier heat conduc-
tion equations and boundary conditions for the conductor wire assume
the following forms:

z2>0

T 18 [ T 0T cu
keu[—z—"'-—-(r )] = (pC)eu , O0=r=r, (1)
az ror ar at t>0
for the copper wire conductors, and
o i T, z>0
ks 9_7;+lf_ ,.91 -'_—(p(_‘),:—z, re<r=rq, (2)
az* rar\ or ot >0
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for the insulation, with boundary conditions:

T..(0, z, t) = finite, (3)
Tcu(rc, Z, t) = T'i(rc, 2, t),'l (4)

T .. . aT:
keu ar (r,_-, 2, t) = ki ? (rn 2, t): (5)

aT;
ki (ra, 2, 8) = =k Tilra, 2, t) = T(z, t)], (6)
and initial conditions:

Teulr, z,0) = Ti(r, 2,0) = 0. (7)

* A perfect contact between the copper wire and insulation is assumed, since the
insulation is literally molded onto the wire.
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In the above equations, T'(r, 2, t) is the temperature, k is the thermal
conductivity, pc is the volumetric sensible heat capacity, z is the axial
coordinate along the length of wire, r is the radial coordinate, ¢ is the
time, A; is an effective linear heat transfer coefficient, and T(z t) is a
temperature to be assigned subsequently. The subscripts “cu’ and “

are assigned to quantities associated with the copper conductor and
insulation, respectively. Since the diameter of the wire is much smaller
than its length, it is convenient to express the temperature in the series

Teulr, 2, 8) = Tolz, t) + Tal(r, 2, 8) + - - -, ®
and

Tir, 2, t) = Tolz, t) + T(r, 2, 8) + -+ -. (9)
The leading term in egs. (8) and (9) is the average temperature, i.e.,

To(2, t) =r% [f rTeu(r, z, t)dr + J rTi(r, 2, t)drj|, (10)
0 r,

c

from which it follows that

re ra
j TNr, 2, t)dr + J’ rT"(r, z, t)dr =0
0 T,

c

n=123-.... (11)

Substituting series (8) and (9) into differential equations (1) and (2)
produces a set of recurrent differential equations:

TEY 19 ( oTH T
kw[—+—— r = (pC)eu ———,

az° raor ar at
n=12 ... (12)
T 148 ( Tl aT """
ki[?— 7 ror (r ar )} (pel: a
n=12.... (13)

All T%(r, z, t) and T{"(r, 2, t)n = 1, 2, 3, - - - are then expressible in
terms of the average temperature, T,(z, ). Retaining terms up to first
order, it follows from (12) and (13) that

2

Tolr, 2, 8) = Tolz, ) ——— L% + A(z, Oln r + B(z, ),  (14)

4kcu
and ,
Tur, z, t) = Tlz, ) — % L'+ C tnr+ Dz t),  (15)
where
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9T, aT, . 3T, aT
L™ = ke, cu L= hki—s — i
227 - (pc) a P (pc) Py

The variables of integration A, B, C, D are determined from boundary
conditions, egs. (3) through (5) and eq. (11). The final form of the
temperature in the copper wire and insulation in terms of the average
temperature T,(z, £) is

Tcu(r, 2, t) = To(z, t)

1 ré r2 i
o (ri SRL ) L% + 2 In(ra/r (L = L)

2ra
. (ri,k;;%) [_rng . WT”E) Lf], (16)
and
Ti(r, z, t) = To(z, t) + kli (% + ’; %) L
N rﬂn;;frd) (Li— L) — [4: S (ri—rd) + Skc: ]Lcu (17

It now remains to obtain the differential equation for the average
temperature, T,((2, ¢). This equation comes from the satisfaction of
the boundary condition at r = r4, as shown in eq. (6);

1 r? h: . rd . hi [2riri—rd)

3 "3 Y gy T L+{—S+— | —m——=
[2 8rik; ré—r) } {27'3 8ri ki

r4

+ —"}}L*’“ =P n - T, ). (18)
kcu rd

Relating the variables in each conductor wire to those of neighboring
ones in the limit leads to a continuum base from a discrete one. To
arrive at this continuum description of the cable core consider the
wires as embedded in a radially symmetric macrocoordinate system,
as shown in Fig. 3. The center of, say, the nth conductor is located at
R, and eq. (18) is written at this point. In keeping with the assumption
of radial symmetry, the temperature on the right of (18), Tz, #), is
related to the average temperature of adjacent wires T'{"*" and T "
located at R, + 2rq and R, — 2ra, respectively. To determine T(z, t)
the temperatures are weighted with respect to the location of the wire
in the cable core. This has the effect of enforcing radial symmetry

Tz t) =

—ra) T M) (19)

Thus, if I is used to denote the difference appearing on the right of
(18), it can be written with the aid of (19) as
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D=-

—2R. TP + (R —raTY V] (20)

When we expand 7" and T9"" in a Taylor series about R,, eq.
(20) becomes

_ 20 [ 8 [, oT®
D=-— {aR,, [R R ] + O(rd)} (21)

If we substitute (21) into (18) and consider rs << 1 so that only the
first term on the right of (21) is significant, the final form of the
continuum representation of the cable core, after the subscript n is
eliminated, is obtained as:

2 {r2 — 2 i 202 .2
(1= oy (o [

ra Argk; 5 4rdy ki

ri cu 4hira @ aT, _
+kcu]}L + R @-(R BR) =0. (22)

The quantity (4h.rs) has the dimensions of conductivity and represents
the effective radial conductivity of the cable core. The conductivity in
the axial direction reflects the effect of the microstructure and is given
as

ré  hdra-rd’
(R2)er. = [1 - ";“g +——‘daT ki

4raki
+ {;—g 4‘% [—2"—3?";!—_"1 kw}}km, (23a)
and the effective heat capacity as
(pC)esr. = [1 - :—; +ﬂ%§_—kﬁ} (pe):
+ {:—; + :;; [2; (ra—r) + ’:—i]}(pdm. (23b)

Notice that when the conductor wires are assumed insulated, i.e.,
h; = 0, there is no radial heat flow and the effective heat capacity and
axial conductivity are given, as expected, by the law of mixtures.
Now that the heat conduction equation for the cable core has been
determined, it remains to obtain the equation that governs the heat
transfer in the entire cable including the outer sheath. This develop-
ment parallels the procedure employed above. The only exception is
that, since the cable core and sheath are not generally in perfect
contact, the average temperatures in the cable core and sheath are
assumed to be different. In many cables the cable core can be pushed
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through the cable sheath with only a moderate pressure. Since the
axial conductivity of the cable core is much larger than that of the
cable sheath, as a simplification, it appears reasonable to assume that
the axial heat conduction in the cable sheath can be neglected. Thus,
the expression for the temperature in the cable core and sheath
assumes the form

(2R’ — RY) LO(z

To(R, 2, t) = TPz, t) + , ), 0=R=R. (24a)

8k
and
2 2 ©
TR, 2 1) = TV(,0) + o [R"’ (R, +R°’] LLM
2 at
R? Rﬁ 1 o 1T®
+ — [ln(R/Re) _R In(R./R.) + 3 ][L (2, t) — el
R.<=R =R, (24b)

where

o 2Tg»

L%z, t) = (pc)en = — (kz)et ———

and TP (z, t), T (z, t) are the average cable core and cable sheath
temperatures, respectively. The other parameters are defined in the
appendix. The average cable core and cable sheath temperatures given
above are related through the imperfect heat transfer boundary con-
dition at R = R., namely,

T,

k“‘] R u(To - Ts) ]R—R‘.- (25)
It follows that
R. h.R? _ heR%
2 ' Bky 2k,
R2

[ 7T — gz n(R/R) + ]}L"”(z t) + hsT3'(2, 1)

_ hes(RE:— R2) _ heR? _ Rin(R./R.) +1

n 8k, s R:-R? 2

aT(O}

(2, 8) + ha TV (2, 1), (26)

where h,.s is the heat transfer coefficient between the cable core and
cable sheath.
In the following section eqs. (24b) and (26) are used to determine
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the heat transfer in an array of sheathed cables that form a bundle.
However, before this is accomplished it is worthwhile to briefly sum-
marize the preceding developments.

The cable core is obviously not a continuum; consequently, a micro-
structural characterization starting with an individual conductor wire
was used to derive the governing radially symmetric heat conduction
equation for the cable core. This derivation produces an effective or
averaged macroscopic continuum representation of the cable core that
retains the physical characteristics of the conductor wire microstruc-
ture. It is, however, anisotropic, since the thermal conductivity in the
axial and radial directions is not equal. After we obtain the governing
equations for heat flow in the core, the equations that the cable sheath
temperature satisfies [eqs. (24b) and (26)] were then determined.
These were obtained, paralleling the preceding microstructural deri-
vation, for heat flow predominantly in the axial direction. The radial
heat transfer is introduced as a perturbation.

lll. HEAT TRANSFER THROUGH A CABLE BUNDLE

The objective of this investigation is to analyze heat flow through
firestopped cable bundles during fire tests. The ASTM E119 temper-
ature-time history, Fig. 1, provides the fire environment. A typical
firestopped cable bundle configuration and the above- and below-floor
coordinate system is illustrated in Fig. 4.

As previously mentioned, cable penetrations vary in size and in the
number and type of cables accommodated; to lend a degree of defi-
niteness to the analysis it is convenient to consider a widely used
arrangement. A square cable array containing nine cables, as illustrated
in Fig. 5, is a mathematically manageable configuration, yet most of
the heat transfer characteristics of larger cable arrays are maintained.
From the point of view of symmetry, only three cables need be
considered—the corner cable, to be designated hereafter as cable 1,
the side cable, to be denoted as cable 2, and the center cable, to be
called cable 3.

The section of each cable below the slab (see Fig. 4) is directly
exposed in a furnace to a fire temperature of up to 1000 degrees
centigrade and, therefore, after only a short time all polymeric insu-
lating material is burned away. In the model this effect is approximated
by assuming that only a loose array of independent copper wires
projects below the slab. This section of the cable bundle extending up
through and above the floor slab experiences a different thermal
environment. A zone of decomposition of the polymetric insulating
materials occurs and creeps upwards during the extended period of
exposure to the below-floor fire. This zone of charred and expanded
insulating material alters the temperature in the void spaces. In the
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present analysis the effect of this nonlinear phenomenon is ignored to
render the analysis tractable. It is conservatively assumed here that
the hot furnace gases move unimpeded in the void space between
cables.

The average cable core and average cable sheath temperature for
each of three cables is determined by performing a heat balance at the
outer cable sheath surface R = R,. This leads to the following three
coupled equations:

T
ke —p (Bs 2, 8) = 24 Hp[T? — T") + (BAr+ 240 H/( T, — T
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+ Ad, TV — T+ 2A,|J?Irf‘112[5r‘:;2J -7
f

+ AerFzz[Tga) - T.(g”] |1?=RE (273)
aTgZ)
R

AT — TO) + 24H[T? - T®] + QA+ AJHATY — T{]
+ 2AerF]2[T;D — Tf,]lﬂ‘sR, (27b)

(Rs, 2, t) = 2A Hg[T" — TP + (AHcs + 2AH F1)

aTgs)

5 (Re 2, 0) = 4AHoA T — TV + AAHT — T

+ SAerFu[Tin -T9+ M[Herz[Tf;” - T,(ga)]lg=3'. (27¢)

the above equations the parameter A. denotes the fraction of the

cable sheath perimeter that is in contact with an adjacent cable, and
Ay the portion exposed to the hot furnace gases that flow up through
the interstices of the cable. It therefore follows that 4(A. + Ay = 1.
H.z is the solid-contact conductance between the cables, Hyis the heat
transfer coefficient between the cables and the firestop material, H, is
the convective heat transfer coefficient between the cable and the hot
furnace gases that flow up through the void spaces between cables,
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and H; is a linearized black body radiative heat transfer coefficient
between the cables. Fy; and F, are radiation form factors between
cable 3 and cable 2, and cable 1 and cable 3, respectively. The
temperatures T}m(z, t) and T}n (2, t) are assumed known and represent
the temperature distribution in the mineral wool insulating firestop
material surrounding the cable bundle and the temperature of the
furnace gases that move up through the void spaces between cables,
respectively.

At this juncture, it is convenient to eliminate the independent time
variable ¢ from the equations by introducing the Laplace transforma-

tion

oo

T(z p) = f T(z, tye™ dt. (28)
0

In what follows, a bar over a variable indicates that the transformation
(28) has been performed. Substituting eq. (24b) into (27) and using eq.
(26) to eliminate the average cable sheath temperature, we produce a
system of three coupled ordinary differential equations for the trans-
formed average cable core temperatures T, 763, and T :

(WD — AT — 2(nD? — )T — (mD* — ) TH)

= —(hes + PEV[(BA, + 2A0H/T " + AH\ T, (29a)
—2(1D* =) T} + (T2D* — M) T — (2D? — &) TS

= —(hes + PEDN(2A; + AJHT + 24 H. T}, (29b)
—4(mD? — &) T} — (yaD* — 63)TE3 + (IaD* — As) T}

= —4(hes + pE)AHLT,, (29¢)

2

d
where the operator D* = p and the coefficients T, A, v, 6, 9, and € are

linear functions of the transform parameter p. After considerable
algebra the system of differential equations (29) is solved for the three
average cable core temperatures in the form

T = Ciexp(—zvm,) + Csexp(—zvVms) + Caexp(—Z\/nTs)

—(hes + pE)[RT” + HT"]. (30)
The quantities m,, ma, and ms are functions of the Laplace transform
parameter p and are evaluated as the roots of the characteristic cubic
equation of the system of equations in (29). The coefficients of inte-

gration Ci, C,, and C; are determined by matching the solution of the
cable section below the slab. This is accomplished by enforcing tem-
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perature and energy continuity for each of the three cables at the
common boundary Z = 0 and X = L, as shown in Fig. 4. The cable
sheath temperature evaluated at R = R, follows from (30) in the form

hm + pBl

1+ + T
hc,+pE1( PA)) le] 0

T«R., z,p) = [
Bi(1 + pA) d*Ty

— (et ——— 4 D | —>, (31

(k2) E[ (hew + DEY) 1j| o (31)

where A,, B, D, and E, are constants.

The temperatures presented in this section are in the Laplace
transform domain and must be inverted to the real-time regime. The
functions, however, are too complicated to be inverted in closed form.
A numerical procedure using the method of quadratures to obtain
these inversions is discussed in Section IV.

IV. INVERSION OF LAPLACE TRANSFORM TEMPERATURE SOLUTION

The form of the transformed temperature solution given in egs. (30)
and (31) is much too complicated to use for obtaining a closed-form
inversion formula. Consequently, we must resort to a numerical inver-
sion procedure. Most of the methods that appear in the literature
involve expanding the transformed function in a series that could then
be inverted term by term using tabulated formulae. Littlewood and
Zakian' suggest expanding in a series of Chebyshev polynomials, while
Longman? proposes using the Pade table for the Taylor series expan-
sion of the transformed function. Both of these methods were judged
to be impractical because of the complexity of the functions to be
inverted here.

The method that was finally adopted was developed by Talbot.’ The
inversion of arbitrary transforms is accomplished by a method of
quadrature along a special contour in the complex plane. The standard
inversion formula for a transformed function F( p) involves performing
the following integration in the complex plane:

F(t) = i j F(p)e*dp, (32)
27 i

where p is considered a complex variable, i = (—=1)", and y is to the
right of all the singularities of F(p). In Talbot’s method the path of
integration indicated by (32) is deformed to the path L shown in Fig.
6, the equation of which is

p=a+1ib, (33)
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where a = 8 cot 6.

Path L is equivalent to the standard integration path providing that

(i) L encloses all singularities of F(p), and

(%) | F(p)| — 0 uniformly in Rep <0 as |p| — co.
Condition (i) holds for the functions considered here. Condition (i),
in general, may not be satisfied by a given F( p); however, the modified
function F(Ap + o) for suitable scaling and shift factors A and o can be
made to conform. In this regard, for the functions to be inverted here
it can be argued that the singularities exhibited by egs. (30) and (31)
are located on the negative real axis; consequently, condition (i) is
satisfied without resorting to scaling or shift factors. However, to
accurately perform the inversions over large intervals of time (the
temperatures are calculated for times up to two hours) a scaling factor
A > 1 is necessary. This scaling factor merely shifts the singularity
along the negative real axis closer to the origin.

Once conditions (i) and (ii) are satisfied, the inversion formula (32),
when taken about L assumes the form

aT

Ae
F) = 2

f e? F(\p + o) % dg, T=AL (34)

Finally, “%” Simpson quadrature with equal intervals #/n in the
variable # gives the approximation

2326 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



A aT
F(t) ~ %.-T (Re(Ho + 4H, + 2Hz + 4Hs + -+ + 4H,_)}, (35)

where
Hy = H(p)|a
0r = km/n (=0,::-,n—1)
H(p) = e”F(\p + 0)(1 + ip),
and

B = [6 — % sin(26)]/sin’6.

The symbol Re indicates that only the real part of the complex
quantity is taken. Sufficient accuracy is obtained by a suitable choice
of n, A\, and ¢. The principles of choice are presented by Talbot® and
will not be discussed here.

A check of this technique was made by inverting the function given
in Ref. 2. In all instances satisfactory results were obtained. For
numerical inversions performed here, it was found sufficient to take
n=20,A=8,and o = 0.

V. DISCUSSION AND SUMMARY

The concept of firestopping any type of penetration is synonymous
with retarding the flow of heat from the fire side of the penetration to
the unexposed side. The problem rests solely on the identification of
procedures and materials to seal the space adjacent to the penetrant
to meet certain standards. Cables by their very nature have excellent
thermal conduction properties in the longitudinal direction. Very little
can be done to prevent heat conduction up the array of copper wire
conductors that make up the center core section of the cable. However,
it appears reasonable to measure the efficiency of a firestop by the
temperature rise on the free surfaces on the unexposed side of the
penetration. If these surfaces are maintained at sufficiently low tem-
peratures, ignition of combustibles that happen to be in direct contact
or in close proximity cannot occur. In the case of cable penetrations
the critical surfaces are the horizontal firestopping material surface on
the unexposed side and the vertical cable sheath surfaces at the outer
perimeter of the cable bundle, as shown in Fig. 4. In normal practice
the firestop material is chosen to be a good thermal insulator and is
applied with sufficient depth to preclude high temperatures at the top
surface. Thus, the efficiency of the firestopped geometry will, in
general, be determined more by the temperature rise on the cable
sheath surface of the outer perimeter cables than by the firestop
material. To ascertain the temperature at this critical location, a
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theoretical transient heat transfer model of a firestopped cable bundle
was developed. In addition to heat flow through the cable core, the
model treats the lateral heat flow from the cable core to the cable
sheath and convective heat transfer to the cable sheath from the flow
of combustion gases through the interstices between the cables. The
standard ASTM E119 temperature variation is applied at one end of
the cable bundle and the temperature distribution of the individual
cables is computed along the length for up to two hours. To quantify
these effects, temperature distribution was computed at 10-minute
intervals for two hours at the 20-cm and 30-cm firestopped depth for
three different cable types—switchboard, terminating, and power ca-
ble. For each of these cable types the following parameters were
varied:

(i) R, cable radius

(if) A., fraction of cable sheath surface in contact with an adjacent
cable

(iit) h.s, conductance between cable core and sheath

(iv) Hy, conductance between cable bundle perimeter and firestop
material

(v) Ap, furnace pressure.

Some remarks concerning the inclusion of the furnace pressure as a
parameter are in order. Furnace pressure influences the magnitude of
the heat transmitted to the cable sheath—by the hot furnace gases
that travel up through the space between cables—through the heat
transfer coefficient H,, as shown in eq. (27). The value of H, is
computed from standard empirical formulae* once the gas flow velocity
and flow-channel characteristics are known. The steady-state gas
velocity is calculated from the furnace pressure assuming that the
spaces between cables are independent flow channels.’ In general, H,
increases with increased furnace gas pressure.

Some of the results of the analysis for a given type cable are given
in Table I and Fig. 7. The calculated end-point temperature at z = 30
c¢m in Fig. 6 and ¢ = 2 hours for the cable sheath and core are given in
Table 1, and a typical temporal temperature distribution is given in
Fig. 7. The temperatures given in Table I and Fig. 7 should not be
construed to be indicative of actual measured test values. As previously
indicated, the model does not take into account nonlinear aspects of
this obviously complex phenomenon, such as potential combustion
modes and melting of the polymeric materials that in some instances
could conceivably, for periods of time, constrict the void of spaces
between cables and thereby reduce the flow of furnace gases. Never-
theless, the sensitivity of the cable temperatures to changes in the
linear cable bundle parameters identified in the model, Hy, A., R., and
Ap can be calculated and are presented in Table I.
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Table |—Calculated temperatures at z = 30 cm and t = 2 hours for
various values of the cable bundle parameters

Cable Sheath Cable Core
Temperature Temperature

H; (°C) Rise (°C) Rise

(W/cm?— R, Ap (cm
Case °C) A, (cm) of Water) Cable 1 Cable 3 Cable1 Cable 3

1 0.034 0.1 1.27 1 115 164 199 246
2 0.017 0.1 1.27 1 224 265 293 332
3 0.017 0.15 1.27 1 170 190 248 270
4 0.017 0.1 0.635 1 93 115 135 154
5 0.017 0.1 1.27 0.13 102 115 188 204

300

CABLE 3

200 —

CABLE 1

100

TEMPERATURE RISE IN DEGREES CENTIGRADE

50 L I | | ] I 1 | ] |
10 20 30 40 50 60 70 80 80 100 110 120

TIME IN MINUTES

Fig. 7—Cable core temperature for Case 1 cable bundle parameters given in Table I.

It is clearly shown in Table I that the cable core temperature exceeds
that of the cable sheath. A tightly packed firestop that exerts lateral
pressure on the side of the cable array will provide sufficient heat
sinking to reduce the temperature in the cable bundle. This physical
effect is embodied in the contact conductance parameter, Hy. The
larger the numerical value of this parameter, the tighter the firestop
packing. Cases 1 and 2 of Table I show that increasing this parameter
indeed results in a lowering of the cable sheath and cable core tem-
peratures.

The same general result prevails when furnace overpressure Ap is
reduced. This effectively reduces the heat transfer coefficient H,
between the cable sheath and the hot furnace gases. This is demon-
strated in Table I by comparing the end-point cable temperatures of
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Cases 2 and 5. Cable temperature can also be reduced by increasing
the contact surface between cables, as measured by an increase in the
parameter A., suggesting a tighter and more compact cable bundle.
The cable temperatures, as observed in Cases 2 and 3, are also lowered.
This is primarily due to the resulting smaller void space between the
cables and secondarily to the larger conduction path presented to the
interior cables.

VI. CONCLUSIONS

The following trends were generally indicated:

(z) The cable core and cable sheath temperature is largest for the
interior cable (cable 3 of Fig. 5) and the smallest for the corner cable
(cable 1 of Fig. 5).

(if) The temperature of cable core exceeds that of the cable sheath.

(i1z) The primary heat transfer mode to the cable sheath is from
the flow of hot combustion gases through the void space between
cables.

(iv) Reducing the void space between the cables by tightly packing
the cables and/or using smaller diameter cables impedes the flow of
hot combustion gases and results in a significant reduction of the
primary convective heat transmission mode.

(v) A tightly packed firestop capable of providing some heat sink-
ing to the cooler environs is the most practical and effective method of
reducing the heat transfer properties of the cable bundle.

(vi) The magnitude of the cable sheath temperature for similar size
cables depends on the furnace gas pressure and, to a lesser degree, on
the firestop depth.
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APPENDIX

A.—Fraction of cable sheath surface in contact
with an adjacent cable.
A;—Fraction of cable surface in contact with com-
bustion gases, 4(A. + Ay) = 1.
Fs, F>;—Radiation form factors between cables.
H,—Heat transfer coefficient between cable and
combustion gases.
H.s—Solid contact conductance between cables.
H/—Contact conductance between cable bundle
perimeter and firestop.
H,— Linearized black body radiative heat transfer
coefficient.
h..—Conductance between cable core and cable
sheath.
h;—Conductance between individual copper con-
ductor wires.
' = 4h,ry—Effective radial thermal conductivity of cable
core.
kew— Thermal conductivity of copper wire.
ki— Thermal conductivity of wire insulation.
k,— Thermal conductivity of cable sheath.
(k.)er— Effective axial thermal conductivity of cable
core.
Kew = keu/(pc)eu— Thermal diffusivity of copper wire.
k; = ki/(pc)i— Thermal diffusivity of wire insulation.
ks = k./(pc)<— Thermal diffusivity of cable sheath.
(k2 )etr = (B2)etr/ (pc)en— Effective axial thermal diffusivity of cable
core.
L —Length of cable below slab.
R.—Radius of cable core.
R.— Overall radius of cable.
r.—Radius of single copper conductor wire.
ra— Total radius of single conductor wire.
Ap—Furnace pressure.
(p¢)cu— Sensible volumetric heat capacity of copper
wire.
(pc)es— Effective sensible volumetric heat capacity of
cable core.
(pc)i—Sensible volumetric heat capacity of wire in-
sulation.
(pc)s—Sensible volumetric heat capacity of cable
sheath.
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