Copyright © 1982 American Telephone and Telegraph Company
THE BELL System TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in U.S.A.

Database Systems:

Structure of a Database File System for the
UNIX Operating System

By M. J. ROCHKIND
(Manuscript received October 20, 1982)

A database file system is the low-level part of a database manage-
ment system that handles data storage, indexing, concurrency con-
trol, transaction control, and recovery. This article describes a struc-
ture for a database file system that encapsulates important design
decisions into separate modules. This permits a choice of implemen-
tations for each module. A database file system can be generated for
a particular application by choosing the appropriate implementation
for each module from a catalog (one from column A, one from column
B, etc,). This approach can be both more flexible and more efficient
than the usual approach of building a monolithic database file system
to satisfy everyone. The challenge is to partition the database file
system functions into modules that hide enough information to allow
flexibility, but not so much as to be inefficient. The structure described
here, which is biased towards information hiding, is an initial at-
tempt at a suitable partitioning. An experimental system, XFS, was
built to test this structure.

I. INTRODUCTION

This article describes the structure of a database file system for the
UNIX* operating system. A database file system, as the term is used
here, handles these database functions:

® Ensuring that transactions are atomic: that they are either
done in their entirety or not at all.

* Trademark of Bell Laboratories.

2387

® Ensuring that transactions are permanent: that their effects
are not lost, even if the hardware fails.

® Ensuring that transactions are serializable: that concurrently
run transactions have the same effect as some sequence of the
same transactions run one at a time.

® Storing, updating, and deleting arbitrary data records.

® Indexing data records (there may be more than one key per
record, and more than one record per key).

A database file system does not perform these database functions:

® Enforcing a user-defined data model, specified by a schema.

® Providing a high-level query language.

® Automatically generating keys and updating the appropriate
indexes as records are stored, updated, and deleted.

® Automatically maintaining relationships between records.

To summarize the above lists: a database file system provides record
storage, access methods, recovery, and concurrency control. It is a low-
level basis onto which a database management system can be built. It
can support any of the traditional data models: hierarchical, network
or relational.

My reasons for focusing on the low-level end of the database prob-
lem, rather than the (probably more popular) high-level end, are these:

() The functions (user interface) are not controversial. While
people might disagree on whether a function should be called “store,”
“insert,” or “install,” the passion with which they argue is mild
compared to the viciousness with which the hierarchial, network, and
relational advocates argue.

(i£) We know how to build a database file system. The challenges
are engineering ones (how to package it, how to tune it, etc.). We don’t
know how to build a “complete” database system without producing
a monster or a toy.' Furthermore, even if we did know how to build
one, the market would be small (because most users wouldn’t like our
model) and it would take too long to build.

(iit) Many applications only need the database file system. Sche-
mas, query languages and automatic indexing would be overkill.

(fv) We have to start somewhere—why not at the bottom so we get
something useful fairly early?

ll. ALL THINGS TO ALL PEOPLE?

We can’t build a database file system that satisfies every need, or
even most needs. But we can design a structure for a database file
system that satisfies most needs. This situation is analogous to that
with compilers: there are many compilers, even many for the same
language. But nearly all of them have the same structure: lexical
analyzer, parser, code generator, optimizer, etc. In fact, the progress in

2388 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

compiler writing over the last 15 years is in large part due to the
establishment of a standard structure for compilers.

It would be premature to propose a standard structure for database
file systems, but I am proposing a structure that can handle a reason-
ably wide range of applications, from tiny, personal databases (e.g., a
mailing list) to large, serious, operation-support systems, such as those
developed by Bell Laboratories for automating telephone company
operations. This structure divides the problem into modules, each of
which hides design decisions.” For example, the recovery module hides
the decision to use a redo log or not. Since this decision is hidden, the
module may be implemented in two ways: with a redo log and without.
Those users who need a redo log and are willing to pay for it can have
one, and those users who don’t need it don’t pay for it.

So the goal of my design is to provide a framework onto which
multiply-implemented modules may be hung. To configure a specific
database file system, the user picks one from column A, one from
column B, etc. If the structure is right, evolution will eventually result
in a wide spectrum of high-quality implementations for each module.

To get the structure right, a series of experimental systems should
be built. I have already built the first system, consisting of a single
implementation for most modules. I will describe here the structure of
this system, called XFS. I encourage the reader to focus on the
structure of XFS rather than its implementation, which is admittedly
inadequate for most purposes.

In fact, I invite the reader to try to imagine multiple implementations
of each module. If these multiple implementations cover the range of
users’ needs, and if the result is esthetically pleasing and efficient, then
the structure is a success, and additional “real” implementations
should be developed. If the structure needs modification, then it can
be modified easily (assuming we know what we want!), since the
investment in implementation is minimal.

Figure 1 illustrates the structure of XFS. The interface to level 4, as
marked by the double line, is the same as the standard interface to the
UNIX file system (open, read, write, etc.). Software above the double
line may be written without knowing whether it will run directly on
the UNIX operating system or on top of software that handles con-
currency and recovery. This is a key feature of this structure.

The following sections describe each level of abstraction, from lowest
to highest. The encircled numbers in Fig. 1 are the levels. The reader
may want to skim the entire article before reading thoroughly, since
when reading about the lower levels it may be useful to know where
we are headed.

This structure is by no means perfected. The text mentions some
unresolved problems that I knew about when I designed this structure.
I urge the reader to try to find the ones I didn’t know about.

DATABASE FILE SYSTEM 2389

Higher-Level Database Software @
Uniform Access Method (AM...) @
Record
Storage EH @ other
(RS...) XH HBT WBT access
Page Alloc. methods
(PG..) ® ® ® ®
1/0 Switcher Concurrency & Recovery (CR ...) @
1/0O Statistics (S...) @
System Call Interface (sys...) @
UNIX (O]

Fig. 1—Structure of experimental system.

lil. LEVEL O: UNIX FILE SYSTEM

This level is the file system, as described in Section II of the UNIX
System User’s Manual.’ The operating system is entered by executing
a sys instruction, which can be done only in assembly language.

IV. LEVEL 1: C SYSTEM CALL INTERFACES
4.1 Level 1a: Standard C Interfaces

For each system call there is a small C interface written in assembler.
We are interested in these interfaces:

int open(path, oflag)
char *path;
int oflag;

int creat(path, mode)
char *path;
int mode;

int close(fildes)
int fildes;

int read(fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

2390 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

int write(fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

long Iseek(fildes, offset, whence)
int fildes;

long offset;

int whence;

4.2 Level 1b: C Interfaces, Alternate Names

This module is the same as 1a, except the names of the entry points
are prefixed with sys: sysopen, syscreat, etc. This allows the unpre-
fixed names to be used in higher levels (2a and 4). To produce the
code for this module, I simply edited the assembly language functions
of module 1a to change the entry point names.

In XFS, 1b is used instead of 1a.

V. LEVEL 2:1/0 STATISTICS
5.1 Level 2a: 1/ 0 Statistics, Standard Names

This module consists of small C functions that have the same names
as the functions in level la: open, creat, etc. Each function gathers
statistics about activity on each file and then calls the corresponding
sys... function. An additional function prints the statistics and zeros
the counters:

void iostat()

Statistics can be gathered on any existing UNIX system program by
inserting a call to iostat and reloading it with the functions from modes
1b and 2a.

Figure 2 shows some sample output from iostat. This 1/0 statistics
facility is useful in its own right, and is available as a package separate
from XFS. I have used it extensively to evaluate the access methods
described in Section IX.

5.2 Level 2b: I /O Statistics, Alternate Names

This is the same as 2a, but with an S prefixed to each function name
(except for iostat). This allows the standard names (open, creat, etc.)
to be used at level 4. XFS uses module 2b.

VI. LEVEL 3: CONCURRENCY CONTROL AND RECOVERY

This module (CR) provides the notion of transactions, and contains
algorithms that ensure the properties of atomicity, permanence, and

DATABASE FILE SYSTEM 2391

FILE OPENS READS nonbuf WRITES nonbuf SEEKS
stdin 1 9 9 0 0 0
stdout 1 0 0 1409 1409 0
stderr 1 0 0 0 0 0
w.F 2 0 0 0 0 0
w.T 2 1 0 1 0 2
TMPbaa014870 1 0 0 1 1 0
TMPcaa014870 1 6 6 3 3 11

Fig. 2—Sample iostat output.

serializability. I/0 is in units of pages, which are referenced by page
numbers.

6.1 Specification
These are the interfaces to module CR:

#include (stdio.h)
#include ‘‘cram.h’’

void CRopen(dbname)
char *dbname;

FNUM CRfopen(fname)
char *fname;

XNUM CRbegin ()

void CRcommit(x) "
XNUM x;

void CRabort(x)
XNUM x;

void CRwrite(x, f, p, ptr)
XNUM x;

FNUM f;

PNUM p;

PAGE *ptr;

void CRread(x, f, p, ptr)
XNUM x;

FNUM f;

PNUM p;

PAGE *ptr;

The function CRopen must be the first function called. It opens the
database named by its argument (only one database may be open at
a time).

2392 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

CRbegin starts a transaction and returns a transaction number
(XNUM) which must be used in subsequent calls on behalf of this
transaction. A single process may have several simultaneous transac-
tions (with different XNUMs, of course). If CRcommit is called, then
when it returns the transaction is guaranteed to be permanent. If
CRabort is called, then all traces of the transaction are erased as
though it had never started in the first place. After a call to CRcommit
or CRabort, the XNUM is no longer valid.

If transaction number 0 is used instead of an XNUM obtained via
CRbegin, the properties of atomicity, permanence and serializability
will not be ensured for transaction 0 or for any other concurrently
running transaction. In other words, there is no logging or locking for
transaction 0. This feature is used by level 5 (page allocation).

Files are opened by calling CRfopen. The FNUM that is returned is
used in 1/0 operations on that file. (It is analogous to a UNIX system
file descriptor). CRfopen automatically creates files that are nonexist-
ent. Each file consists of an implementation-defined number of pages
of sizeof(PAGE) bytes. Any page may be read or written; reading a
page that has never been written returns a page of all zeros. In XFS,
each file has 2048 512-byte pages.

Pages are numbered consecutively starting with 0. The typedef
PNUM is used for page numbers, but PNUMs behave like integers and
may be operated on accordingly.

CRwrite writes the data pointed to by ptr to the page p in file f on
behalf of transaction x. Similarly, CRread reads a page.

I am not sure how much information about the implementation of
serializability should be part of the externals of module cR. On the one
hand, I want to hide as much as I can to allow alternative implemen-
tations, but on the other hand, these functions can’t be used efficiently
unless the user knows what various combinations of calls will do to
concurrency. So the following is an initial attempt.

The granularity of locking can be as small as a page and as large as
the entire database. There are two kinds of locks: share and exclusive.
A granule can be share locked if no other transaction has it exclusively
locked. A granule can be exclusively locked if no other transaction has
it locked (share or exclusive). All locks are held until the transaction
terminates (via CRcommit or CRabort).

Calling CRread puts a share lock on the granule that contains the
page being read. Calling CRwrite puts an exclusive lock on the granule
that contains the page being written. For example, if the granule is a
page, then CRread share locks a page and CRwrite exclusively locks a
page (this is in fact what XFS does).

Since share and exclusive locking is automatic with reads and writes,
transactions are guaranteed to be consistent in the sense of Ref. 4.

DATABASE FILE SYSTEM 2393

That is:
® They are serializable.
® Each transaction sees a consistent state of the database.
® Undoing a transaction loses no updates of completed transac-
tions.
® Undoing a transaction produces a consistent state.

This is the strongest degree of consistency, and I do not think that
lowering the degree of consistency (e.g., not holding share locks to
transaction termination) to gain concurrency is a good idea. My main
reason is that lower degrees of consistency can cause unreproducible
errors, making debugging almost impossible. On the other hand, there
are some applications where read-only, statistical reports must be run
concurrently with other more critical transactions. Here it makes sense
to let the read-only transaction run at a lower degree of consistency.
My conservative design would be too inefficient for these applications
(but the design is not hard to change).

CRread and CRwrite wait until the appropriate lock is available.
Deadlock can occur, so an implementation of module CR must be able
to detect and resolve deadlock. Deadlock is resolved by choosing a
transaction as the victim and murdering it with CRabort. The trick is
picking the best victim.

6.2 XFS Implementation

Module CR is implernented in XF'S as follows: The standard UNIX
operating system call names are used for 1/0 (open, creat, etc.). These
system calls could be supplied by level 1a, but, as the next section
explains, they are actually supplied by level 4.

In XFS the property of permanence is not ensured; that is, if the
files containing permanent data are corrupted, then the entire database
has to be restored from the last backup tape maintained by the system
administrator. All transactions committed after the backup would be
lost. Because losing transactions is not one of the implementation
options for module CR, XFS must be viewed as unfaithful to the
specifications with regard to this property.

A real implementation of module CR could use a “redo” log to
ensure permanence.” With this approach all writes are written to the
database and to the log (on tape or disk). If permanent data are lost,
the affected files are restored from the last backup and the log is used
to bring them up to date. (This step can take hours, but it is rare). If
the log is lost, a new backup is made immediately. The redo-log
technique is used by many commercial database management systems
(e.g., IBM’s IMS).

In XFS serializability is ensured by share and exclusive locks at page
granularity, as described above. The lock manager is functionally

2394 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

correct but inefficiently implemented. Deadlock detection and resolu-
tion is particularly naive: after trying three times to obtain a lock,
sleeping for a few seconds between tries, the transaction requesting
the lock is murdered.

In XFS atomicity is ensured by an “undo” log. Before any page is
written, the old data is logged. If the transaction aborts, the undo log
is used to restore the database by rewriting the old pages. This must
also be done after a crash, since that also causes transactions to be
aborted. In fact, whenever CRopen is called, all active transactions are
aborted before the process invoking CRopen is allowed to proceed
(these transactions must have resulted from a previous life that ended
in « crash).

The XFS implementation of the undo log is inefficient in time and
space. Logged pages are appended to a file, and the space occupied by
unneeded pages is not reclaimed. After a while the log file gets too
large. This turns out to be inconvenient even in an experimental
system, because some of my experiments used too much “tape.” A real
system could solve this problem in any number of ways, so I am not
too worried about this problem with XFS.

The property of atomicity can also be achieved by differential files,”
shadow pages,® and other techniques. However, some of these tech-
niques are not easily adapted to a situation where multiple transactions
are active simultaneously, since there must be a way to undo one
transaction without disturbing the other transactions.

VIl. LEVEL 4: 1/0 SWITCHER

The purpose of this module (the “switcher”) is to hide the difference
between ordinary system files and files controlled by module CR (level
3). The interface to the switcher is the same as the standard UNIX
system calls (open, creat, etc.). A program written to use these system
calls does not know whether it is using the facilities of levels 2 and 3
or running directly on level 1. This has three advantages:

(i) Programmers do not have to learn another file system interface.

(ii) Many programs written for the UNIX operating system, using

the system calls directly or using the standard 1/0 library (fopen, getc,

ete.), can benefit from concurrency control and recovery simply by

running them on top of levels 2 and 3. Hence, many existing programs
can be used in database environments without change.

(iii) Higher-level database software (access methods, retrieval al-
gorithms, etc.) can be debugged and tested without the overhead of
concurrency control and recovery. This cuts down on loading time,
program size, files, file descriptors, etc.

The switcher works as follows: by default, operations (open, read,
write, etc.) are routed directly to level 2b, so that the effect of any

DATABASE FILE SYSTEM 2395

system call is exactly the same as if the switcher were not involved.
Alternatively, a file may be registered with the switcher by calling freg:

void freg(path)
char *path;

Once a file is registered, operations on it are routed to module CR
instead of 2b. Ultimately, module CR will also need to perform 1/0
operations (e.g., a call to CRread may cause a call to read). Since there
is only one entry point for each system call, module CR will make a
recursive call on the switcher. To break the recursion, the file is
temporarily unregistered, so that the operation can be switched di-
rectly to module 2b. Figure 3 illustrates the sequence of calls.

For registered files, the behavior of 1/0 routed through module CR
is not exactly like that of unregistered files, because module CR
operates in units of complete pages. In fact, on registered files, calling
read or write with a byte count other than 512 causes a fatal error. If
the standard 1/0 library is used with buffering, most of the 1/0 is in
units of pages, but the last block of the file can be short. Another
related problem is that module CR does not keep track of the file size
(all files have a fixed number of pages), so there is no notion of an end-
of-file.

I know of no clean solution to these problems. Therefore, the
transparency provided by the switcher is only usable with “database”
software, which usually deals entirely with complete pages. There is
still enough software in this category to make the switcher worthwhile.

Since the switcher hides the information as to whether module CR
is engaged, programmers working at higher levels of abstraction (level
5 and above) may ignore concurrency and recovery issues. They may

Unregistered
open(‘‘data”, 0)
Sn;en(“dala", 0)
syslnpenl“data”, Q)

4
UNIX

Registered

freg('’data”)
open(“data”, 0)
l
CRfopen(‘‘data”)
[unregister “data™]
i
open(*'data”, 0)

!
Sopen(‘‘data”, 0)
[l

sysopen(“data”, 0)
)

UNIX
[reregister “data™ on
return to CRfopen |

Fig. 3—Call sequence.

2396 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

read and write arbitrary pages of arbitrary files willy-nilly, and still be
assured that their transactions will be atomic, permanent, and serial-
izable. This is a nice state of affairs, because higher-level database
software is complicated enough without complicating it further with
concurrency and recovery considerations. In addition, the programs
implementing the concurrency and recovery algorithms are made
easier to write, debug, and test because little functionality is sup-
ported—just the ability to read and write pages. Since these programs
have so little functionality, they will require less modification than the
rest of the system as maintenance, enhancement, tuning, and adapta-
tion take place over time. Once debugged, the concurrency and recov-
ery software is therefore likely to stay that way.

VIll. LEVEL 5: PAGE ALLOCATION
8.1 Specification

This module provides a mechanism to keep track of allocated and
free pages. Its use is entirely optional—some algorithms need such a
facility and some don’t. The notions of “allocated” and “free” are
imaginary anyway, since every file has a fixed number of pages at all
times. This is the interface:

PNUM PGalloc(x, f)
XNUM x;
FNUM f;

void PGfree(x, f, p)
XNUM x;
FNUM f;
PNUM p;

PGalloc allocates a page on behalf of transaction x in the file, indicated
by f. PGfree frees a page previously allocated. A freed page can be
reallocated.

8.2 XFS Implementation

In XFS, the first page of a file on which PGalloc and PGfree are to
be used is a bit map that indicates whether each page is allocated or
free. Since writing a page automatically sets an exclusive lock, and
since exclusive locks are held until a transaction terminates, the use of
PGalloc would ordinarily increase the locking granularity from a page
to a file. To avoid this, PGalloc does not make use of its XNUM
argument, but instead reads and writes the bit map as transaction 0.
Writing a single page is inherently atomic, so a partially written bit
map cannot occur. The only disadvantage of suppressing recovery is
that if a transaction aborts, its allocated pages will not be freed. An

DATABASE FILE SYSTEM 2397

offline utility (not implemented) could restore these lost pages to the
free list.

The same game cannot be played with PGfree, since if a transaction
aborts after freeing a page, the bit map must be restored to show the
page as allocated. So PGfree does run on behalf of the transaction that
calls it. From the first PGfree until the transaction terminates no other
transaction can free a page, so PGfree calls should be issued close to
transaction termination for maximum concurrency.

Although PGalloc can run as transaction 0 and still be atomic and
serializable, it needs the services of the recovery module for perma-
nence (i.e., writes to the bit map must be on the redo log). Otherwise,
when a file is restored after disk damage, the bit map (not being on the
redo log) won’t be restored. The problem is avoided in XFS, because
there is no guarantee of permanence anyhow. But, in a real system,
writes to the bit map would have to be logged. That in turn means
that an exclusive lock would have to be held until transaction termi-
nation, with a corresponding bad effect on concurrency. I don’t have
a clean solution to this problem right now.

The reader may wonder why, when a file is restored from the redo
log, the bit map couldn’t be constructed at that time. Unfortunately,
this isn’t possible with the structure described here, since recovery is
done at level 3 and the bit map (where one is used) is at level 5. In a
real system one doesn’t have to be as strict about the levels as I choose
to be, but I'd like to keep things separate until I am convinced that
there is no alternative.

IX. LEVEL 6: ACCESS METHODS

This level provides mechanisms to store and retrieve information
via a unique key. The only information stored is a disk address (typedef
DADDRY) which can be used to access a data record using the facilities
of level 8. There are four different access methods, two using B-trees’
and two using extendible hashing:®
EH (Extendible Hashing: Rochkind) This access method is

based on the algorithms given in Ref. 8. This module is the
only one in XFS that uses the page allocation functions
(level 5).

XH (Extendible Hashing: Thompson) This access method, al-
though similar to the method in Ref. 8, was independently
invented by Ken Thompson. Minor modifications were made
by Peter Weinberger and Matthew Hecht.

HBT (B-tree: Hecht) This access method is described in Ref. 9.

WBT (B-tree: Weinberger) This crash-resistant implementation of
B-trees is described in Refs. 10 and 11. This access method
is at a disadvantage in XFS, since its crash recovery mech-

2398 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

anism is redundant, and the resulting overhead makes it
much less efficient than HBT. Also, instead of storing the
data directly in the leaf, a disk address is stored there and
the data is stored in another file. In XFS, the data in the
other file is also a disk address (DADDR), which could just
as easily have been stored in the leaf, eliminating one level
of indirection. However, I did not want to change the WBT
functions, since their inclusion in XFS is only temporary
anyhow. (I ignored the extra I/O when comparing WBT to
the other methods).
Note that three out of the four access methods were not written
specifically for XFS, but were integrated into XFS nonetheless—
without change. This demonstrates the viability of hiding module CR
(level 3) behind an interface that looks like the standard UNIX system
calls (level 4).

A real file system probably needs only one extendible hashing access
method and one B-tree access method. (Ordinary hashing and a user-
defined method are other possibilities). I have included two of each
type so that I could run some experiments comparing them. (These
experiments are not reported on here.)

The interfaces to the four access methods are all different, and each
offers different features. I won’t cover the specifics here, since in XFS
these modules are used only through a Uniform Access Method
Interface (level 7). Suffice it to say that each module is capable of
implementing the features of level 7.

X. LEVEL 7: UNIFORM ACCESS METHOD INTERFACE

This module hides the differences among the four access methods of
level 6 behind a uniform interface. The idea is that one chooses the
access method when a file is created, but after that the operations are
identical for each interface. This has obvious advantages:

() There is only one interface to learn.

(it) The decision as to which access method to use can be delayed.
The software above level 7 can be developed using one method, and
later another method can be substituted if performance experiments
dictate.

(iif) A uniform interface makes it easier to test and compare the
access methods, since the same program can be used on every method.

A disadvantage of the uniform interface is that it is a least common
denominator—several features offered by only one method had to be
omitted. However, a user who must have an omitted feature is free to
use the access method directly at level 6 (giving up the advantages of
the uniform interface).

One feature that is not uniformly provided, but that is not omitted

DATABASE FILE SYSTEM 2399

either, is the ability of B-trees to efficiently scan the keys in alphabet-
ical order. Omitting this property would be foolish, since it is the
primary reason for using B-trees (instead of hashing) in the first place!
So the externals of the uniform interface specifically state that sequen-
tial scanning is ordered if a B-tree method is used. If the higher-level
algorithm needs this property, then one will not be able to substitute
a non-B-tree method transparently.
The following paragraphs describe the uniform interface in detail.

#include (stdio.h)
#include “‘cram.h”’

AMD *AMcreate(file, method, sort)
char *file, *method, *sort;

AMD *AMopen(file)
char *file;

void AMclose(a)
AMD *3;

void AMinsert(a, key, info)
AMD *a;

char *key;

DADDR info;

void AMdelete(a, key)
AMD *a;
char *key;

STATUS AMfetch(a, key, infop)
AMD *a;

char *key;

DADDR *infop;

void AMtake(a, keyp, infop)
AMD *a;

char * *keyp;

DADDR *infop;

AMscan(a)

AMD *a;

AMnext(a, keyp, infop)
AMD *a;

char * *keyp;

DADDR *infop;

void AMstat(a)
AMD *a;

2400 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

The state of a file is kept in an access method descriptor (AMD).
AMcreate and AMopen return pointers to AMDs, and the other func-
tions take an AMD pointer as their first argument. (An AMD pointer is
analogous to a FILE pointer as used with the standard 1/0 library).

AMcreate creates a new file and opens it. Method may be EH, XH,
HBT or WBT. Sort, meaningful only for the B-tree methods (HBT
and WBT), may be A for alphabetic or N for numeric. In alphabetic
sorting, the keys are sorted in lexical order (“10” comes before “2”).

In numeric sorting, the keys are sorted as numbers (2 comes before
10). If sort is NULL, A is assumed. For EH and XH sort must be NULL.

AMopen opens an existing file. The method is deduced from the file
itself.

If the services of level 3 are desired (concurrency control and
recovery), then a file should be registered with freg (see Section VII),
before AMcreate or AMopen is called. Furthermore, the external XNUM
Xnum (defined in cram.h) must be set to the transaction number, like
this:

Xnum = CRbegin();

This bit of awkwardness is forced by the fact that the AM functions
(level 7) do not know anything about concurrency and recovery (level
3), so they can’t help make transaction control convenient. However,
things don’t stop with level 7—there are many levels of database
software before we reach user code, and one of these levels could
arrange for transaction control.

AMclose closes a file. Files must be closed explicitly—a “close” is
not automatic on process termination.

AMinsert inserts a DADDR (disk address), given by info, associated
with a null-terminated ASCII string, given by key. There may be only
one key per DADDR, and one DADDR per key. (Of course, a DADDR
may be used to indirectly reference a list of DADDRs, but this is outside
of the AM module). Before AMinsert is called, the data record has
presumably been stored somewhere, and the DADDR says where. The
RS functions of level 8 may be used to store records.

It may be useful at this point to recap the steps needed to store a
record (“Colorado”) associated with a key (CO). (RSinstall is described
in Section XI.)

#include (stdio.h)
#include ‘‘cram.h’”’

AMD *ga;
DADDR d;

int fd;
char *rcd = ‘“‘Colorado’’;

DATABASE FILE SYSTEM 2401

char *key = “CQO"";

freg(*‘dfile’’); /*level 4 */

freg(‘‘kfile’); /*4/
Xnum = CRbegin(); /*3*/
fd = c-eat(''dfile’’, 0666); /*4r/
a = AMcxreate(“'kfile’’, "'XH"", NULL); /*7T*/
d = RSinstall(fd, strlen(rcd) + 1, rcd); /*8*/
AMinsert(a, key, d); /T */

CRcommit(Xnum); /*3*/

Note that atomicity, permanence, and serializability are guaranteed
for this transaction, even though functions have been used (creat,
AMinsert, etc.) that know nothing about concurrency or recovery.
AMdelete deletes a key and its associated information.
AMfetch retrieves the information associated with a key. The argu-
ment infop must point to a DADDR where the information will be
stored. A STATUS is returned; it is defined in cram.h like this:

typedef enum {AMFOUND, AMMISSED, AMFAILED} STATUS;

If the key is found, AMFOUND is returned. For the hashing methods
(EH and XH), AMFAILED is returned if the key isn’t found. For the B-
tree methods (HBT and WBT), if the key isn’t matched exactly,
AMMISSED is returned and the next key greater than the desired one
may be obtained via AMtake. If there is no next key, AMFAILED is
returned.

AMtake, which may be called only after AMfetch returns AM-
MISSED, sets the character pointer pointed to by keyp and the DADDR
pointed to by infop to the key and associated information actually
found. This function makes available one of the useful features of B-
trees: the ability to reference a key by looking up a prefix and taking
the next key in sequence.

AMscan and AMnext are used to scan the entire file. The scan is in
sort order (alphabetic or numeric) for B-trees and in random order for
hashing. AMscan starts (or restarts) the scan. AMnext retrieves a key
and associated DADDR (in a manner like that of AMtake) each time it
is called. It returns 1 if a key and DADDR were returned, and 0 on
EOF. The functions are designed to be used in a for statement:

AMD *g;
char *key;
DADDR info;

for (AMscan(a); AMnext(a, &key, &info);) {
[do something with key and info]
}

2402 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

Finally, AMstat prints statistics on the standard output. The statistics
vary with each method and are not described here. Figure 4 shows a
(baffling) example for an EH file.

Xl. LEVEL 8: RECORD STORAGE

This module is capable of storing and retrieving records containing
arbitrary data. This is the interface:

DADDR RSinstall(fd, nbyte, rcd)
int fd, nbyte;
char *rcd;

char *RSaccess(fd, d, nbytep)
int fd;

DADDR d;

int *nbytep;

RSinstall stores nbyte bytes of data pointed to by rcd in the file
corresponding to file descriptor fd. The disk address of the stored
record is returned. Fd is a normal UNIX file descriptor, obtained via
creat or open.

RSaccess retrieves the record at disk address d. It returns a pointer
to the record, and sets the integer to which nbytep points to the
record’s length. Normally, after a record is stored, its DADDR will be
inserted into one or more indexes using the uniform access method
interface (level 7). This approach is atypical; usually, a database file
system has a primary key and secondary keys, and the record is stored
along with the primary key. Here, however, there is no primary key.
(Or, if you prefer, the DADDR is the primary key.)

Note that levels 7 and 8 are totally independent. Higher-level
programs are responsible for ensuring that new records are indexed in
all the ways they should be, that indexes are appropriately updated
for changed records, and that appropriate deletions are made for

441 accesses, 441 installs: 0 deletes

9 splits. 3 doublings: 507 reinstalls

16 dir ptrs: 10 leaves: 441 keys: 1392 findleafs
3932 bytes of data; 77% leaf fill

1392 rdleafs: 957 wrtleafs: 948 avoided moves
2X1 lost reads: O premature writes

1211 512-byte reads: 949 51 2-byte writes

Fig. ——Example of AMstat data for EH file.

DATABASE FILE SYSTEM 2403

deleted records. These tasks cannot be done at this level, since the
data is arbitrary and there is no way to determine what the keys are.
Higher levels will presumably impose a fielded record format on the
data record.

There is no RSdelete function. If one is needed, it could, of course
be added. Alternatively, garbage collection could be done by an offline
utility. There is also no way to overwrite an existing record.

The RS functions can be used with or without concurrency control
or recovery (i.e., freg called or not). In most of my experimental use of
XFS, files used with the RS functions were not registered, since
RSinstall always seeks to the end of the file before writing. If the
transaction aborts, the written part of the file will have been wasted,
but no logical inconsistency will result. I have a feeling that this
property should not be made part of the specification, however, be-
cause it unnecessarily restricts implementation options.

Xil. HIGHER LEVELS

My work on this file system structure stopped with level 8. I consider
this to be the boundary between a database file system and the higher-
level parts of the database. Above level 8 different designs tend to have
a drastic effect on efficiency and user convenience, and much work
remains to be done before a satisfactory higher-level structure can be
designed.

For many purposes, one could program a simple level 9 module that
would store fielded data records and automatically maintain one or
more indexes. It would be driven by a table specifying the fields, how
the keys are to be formed, what access method is to be used for each
index, and so on.

Xlll. ACKNOWLEDGMENTS

My design benefited greatly from discussions with Terry Bergeron,
Mike Bianchi, Don Carter, Dan Fishman, Mathew Hecht, Reuven
Kaswin, John Linderman, Bill Roome, and Glenn Rose.

REFERENCES

1. M. Stonebraker, “Retrospective on a Database System,” ACM TODS, 5, No. 2
(June 1980), pp. 225-240.

2. D. L. Parnas, “A Technique for Software Module Specification With Examples,”
CACM, 15, No. 5 (May 1972), pp. 330-336.

3. UNIX User's Manual, ed. T. A. Dolotta, S. B. Olsson, and A. G. Petrucelli, New
York: Holt, Rinehart and Winston, 1982.

4. J. N. Gray, “Notes on Data Base Operating Systems,” in Advanced Course in
Operating Systems, Technical Univ. Munich, New York: Elsevier North-Holland,
1977.

5. D. G. Severence and G. M. Lohman, “Differential Files and Their Application to
the Maintenance of Large Databases,” ACM TODS, 1, No. 3 (September 1976),

2404 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

pp. 256-267.
6. R. A. Lorie, “Physical integrity in a large segmented database,” ACM TODS, 2, No.
1 (March 1977), pp. 91-104.
7. D. Comer, “The Ubiquitous B-Tree,” Computing Surveys, 11, No. 2 (June 1979), pp.
121-137.
8. R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible Hashing—A
Fast Access Method for Dynamic Files,” ACM TODS, 4, No. 3 (September 1979),
pp. 315-344.
9. M. S. Hecht, unpublished work.
10. P. J. Weinberger, unpublished work.
11. P. J. Weinberger, unpublished work.

DATABASE FILE SYSTEM 2405

