Copyright © 1982 American Telephone and Telegraph Company
THE BELL SySTEM TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in US.A.

Database Systems:

Making UNIX * Operating Systems Safe for
Databases

By P. J. WEINBERGER
(Manuscript received September 4, 1981)

The UNIX* operating system was written for document prepara-
tion and software development. Its general utility has led to its use
for many other things, including database management. There have
been complaints that the system kernel is unsuitable for running
applications that use databases: the file system is accused of being
too slow and unrobust; the process structure is accused of fatal
inefficiencies; and there is neither enough sharing nor any way of
controlling what there is. Modest changes to the kernel refute the
attack. The file system is robust and can be made much faster; in 32-
bit paged systems the process structure matches the needs of trans-
action processing systems, and a few additional system calls provide
all that is needed for sharing and its control. This paper discusses
the problems and shows how to solve them.

I. INTRODUCTION

The interaction between operating systems and database systems
deserves more attention than it has received in the literature."” On the
one hand, a database system depends on services provided by the
operating system, and the difficulty of writing a database system
depends on how many of the facilities it needs are already provided by
the operating system. On the other hand, research in databases has
provided models for concurrency and atomicity that could be usefully
applied within operating systems, for instance, in simplifying the
implementation of file systems.

I shall discuss what might be done to the UNIX operating system™’

* UNIX is a trademark of Bell Laboratories.

2407



to make it more suitable as a host for database systems. UNIX systems,
in all their varieties, are time-sharing systems that were initially
written to make it easy to develop software and to do document
processing. As these systems have grown and changed over the years,
various decisions have resulted in a system not particularly attuned to
the needs of database systems. My thesis is that by modest changes to
the operating system, and with some discipline in the design of data-
base systems, the UNIX operating system can be made into a system
well suited to run database systems.

An alternative® is to develop a minimal operating system, and have
the database system do the work customarily done by the operating
system. This might lead to systems with better performance than can
be achieved by adapting the present system, but it might not. The
approach of this paper may do well enough by supporting transaction
processing systems running a few transactions per second, and it would
have the advantage that the resulting system is also convenient for
developing software.

I shall present some specific proposals in support of my thesis. The
proposals have been chosen to be simple to explain and easy to
implement. I do not have enough space for a detailed discussion of
each proposal. Nor is there enough space even to describe many
alternatives, all with their own advantages and disadvantages.

Il. SUMMARY

It is interesting that the worst complaints about the UNIX system
are not about things like concurrency control—where there is much
published work, and where the system is weak—but about the simpler
matters of performance and of robustness (not even safety*) against
crashes. (Data communications play an important role in applications,
but a discussion would double the size of this paper.) The places where
the system seems weakest are:

(i) Disk performance

(i) File and file system robustness against crashes
(itz) Concurrency control
(iv) Fast processing of small transactions.

These topics are discussed in more detail later, but here is a summary
of the problems. Database systems exist to handle large amounts of
data. If the data just trickles in from the disks, it takes too long to

* The file system is safe if stopping the cpu at any time does no more damage than
losing free space on the disk.

2408 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



handle requests made to the database. The disparity in speed between
disks and cpus is remarkable. (I shall use performance data based on
equipment of about the power of VAX/780s and associated periph-
erals.) If the heads of a disk are already on the desired cylinder,
rotational latency is about 8 milliseconds. Medium-speed hardware
executes an instruction every microsecond, say. If one scales time by
a factor of a million so that the machine executes an instruction every
second, then following a disk request, somewhere between 3 and 14
hours will pass before the data begins to arrive, at the rate of about a
byte per second. This enormous discrepancy in speed is the source of
much evil in file system organization (inflexible designs in the name of
efficiency), and the source of some inadequate performance. For in-
stance, recent UNIX systems typically complete about one transfer (of
512 bytes) every two disk revolutions, which provides about 3 percent
of the raw disk bandwidth.

Crashes present a particular peril to database systems, not only
because there is a lot of data in a database system, but because of the
peculiar guarantees about the data that the database system makes to
the owner of the data. A regular time-sharing user understands that
he or she is responsible for the organization of data inside the files.
The user of a database system has had the details of the organization
of the data hidden and can only get at the data through the database
system. In exchange for taking control of the user’s data, the database
system guarantees that it will be kept consistent. (The data in the
database will be as if the user’s programs ran one at a time.) When a
crash occurs, operating systems have ways of discovering and repairing
the damage to their data structures, and of notifying users when
damage cannot be repaired. Interpolating a database system between
operating system and user confounds this model. Restoring acceptable
risk requires lowering the chance of losing data in a crash. There are
two obvious areas in which to lower the risk, one is in the robustness
of the operating system’s data structures used to find files and data in
a file, and the other is in ameliorating any bad effect of writes
interrupted by crashes. In UNIX systems the data structures are
inodes and directories and the writes are controlled by the write-
behind buffer caching algorithm. Of course a database system has to
be able to maintain transaction logs and audit trails for recovery itself.

Much of the research in database systems relevant to this paper has
been in concurrency control, particularly locking. Concurrent users of
a database need something to keep them from tripping over each
other’s changes. Obviously the control represents something shared
among users. Sharing now resides entirely within operating system
tables where it is carried on invisibly to users, and within the file
system where it is available to users. File system access is relatively

DATABASE SYSTEMS 2409



slow, certainly too slow for locks of small granularity, so that some
other locking mechanism has to be provided.

Many databases are used to support “transaction processing.” An
example is making an airline reservation on a single flight. Interaction
with the database consists of a small set of simple queries and updates.
Efficient processing of this work load means that the start-up cost of
each transaction has to be low. In the PDP11 UNIX system, simple
implementations used a separate process for each transaction, and
applications of any complexity needed several processes to get around,
for example, the small address space.® Each process had to be spawned,
which involved a lot of copying of process data in memory, and had to
gain access to the database, which involved a lot of file opening and
directory searching. The result was that time (hundreds of millisec-
onds) went into overhead and transactions ran slowly.

lll. PROBLEMS

The issues sketched above have to be addressed in a database
system, but no system would be used for applications if it is too slow
or loses files, so these two concerns get more detailed attention in the
following sections.

3.1 Disk bandwidth

The 1/0 architectures of computers differ. The hardware most UNIX
systems run on interrupts the cpu after each disk command (read,
write, or seek) is completed. After the interrupt, system software has
to see if the command was executed correctly and then issue the next
command. An alternative hardware organization allows the 1/0 hard-
ware to read sequences of commands out of memory, optionally
interrupting the cpu as each transfer of data is completed, but contin-
uing the 1/0. The discussion here is limited to the first architecture.

The cpu has one or more disk controllers, and each controller
controls one or more disks. At most, one disk on each controller can be
sending or receiving data, but all the disks on a controller can be
moving their heads simultaneously. If several disks are transferring
data at once, it is possible for the memory bus to become saturated,
but that problem will be postponed until many others have been
resolved. For definiteness I shall assume that the disks are formatted
into 512-byte sectors. A reasonable disk has 32 sectors per track and
10 or 20 tracks per cylinder, although improvements in technology
keep increasing these numbers.

The data rate the system sees from a single disk, assuming the
controller is not busy with other disks, is a function of how far the
heads have to move between requests, how much is transferred at each
request, and how the data to be transferred are scattered about the

2410 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



disk. The three factors are not independent. The observed rate of one
transfer every two revolutions is only weakly dependent on how much
is read at each request. Thus, all other things being equal, a 1 -ger
fraction of the disk bandwidth can be obtained by transferring more
each time. Older UNIX systems transfer 512 bytes at a time (hence
the 3 percent figure given above). It would appear that the apparent
rate could be nearly doubled by transferring 1024 bytes at a time, and
experience at the University of California at Berkeley bears this out.
There is a point of diminishing returns. If the heads are on the correct
cylinder, the average delay until the I ads have moved across a set of
blocks is half a rotation plus the time to read the blocks. Thus, the
average time to read 3 percent of a track is 0.53 revolution, that to
read 25 percent of a track is 0.75 revolution, and that to read a whole
track is 1.5 revolutions. Even if seek times were zero, with the heads
starting at a random sector on the track, reading a track at a time only
gives 2/3 of the raw disk bandwidth. Given that the minimum seek
time to an adjacent cylinder is 5 or 6 milliseconds and that the machine
takes an interrupt at the end of each transfer, even the greedy strategy
of reading a whole track at a time gives less than half the raw disk
bandwidth. This silly strategy does provide an upper bound for the
bandwidth obtainable if all files are laid out contiguously and read a
track at a time, a scheme that corresponds in no wise to the organi-
zation of the file system.

3.2 The UNIX file system

Understanding the source of some of the problems, and the oppor-
tunities for solving them, requires a description of the file system. A
file system is the abstraction of a disk provided by the operating
system, although the space used by a file system can be only part of a
disk, or several disks. To the user, a file system consists of a tree of
directories, each directory containing the names of other directories
and names of files. To the operating system, a file system has three
parts, a super block at the beginning containing descriptive informa-
tion, a contiguous collection of blocks containing inodes, and the bulk
of the file system containing all the file and directory blocks, and some
other blocks described below.

A file is an indefinitely extensible vector of bytes with operations
read, write, and seek. A directory is a file, except that users cannot
write in one, and the operating system interprets the contents as an
array of (inode, file-name) pairs. These pairs provide the mapping
from file names to inode numbers. The inode number says which inode
in the array of inodes in the file system describes the file. The inode
for a file contains information about the file’s type and accessibility,
its length, and where on the disk the data are. The latter is specified

DATABASE SYSTEMS 2411



by a short array of block addresses. The first ten entries in the array
are the addresses of the first ten data blocks of the file. The next is the
address of an indirect block, which is filled with addresses of data
blocks. The next is the address of a doubly indirect block, which is
filled with addresses of indirect blocks, and the last is the address of a
triply indirect block, which is filled with addresses of doubly indirect
blocks. Hence, a request out of the blue for a byte near the end of a
very large file (one containing a triply indirect block) may require four
disk accesses: for the triply indirect block, a doubly indirect, a singly
indirect block, and some data (see Table I).

The addresses of the free blocks in the file system are kept in some
of the free blocks, which are chained together in a list. The operating
system maintains the list of free blocks approximately as a stack.

3.3 The buffer cache

Data transfers are between the file system and a buffer cache
maintained by all versions of the UNIX system. When a block is to be
read, the system checks to see if it is in the cache. If it is, the system
doesn’t have to read it from the disk. When a block is to be written, it
is put in the cache and on the disk driver's queue, but control is
returned to the writer before the block goes to the disk. Under a time-
sharing load the cache is effective: on the system on which I am writing
this paper there have been—since it was last restarted—10,283,000
requests for file system blocks, of which 8,466,000 (82 percent) were
found in the cache. (For the record, there were 507,000 blocks written.)

The operating system provides some transparent asynchronous 1,/0.
If two blocks in a row are read from a file, thereafter, while the file is
being read sequentially, the operating system reads ahead one block.
To the extent that files are scanned sequentially, this decreases the
latency of reads. Of the 1,817,000 blocks read from the disk on my
machine, 1,413,000 were read-ahead blocks, while 404,000 were read
because they weren’t in the cache when needed. Reading ahead is
effective in databases too.’ i

The strategy for replacing buffers in the cache gets some attention
below.

Table |I—Disk accesses

Maximum Size of File

With One Doubly Indirect
Block Size (bytes) With One Indirect Block Block
512 64 kbytes 8 Mbytes
1024 256 kbytes 64 Mbytes
2048 1 Mbyte 512 Mbytes
4096 4 Mbytes 4096 Mbytes

2412 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



IV. SOLUTIONS
4.1 Disk performance

Although databases add difficulties, most of the problems with disk
performance already occur for time-sharing loads. Part of the trouble
comes from the blocks of a file being scattered randomly across the
disk. Therefore, successive reads (from a file or from different files)
can be expected to require a fair amount of motion of the disk heads.
Most disk drivers sort their queues by cylinder to reduce the average
seek time. It is then possible for an arbitrarily long time to elapse
between the time when a block to be written is placed on the queue
and when it goes to the disk, which time lapse is unsatisfactory for
database systems.

Average seek time could be further reduced by better matching of
locality on the disk with locality of reference. A reasonable hypothesis
is that several blocks will be accessed in each open file, so that if the
blocks of a file are near each other on the disk, it will be faster for a
program to read them. The conclusion is not so obvious if there are
several programs simultaneously using different files on one disk.
Regardless, it is hard to see how things would be made worse by
keeping the blocks of a file close together; and if the requests of users
for data are not exactly interleaved, things will be better than if the
blocks are scattered at random. Time spent seeking is wasted; anything
that lessens it increases disk throughput.

Not only is there a long time between data transfers from the disk,
but the amount of data transferred is small. The larger the size of a
block to be transferred, the larger is the fraction of the disk bandwidth
being used. Unfortunately, it takes time to transfer data, and memory
to put it in; reading data that will never be used consumes resources
with no return. There is a trade-off between block size and the fraction
of the disk bandwidth used productively. Very small and very large
block sizes waste resources; the happy medium depends on character-
istics of the load.

The advantages of using blocks larger than 1024 bytes may seem
speculative; one disadvantage occurs to everyone: the amount of space
occupied by a given set of files is likely to increase as the block size
increases because occupied disk space rounds up to a multiple of the
block size, so more space is wasted on the disk. Indeed if indirect
blocks are ignored, then one-byte blocks waste no space, and the
amount of wasted space is an increasing function of the block size.
However, the magnitude of the effect varies widely when you measure
how much larger specific file systems would be if the block size were
increased. Looking at the file systems available to me (at least half full
and bigger than 80 megabytes), I produced one in which the size of the
file system would be multiplied by 2.4 if the block size were raised

DATABASE SYSTEMS 2413



from 512 to 4096, and one in which the increase would only be 0.2
percent. The difference are explicable using two measures, the fraction
of files that are directories, and when this is large, the fraction of
directories that are nearly empty. In the 2.4 case, 62 percent of all files
were directories, 97 percent of the directories were no larger than 128
bytes, and 40 percent of all files were empty directories (which are 32
bytes long to hold the pomters for the directory tree). Cases like this
appear to be the result of using the file system directory tree as the
access method of a database and files as records in the database. The
file system at the other end holds large amounts of data. The average
file size in it is 250,000 bytes. The typical increase caused by going
from 512 byte blocks to 4096 byte blocks is about 40 percent. This is
about one year of disk improvement.

Clever people will have, and have had, no trouble thinking of ways
of ameliorating the effect of breakage at the end of files, and coping

with short directories. It is not likely that either will be a problem to
a database system.

The advantage to using bigger b]ocks is that each transfer gets more
data. To the extent that file access is sequential, the bigger the block
the faster the program. Sequential access is common. Programs that
use temporary files tend to write them and read them sequentially, or,
like the editor, are doing software paging on the contents. Sequential
scanning is also popular in databases because it is faster, even in a
plain UNIX system environment, than random access to data. The
drawback to big blocks, other than wasting disk space, is that it takes
longer to read them. Reading a big block for a few bytes of data wastes
more time than reading a small block. The most common instance of
this, based on the data reported above, is reading a directory that is
nearly empty. Another case would be random retrieval of single records
from a large file. There doesn’t seem to be any method for choosing
the optimal block size without unrealistically precise knowledge, but
my choice is 4096 bytes.

Another advantage of large blocks is that it is easier to allocate them
so that the blocks in a file are close together. Instead of the stack-and-
list discipline now used to manage free blocks, consider the possibility
of using a bit map, with one bit per block. In this case, it is harder to
find a free block if there are few, but finding free inodes when there
are few is even harder, and is done adequately now. The advantage is
that it is easy to see if there is a free block near the rest of the file.
Before describing how that might be done, notice the effect of large
blocks on a bit map. Only one-eighth the number of bits are needed
for 4096-byte blocks as are needed for 512-byte blocks. The entire bit
map for a 120,000,000-byte file system fits in the otherwise unused part
of the super block. An advantage to putting it there is that a flag bit

2414 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



could be added to the super block indicating whether the version of
the bit mask on the disk is current. This bit would be set as part of an
orderly shutdown. After a crash, when the bit was not set, the bit map
would be automatically reconstructed as one step in bringing up the
machine. In any case, the 32 to 1 space reduction of bit maps over disk
addresses means that the total space taken up by a bit map resident
in memory is small for 4096-byte blocks.

The stack-and-list discipline for free blocks makes it hard to discover
if there are any free blocks near a given place on the disk. A block
added to the end of a file should be allocated so that there is only a
small delay between reading the previous block in the file and reading
the new block. This is particularly easy with a bit map. The exact
algorithm depends on how the 1/0 hardware is organized and how the
disk driver organizes its request queue. If there is a delay between
finishing one read and starting another, then blocks adjacent on the
disk cannot be read as fast as blocks spaced a little farther apart on a
track. Likewise, if the disk controller sorts its queue by cylinder
(thereby avoiding giving blocks near the middle of the disk better
service), then allocating a block with a slightly smaller cylinder number
than the previous block in the file is clearly much worse than allocating
it with a slightly larger cylinder number.

Here is a specific example. The disk contains 800 cylinders, each of
which has 10 tracks, each of which contains 32 512-byte sectors. The
disk controller transfers a contiguous set of sectors at each request,
and then generates an interrupt. Empirical results show that if sector
0 is read on one request, then the next request cannot read sectors 1,
2, or 3 on the same rotation. (Part of the seemingly wasted time is
spent in the controller, which buffers whole sectors to do error checking
and correction, and the rest is spent in the system, handling the
interrupt and sending the next request to the controller.) Each 4096-
byte block uses eight contiguous sectors, so there are four blocks on
each track. After reading a block, the next block that can be read
without losing a revolution is two farther around the disk. If the last
block of a file is the nth block on a track, then the following algorithm
decides where the next block should go. First look for a free block in
the same cylinder whose number on its track is n+2 modulo 4. Failing
this, try for n+3. Now the choice is between staying on this cylinder
and losing a rotation or moving to the next and losing a rotation. There
are some interesting questions here, but a rule of thumb is to try to
treat the disk as a drum, and stay on the same cylinder as long as
possible.

An alternative would be to allocate the blocks in the order 0, 3, 2, 1
as long as possible. For either method, the result should be that
sequential reads of a file could get at least one-third of the raw disk

DATABASE SYSTEMS 2415



bandwidth, assuming that the requests are not interspersed with
requests for other files, and that the program asks for large reads
without doing much computation in between.

The discussion above would have a different character if the hard-
ware permitted chaining disk requests together so that the channel
remained active as long as there was work for it. The fact that main
frames permit this style of 1/0 may account for the advantages they
appear to have over minicomputers for commercial data processing,
even when the cpu speeds are the same.

I modified a copy of the kernel for the UNIX system to support
ordinary file systems with 1024-byte blocks, and the bit-mapped file
systems with 4096-byte blocks described above. File systems that
would grow too much can be left as ordinary file systems, and other
file systems would get the advantages of the new way of doing things.
Early measurements bear out the predictions made above. Two pro-
grams writing into files at top speed have a total data rate of about 120
kilobytes per second, and groups of programs reading at top speed
have about 250 kilobytes per second. If the machine was not busy
when a file was written, a single program can read it back at about 300
kilobytes per second. (The disks I use rotate at 3000 rpm, so the raw
disk bandwidth is 814 kilobytes per second.) While reading, the cpu
(VAX/750) is about 60 percent busy, about two-thirds of this is
managing the 1/0, and the other one-third is copying the data from the
buffer cache to the user. Making the /tmp file system (conventionally
used for temporary files) into a 4096-byte file system had good effects.
C compilations typically took one-third less system time and one-third
less elapsed time than before. The decreased system time is the result
of having to do only one-fourth the number of 1/0 operations, thereby
having to make only one-fourth the number of decisions as with a
conventional file system.

4.2 Robustness against crashes

From the point of view of the operating system, the file system is
consistent when every block is accounted for exactly once (in the free
list, as a data block or as a species of indirect block), when the blocks
of the files can be found from their inodes, when the number of places
a file occurs in the directory tree matches the count in the inode, and
so forth. Even in this relatively trivial case it is not easy to write down
the exact set of consistency conditions. For instance, it is legal and
useful for a file to be in no directories. The rule is that the space for a
file is not freed while some process has it open. However, if the system
crashes, then when it comes back up, the file is in no directory and no
process has it open, so the file system is inconsistent.

Fortunately it is easy to ensure that the file system is safe—a weaker

2416 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



condition than consistent—whenever there is a crash. Even the weaker
guarantee requires some cooperation from the hardware; sector writes
must be atomic. Head crashes and sufficiently nasty power glitches
can violate this assumption, but well-designed hardware will cope with
the ordinary run of power failures. A rough definition is that safety of
the file system means that the file system can be restored to a
consistent state without deleting files or entries in directories that a
user thinks are there. A detailed examination shows that if for each
system call, the blocks that are changed are written in the right order,
then the file system is always safe. The ordering can be built into the
code that implements the system call. All sufficiently new versions of
the kernel for the UNIX system use this strategy, and it is now unusual
to lose a file in a crash.

With the file system thus protected against a class of common
failures, it is reasonable to ask about the effect of the loss of a disk
block or sector. Damage that cannot be detected when the block is
read may contaminate the entire file system or database. Because of
the error correction used on disks, such blocks are likely to be the
result of the operating system or user software writing bad data. (But
not exclusively, for the controller could lie about where the heads are.
There is an enormous variety of possible failures. The effects of most
of them can barely be ameliorated.) The damage from detectably bad
blocks depends on what the block contains. The system will not use
the data in these blocks. Bad data blocks and indirect blocks make
parts of files inaccessible. Bad directory blocks make whole files
inaccessible. The contents of the files can be recovered through their
inodes, but their names have been lost. A bad super block can easily
be fixed, because the critical information in it is static. The worst case
is the loss of an inode block, for although the set of data blocks and
indirect blocks accessible through the lost inodes can be determined
(if the free blocks are known), there is no way of deciding the ordering
of the blocks, nor which is associated with each lost inode. However
the names of the lost files are accessible through the directory tree.

Thus, the detected failure of a single sector will result in the contents
of one or more files being inaccessible, and possibly the names of some
files too. In a database system, loss or damage to a single file can be
undone by standard procedures using the transaction log and a check-
point of the database. The same holds for the directory trees associated
with a database. To recover from the loss of an inode block, the
database needs to be able to identify files from contents, or it has to be
prepared to recover a number of missing files. The latter alternative is
covered by standard database recovery mechanisms. Doing the former
would doubtless be much faster, but requires the database system to
make sure it can identify files by the contents of individual blocks.

DATABASE SYSTEMS 2417



In summary, modern versions of the file system are robust against
crashes. The places where the file system of the UNIX operating
system is least robust are exactly the places where database systems
have to have their own recovery mechanisms anyway.

To implement these mechanisms, particularly logging, database
systems need additional operating system services. At certain times
during a transaction the database system has to be sure that all the
blocks so far affected by the transaction are on the disk. In particular,
before a transaction can commit it has to have written its log to (what
passes for) stable storage, namely the disk. Frequently there is a partial
ordering that should be satisfied on the blocks going to the disk as
part of committing. Both these needs can be satisfied by a slight
extension to the system to provide a “wait until all my disk 1/0 is
finished” system call. The changes to the system to provide this service
are neither hard nor extensive.

It might appear that additional help is needed to maintain the log.
A typical log is a tape, or a large circular buffer. Each transaction
writes its log records at the end of the log. The operating system could
either provide a “write at end of file”, or some efficient form of locking
such as that described below. Since there are several sectors in each
file system block, the database system has to make sure it can tell if
the whole log record was written when it has to recover from a crash
that occurs during writing the log.

4.3 Concurrency control

Concurrency control is more like science than any other area of
databases'. The only question that is relevant here is how to provide
the services needed within the kernel. The ideal solution should be
efficient: setting and releasing locks should not require thousands of
instructions, nor should the process have to give up the cpu unless
there is a locking conflict. A solution must be flexible: there is no
reason every database system should be compelled to use exactly the
same locking algorithms.

The essence of concurrency control is sharing of information and
control. The operating system provides sharing between independent
processes only through the file system. Hence a natural way to imple-
ment locking is through a device driver. In the first place, the interface
between device drivers and the rest of the system is sharply defined
and simple. Therefore, adding one or more locking ‘1/0 devices’ is no
more of an operating system modification than, say, adding a new kind
of printer. Second, the overhead in locking above the implementation
of the lock algorithms is just that of a system call, a few hundred
instruction executions. In particular, the process does not give up the
cpu as a result of such a system call, since it invokes no external 1/0.

2418 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



In one scenario there would be a device named /dev/db-lock asso-
ciated with the database system. A process using a database would
first open /dev/db-lock. It would then obtain and release locks using
the ioctl system call. If the call returned normally all would be fine,
otherwise an error code would indicate that the process had had its
transaction blighted because of deadlock. The transaction would then
have to invoke some database subroutines to back itself out. This is
consistent with the philosophy that an error causes a process to do
something to itself, and allows the database system to try to redo
transactions without bothering the user.

The locking driver has advantages over using a separate process to
manage locks. A separate process would have to be separately sched-
uled, opening up the possibility of subtle queueing problems in addition
to the extra overhead of process switching. The lock driver is notified
automatically when a process dies, because a process’s open files are
closed as part of process termination. A lock process would have to
have a special arrangement to learn about the death of a process
holding locks. Finally, a locking driver generalizes smoothly to distrib-
uted systems (although things have to be added) without any change
to user programs.

4.4 Transaction processing

A process of the UNIX system executes a program in two steps. The
process first clones itself, using the fork system call, and then one of
the siblings overlays itself with the new program, using the exec system
call. In some versions a fork requires copying all of the process’s
writable memory. (The executable text of a process may be unwrita-
ble.) In all versions the exec requires finding a copy of the program to
be executed.

The process structure of a database application has to be designed
carefully to avoid unacceptable inefficiencies. Avoiding them may not
be possible on machines with 16 bits of addressing.” The biggest
inefficiency is associated with execs, one parameter of which is the
name of the file to be executed. The operating system has to find the
named file and read it, either from the file system or from a copy in
the swap/paging area. Thus, making exec efficient requires that it not
be hard to find the named file, and that there be a conveniently located
copy of the program. Both of these requirements are easy to achieve.
Not surprisingly the solutions mimic the functionality of the daily
initialization of commercial transaction processing systems.

The key to efficiency is caching. When the system starts up each
morning, one process executes—or otherwise gets into swap/paging
space—all of the programs that will be executed. The process has no
other function than to force the operating system to cache copies of

DATABASE SYSTEMS 2419



frequently used programs. It also opens important directories and files,
so that their inodes are cached in memory. The result is a savings in
the number of disk accesses required to open commonly used files and
to execute programs.

A paging version of the system can save time during the forks too.
The memory pages of the two copies of the program can be marked as
shared. A page needs to be copied only if one of the sharers writes on
it. (The hardware has to support this.) Any implementation has to
balance the cost of page faults with the cost of copying more pages
than necessary. The traditional method takes no page faults and copies
too much.

Little copying is particularly effective if the application is organized
so that all the most common interactive jobs are combined into one
process. One instance of the process is started when the day begins.
When it receives a message specifying work to be done, it forks a copy
of itself, and the copy handles the work without having to issue an
exec. The copy needs to open no files, since it inherits them at its birth.
Instead it fdups* the file descriptors, which requires no 1/0. Since
much of its inherited data will be irrelevant to the job it is doing, most
of the memory pages will not be copied. The machine on which this is
being written (VAX/750) will handle 10,000 simple transactions an
hour, where a simple transaction is a fork followed by eight random
reads and four random writes of 1024 bytes each. Copying an extra
100,000 bytes of program data at each fork cuts the rate in hallf.

Requests for uncommon jobs require an exec after the fork, and
requests that imply off-hours processing can be queued by having the
program execute standard UUNIX system commands.

4.5 Access methods and the buffer pool

Conventional wisdom is that a database system needs to manage its
own buffer pool, and that this pool should be in shared memory.
Although there are many reasons for having a buffer pool, it is not
clear that the database system needs to manage it, and even if it does,
it is not clear that the buffer pool has to be in the database system’s
memory. The most common claim denigrating the operating system’s
ability to manage the pool is that the database system knows better
which pages should be prefetched. That is, the database system’s
notion of sequence in a file does not agree with the order of the bytes,
which is the operating system’s notion.

In organizations similar to ISAM there are two places where the
operating system’s idea of sequence is incorrect. In the tree that leads

* A new version of dup which creates a new file table entry in the kernel.

2420 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



to the block in which the record should be, there is no idea of sequence
at all, since the tree is branching. Then as data blocks overflow, they
are chained to overflow blocks, so the correct view of sequence is to
follow the overflow chain. My view is that such file organizations are
obsolete./A careful implementation of file organizations having the
flavor of B-trees has all the advantages of any bushy tree organization,
together with a guaranteed access time.

A similar situation holds with hashing. ,Any version of hashing into
bins can produce overflow chains. The alternative is extensible hash-
ing. Extensible hashing can guarantee that at most two file system
accesses are required to retrieve a record. For files that are growing,
other forms of hashing cannot balance wasted space and retrieval cost
nearly as well as extensible hashing.

In either case, if there are a lot of overflow chains it is unlikely that
the file will be laid out properly on the disk, so that there will be excess
head motion, slowing the flow of data into the machine.

A more important consideration is the handling of the buffer cache.
Clearly blocks that contain structural data or directory data are more
likely to be reused than blocks that are read while doing a sequential
scan of a file. This generalization is true both for databases and for
operating systems. Blocks of the first sort can be handled by replacing
the least recently used ones, while blocks of the second sort need not
be kept at all. The cache algorithm of the UNIX system recognizes
this. (The assertion to the contrary in Ref. 5 is no longer true.) Some
more recent versions of the UNIX system distinguish among several
kinds of blocks.

Thus, the only situation where the system’s cache may not be
handled in the same manner as the database system is where the
system does not recognize index or dictionary blocks as deserving to
be cached, and where the database system might tend to cache them.
Discovering if this affects performance requires specification of the file
structures and algorithms used by the database system.

Another argument against the database system keeping a cache in
its memory is the possibility of self-defeating interactions with paging.
See Ref. 2 and further references therein.

V. CONCLUSION

By now the reader should be persuaded that a little effort inside the
operating system would make the UNIX system much more satisfac-
tory for database systems. Larger blocks and nearly contiguous file
allocations give better 1/0 performance. New system calls for synchro-
nizing processes with the completion of 1/0 and for locking are the
tools with which the standard concurrency control, transaction logging,
and auditing algorithms can be implemented. Adding a simple analog

DATABASE SYSTEMS 2421



of dup makes efficient the natural match of system processes and the
flow of control needed for transaction processing. Combining modern
file organizations and the services of the system buffer cache should
decrease latency. None of these changes will make the system less
satisfactory for what it is used for now.

REFERENCES

1. J.N. Gray, “Notes on Data Base Operating Systems,” in Operating Systems, an
Advanced Course, New York: Springer Verlag, 1978.

2. Tomas Lang, C. Wood, and E.B. Fernandez, “Database Buffer Paging in Virtual
Storage Systems,” Trans. Database Systems, 3, No. 4 (December 1977), pp.
339-51.

3. D.M. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” B.S.T.J., 57,
No. 6, Part 2 (July-August 1978), pp. 1905-30. )

4. A.J. Smith, “Sequentiality and Prefetching in Database Systems,” Trans. Database
Systems, 3, No. 3 (September 1978) pp. 223-47.

5. M. Stonebraker, “Operating System Support for Database Management,” Commun.
ACM, 24, No. 7 (July 1981), pp. 412-18.

6. M. Stonebraker, “Retrospective on a Database System,” Trans. Database Systems,
5, No. 2 (June 1980), pp. 225-40.

7. K. Thompson, “UNIX Implementation,” B.S.T.J., 57, No. 6, Part 2 (July-August
1978), pp. 1931-46.

2422 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



