Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in U.S. A.

Database Systems:

A Real-time Database Management System for
No. 5 ESS

By D. K. BARCLAY, E. R. BYRNE, and F. K. NG
(Manuscript received March 17, 1982)

A database management system was designed and implemented
for the No. 5 Electronic Switching System. It is a specialized database
management system based on the relational data model. The data-
base is distributed and subject to stringent real-time constraints and
reliability requirements. The system characteristics, capabilities, and
design philosophy are described herein.

I. INTRODUCTION

The Bell System’s newest addition to its family of electronic switch-
ing systems is the No. 5 Ess (Electronic Switching System).' It repre-
sents a departure from past local switching systems and it presented
a unique opportunity to apply the principles of database management
to a distributed switching network characterized by severe real-time
constraints and stringent reliability requirements.

The No. 5 Ess provides a software-controlled switching capability
for local telephone offices. The system consists of a central processor
and a series of microprocessor-controlled modules that interface with
the switching periphery. It is programmed in the programming lan-
guage “C.”

The database is based on the relational data model and distributed
across each processor in the network. All accesses to data, both local
and remote, are controlled by the Data Base Manager (DBM).

The modular hardware and software design allows offices to be
economically grown. In addition, the introduction of a processor-
independent language along with the distributed nature of the system
will help ensure that the No. 5 Ess will keep pace with today’s rapid

2423

technological advances, and the current trend of increasing demand
for new feature development.

The database management system was designed to promote the
aforementioned objectives of the No. 5 Ess. Current advances in
database technology have been applied to this system to provide a
more secure, more maintainable database that meets the real-time
needs of an Ess.

Il. THE ENVIRONMENT
2.1 Hardware architecture

The No. 5 Ess is a digital time-division switching system that will
serve offices ranging from 1000 to 100,000 lines.” The minimum config-
uration consists of a central processor and a single interface module.
Additional interface modules are added as needed to achieve additional
capacity (Fig. 1). Each interface module can serve approximately 2000
lines. The No. 5 Ess capacity is therefore directly proportional to the
number of interface modules.

The central processor serves as the hub of a star network. The
central processor performs all functions that require a global view of
the system. It serves as a resource allocator for global resources
including the allocation of time slots used for intermodule communi-
cation. The central processor also serves as a central site for interfacing
with telephone company personnel and any external operation support
systems.

The tasks required to process calls are distributed to the interface

1/0
PROCESSOR

CENTRAL PROCESSOR

EXTERNAL

DATA LINKS s

[:'" MESSAGE
SWITCH

TERMINALS

INTERFACE INTERFACE INTERFACE
MODULE MODULE MODULE

T 11

CUSTOMER LINES

Fig. 1—Hardware architecture of No, 5 Ess.

2424 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

modules whenever possible. This prevents the central processor from
becoming a bottleneck in the system as the call capacity increases. A
variety of peripheral switching equipment is connected to the interface
module. Connections must be provided for customer telephone lines,
digital connections between offices, and various service circuits for
tones and announcements. All data reflecting the current configuration
of the office reside in the database.

2.2 Software architecture

The software components for the No. 5 Ess include call processing,
database management, administration, and maintenance.” All of these
subsystems are supported by an operating system (Fig. 2). The oper-
ating system and the database manager reside in the central processor
and each interface module. This fact, coupled with a single develop-
ment language, provides a hospitable development environment that
shields application programs from a multitude of processor depend-
encies. Software in the No. 5 Ess falls into two categories, processes
and primitives. Processes are created and controlled by the operating
system. Each process consists of a process stack dedicated to an
instance of a process and reentrant code that can be shared by a
number of concurrently executing processes. Each call spawns two
processes. An origination process controls one end of the call, and a
termination process controls the other end.

Primitives are globally accessible functions that control the use of a

OPERATING
SYSTEM

EXTERNAL
. 170
* | procEssor
DATA LINKS |
-ﬁ MESSAGE
—
-N‘/ SWITCH
TERMINALS

CLIENT
PROCESS

OPERATING SYSTEM

OPERATING SYSTEM

Fig. 2—Software architecture of No. 5 Ess.

DATABASE MANAGEMENT SYSTEM 2425

system resource. The DBM contains a collection of primitives through
which access to the database is controlled. These primitives are acces-
sible to all processes in the system. They control concurrent database
accesses within a single processor and isolate client programs from
physical implementation details. This is the subject of Section IV.
There also exists a process in each processor that is dedicated to
database management. This process controls database communication
across processor boundaries.

2.3 System characteristics

The No. 5 Ess database is based on the relational data model. The
database is viewed as a collection of base relations. Base relations are
permanently stored in the database. The No. 5 Ess DBM is a specialized
Database Management System (DBMS) designed for electronic switch-
ing. Data accesses are performed via a procedural data-manipulation
language. Certain characteristics of the system that have significantly
influenced the design of the DBM are described below.

2.3.1 Real-time response

The primary function of an Ess is to process telephone calls. The
requirement on data access time is rather stringent to enable the
software to drive the telephone peripheries. A tuple of a relation must,
on the average, be retrieved in the order of a millisecond.

2.3.2 Key access

Each piece of equipment in an office is referenced by its unique
name in the processing of a call. Hence, the most frequent data access
is based on primary key.

2.3.3 Stable schema

The introduction of new features to a switch is coupled with a new
software release. The schema of the database remains unchanged
within a given release.

2.3.4 Concurrent access

The database is a shared resource in the No. 5 Ess. Concurrent
processes are active at any given time to access the database. Conse-
quently there is a need to control concurrent access to the database.

2.3.5 Retrieval-oriented access

The main user of the database, call processing, is essentially a
retrieve-only user. The data is changed by the telephone company
personnel whose activity is less frequent and less real-time critical
than call processing.

2426 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

2.3.6 Data integrity .

All Esss in the Bell System have very stringent reliability require-
ments. It is essential for the DBM to maintain data integrity in order to
meet such requirements.

2.3.7 Predictable queries

The query facility is used by the telephone company to update and
verify the data stored in the switch. Traditionally, such a query
interface is form-based and is unchanged during a software release.

2.3.8 Non-casual users

Only the application programmers who design the operational soft-
ware of the No. 5 Ess directly interface with the pBm. These are
sophisticated users who do not need a high-level interface to use the
pBM. (Other users, e.g., telephone company personnel, interface with
software built on top of the DBM.)

2.3.9 Distributed system

Currently, the No. 5 Ess is a distributed system. Its database
manager and its data are distributed in the central processor and each
of the interface modules.

ill. DBM ARCHITECTURE

To achieve the access time necessary for a real-time system, a large
portion of the No. 5 Ess database permanently resides in primary
memory. Furthermore, call processing programs need to minimize
database accesses. Early in the development cycle an attempt was
made to design the database in normal form. This effort was abandoned
because normalization tends to increase the number of database rela-
tions. This, in turn, increases the number of data accesses a program
must make to retrieve the desired data.

Currently, the No. 5 Ess database of a single module office consists
of approximately 200 relations. About 90 relations reside in the inter-
face module and occupy 200 kilobytes of memory. The central proc-
essor database occupies 500 kbytes of memory.

3.1 Data Definition

The purpose of any database management system is to provide a
measure of data independence. In the No. 5 Ess data definition is done
off-line and changes can be introduced by redefining database relations
and recompiling user programs. The goal is to introduce database
changes with a minimum of client program changes. Because the
schema remains stable during a given software release, it is not
necessary that database definition be accomplished on line. A data-

DATABASE MANAGEMENT SYSTEM 2427

DATA DATA
DEFINITION DEFINITION DOCUMENTATION
FORMS PROCESS
HEADER DATA
FILES DICTIONARY
USER DATABASE COMMUNI-~ T0
MANAGER CATION CENTRAL
PROGRAM PACKAGE PROCESSOR
PROGRAM
DATA DATABASE
INTERFACE
MODULE

Fig. 3—Overall pBMm architecture.

definition language accepts user definitions of the relations and their
domains and generates user header files, data dictionaries, and docu-
mentation. Figure 3 shows the data definition process and the major
software components in an interface module. The central processor
contains similar components. The user header files contain the C-
structure layout (or template) of the relation and are used by the users
to compile with their programs. The data dictionaries describe all the
relations, attributes, and domains in the database and are used inter-
nally by the DBM software.

3.2 Data manipulation

The No. 5 Ess DBM provides two levels of interface in accessing the
database. The two levels of interface achieve different degrees of data
independence for users with different performance and data-usage
requirements. The basic interface is the tuple-level access that is used
by call-processing programs. The user at this level can retrieve tuples
of the base relations. The relations are designed from an operational
point of view and are used by all No. 5 Ess internal subsystems. A
higher level of interface, called the view-level access, is designed to
provide a higher degree of data independence for users with less
stringent real-time requirements. The view level access operates on
view relations that are virtual relations formed by combining infor-
mation from one or more base relations. The view level access provides

2428 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

an interface to the Bell Operating Company (Boc) personnel in a No.
5 Ess office, and also to an operation-support system through an
external data link. Essentially, the view-level access supports a view of
the No. 5 Ess data seen by the Boc personnel. Since the view-level
access is used to interface with the external users, it is only available

in the central processor. Figure 4 depicts the database management
interfaces in the No. 5 Ess.

IV. DBM INTERNALS
4.1 Tuple-level access module
4.1.1 Concepts and capabilities

4.1.1.1 Transaction management. A transaction is a user-defined
atomic unit of work consisting of one or more function calls to the
pBM. Transaction management is required in the DBM for the following
reasons,

(i) A transaction is used to ensure data consistency in a concurrent
access environment. Within a transaction, the user sees a consistent

TEAMINALS + OPERATION
. SUPPORT

-E NO.5 ESS
— CENTRAL

-’/ L PROCESSOR
. a
TERMINALS . HUMAN t.elf:‘:L
. INTERFACE ACCESS
p—
-- CALL TUPLE-
LEVEL
PROCESSING ACCESS
INTERFACE
MODULE
TUPLE-
CALL LEVEL
PROCESSING ACCESS

Fig. 4—DBM interfaces.

DATABASE MANAGEMENT SYSTEM 2429

view of the database. It appears that the part of the database the user
is processing is not affected by any update operation that may actually
be introduced to the database during such period.

(1f) A transaction is used to ensure the integrity of data when
updates are introduced to the database. Some of the integrity asser-
tions on the data cannot be enforced when the data is being updated.
These are the global integrity constraints that can only be enforced
when all updates are completed. A transaction is used to defer the
actual commitment of the updates to the database until all integrity
checks are performed. The commitment of updates will take place at
the end of a transaction. If the pBM had no concept of a transaction
unit, it would be impossible to delay the enforcement of these con-
straints until the update was completed.

4.1.1.2 Levels of consistency. Three levels of consistency can be
categorized in the concurrent access of data. The lowest level has no
consistency at all. The user may read invalid data. Such a case happens
when a user is reading some data while another user is writing on the
data. The second level of consistency ensures that the user will always
receive valid data but the data may not be consistent with other data
in the database. The highest level of consistency ensures that the user
will retrieve consistent data. This level of consistency is provided by

the DBM.
4.1.1.3 Single command transaction. The transaction concept is in-

tended to implement the highest level of data consistency. Some
overhead is required to initiate a transaction and terminate a trans-
action. A simplification is made to the transaction concept. The scheme
is called single-command transaction. Basically, a special set of tuple-
level commands are designed to be used outside a normal transaction.
Each such command represents an atomic unit of work on the data-
base. It has the same effect as executing the counterpart of that
command in a transaction. But, the overhead of initiating and termi-
nating a transaction is largely reduced.

4.1.1.4 Tuple pointer. The use of a tuple pointer (a cursor on a
relation) is required in the tuple-level interface for two reasons. One is
performance related. It allows the user to access the tuple without
going through the normal key-to-address transformation. This is par-
ticularly useful in an update operation when the tuple is located
previously by a key-to-address transformation and an update is then
applied to the tuple. Instead of going through the key-to-address
transformation again, the tuple pointer could be used to readdress the
tuple in a quicker manner. Second, a tuple pointer is essential for
sequential traversal of a relation. A sequential traversal of a relation
is generally based on the “next” operation. A tuple pointer, in this
case, is used to identify the current position of the sequential traversal,

2430 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

which is used as the point of reference for the “next” operation. For
the purpose of data independence, the tuple pointer presented to the
user is only a logical entity that allows the user to reference a current
tuple position.

4.1.2 Tuple-level interface

All the application programs resident in the No. 5 ESs access the
data, regardless of its location, through the database manager at the
local site via a set of interface primitives. These primitives are function
calls as opposed to messages, which are the communication mechanism
between processes. For accessing the data at a remote site, the DBM
automatically generates all the necessary interprocessor queries (in
terms of messages).

4.1.2.1 Basic design guidelines.

(i) Enhance efficiency without sacrificing data independence. The
Ess database is isolated from application programs. A retrieval com-
mand causes some data to be copied from the database to the user
space instead of providing a physical pointer to the database. Yet, to
fulfill the real-time sensitive requirement of call processing, the capa-
bilities of the interface primitives are somewhat restricted. First, only
base relations are involved. Second, each primitive operates on a single
tuple. Third, primary keys are normally used to identify tuples.

(i) Provide a basic set of primitives. The pBM must provide a basic
set of primitives that will serve all applications. The set of primitives
should be “complete” so that the user can access any part of the
database, but yet, it should be “basic” enough so that the pBm does
not have to perform any part of the application for the user. Any
special primitives that depend on an application should be provided
by the individual user.

4.1.2.2 Tuple-level primitives. In general, there are four types of
primitives. The first type is the administrative primitive, which handles
the initiation and termination of a transaction and the opening and
closing of relations. The second type is the tuple-retrieval primitive,
which is executed inside a transaction. A tuple-retrieval primitive
retrieves a tuple into the user work area and establishes a current
position on the tuple retrieved (read-tuple, read-first-tuple, read-next-
tuple). The third type is the tuple-manipulation primitive, which is
executed inside a transaction. A tuple-manipulation primitive performs
update operations on the tuple based on the implicit tuple pointer
(insert-tuple, update-tuple, delete-tuple). The fourth type is the single-
command transaction. This kind of primitive is executed as a trans-
action. It consists of retrieval and manipulation operations that are all
based on primary key value (read, update, delete and insert tuple).

DATABASE MANAGEMENT SYSTEM 2431

4.1.3 Layered software

The tuple-level access provides control and protection functions in
addition to data access. It manages transactions, controls concurrent
access and handles data distribution. It is supported by two layers of
software: the access methods and the Software Demand Paging (sDP)
package. The modular design allows the isolation of essential functions
and thus reduces the impact of code changes to each development
unit. The access methods provide data access functions by mapping
tuple keys to logical addresses. Currently, three access methods are
implemented: indexed, hash, and sequential. The spP package provides
the mapping of logical address to physical address and it also provides
buffer management when the data is stored on a disk file.

4.2 View-level access module

The view-level access operates on view-relation tuples that are
formed by combining information from one or more base relations.
The view-level access is used to provide an interface to the personnel
in a No. 5 Ess office. There are basically two types of view supported
in the No. 5 Ess: the recent-change views and the verify views. A
recent-change view is a view that is used by the Boc personnel to
update the office database. Such a view must be updatable. A verify
view is a view that is used by the Boc personnel to query the office
database. A verify view is only required to be read-only. A recent-
change (updatable) view can also be used to verify the data. However,
the converse is not always true: there are verify views that may not be
updatable.

4.2.1 View definition criteria

Not every view is updatable. Furthermore, a view, if defined arbi-
trarily, may even misrepresent the data relationships (i.e., produce-
related data that is, in fact, unrelated according to the semantics of
the base relations).! So there should be certain criteria in the definition
of view. In general, there are more restrictions on a recent-change view
than on a verify view. The reason is that a recent-change view, unlike
a verify view, implies the existence of a mapping from view to base
relations.

Two criteria for the definition of views for No. 5 Ess are observed.

(i) All views (i.e., recent-change or verify) must be consistent with
the base relations.

(if) All recent-change views must be updatable.

Some of the results developed in Ref. 4 are used as a guideline to
define views.

To satisfy the consistency criteria, a necessary and sufficient con-

2432 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

dition exists. A view is consistent if and only if all joins, if any, -~

performed to derive the view are lossless. A join is said to be lossless
if the joining attributes of the two relations contain the key attributes
of either one (or both) of the relations.

To satisfy the updatability criteria, more restrictions need to be
imposed. A view is updatable if all the key attributes in the base
relations used to derive the view appear in the view. The rule is derived
from the assumption that all base relations used to define the view are
involved in some kind of updates. However, this is not always the case
in the views defined for No. 5 Ess. In a No. 5 Ess view, not all base
relations used in defining the view are involved in some kind of
updates. Some of the base relations are used purely for retrieval
purposes even in an update view. These relations are mostly used to
transform the external name, which is known to the Boc personnel, to
one or more internal names, which are used by the system. Hence, the
key attributes of some of thé base relations will never appear in the
view. Instead, a transformation is performed to map the internal key
attributes to external key attributes. Hence, the conditions for updat-
ability need to be revised as follows. A view is updatable if all the key
attributes in the base relations used to derive the view appear in the
view or there exists a one-to-one mapping between the key attributes
in the view and the key attributes in the base relations that are
actually involved in the update. Even though this is only a sufficient
condition and not a necessary condition for updatable views, it is
employed as a guideline to define recent-change views.

4.2.2 View definition

View definition is the process of specifying the attributes in a view
and the mapping between the view and the base relations. The view-
level access is responsible for performing view mapping from views to
base relations and vice versa. The views handled by the view-level
access are predefined views that can only be altered per generic. The
views include all recent-change views and verify views defined for the
generic.

The semantics of each view are defined by a customized mapping
program. There are several reasons for not using a high-level relational
language to specify views. First, according to the updatability criterion
mentioned above, all base-relation tuples in a view are addressed by
key values. The tuple-level access, which is designed for key-retrieval
access, is much simpler and more efficient to use to perform these
updates. Second, a high-level relational language is normally used to
define mapping in one direction, i.e., from base relations to view. It
cannot be used to define mappings explicitly from view to base rela-
tions.

DATABASE MANAGEMENT SYSTEM 2433

4.2.3 View-level interface

The view-level access interfaces with the user through a set of view
primitives that are similar to the tuple-level interface. The view-level
access supports transactions on views. The basic set of view operations
consists of retrieval, insertion, deletion, and update of individual view
tuples using primary key. An auxiliary set, which is built on top of the
basic set, consists of selection and count of view tuples based on a
Boolean expression on the attributes of the view.

4.3 Special topics
4.3.1 Concurrency control

Concurrency control in the pBM is a mechanism that allows multiple
users to access the data and protects them from getting inconsistent
data due to concurrent updates. The policy on concurrency control
has a great effect on the design of the concurrency mechanism. It
determines the efficiency of shared data usage or, in other words, the
degree of concurrent access.

Call processing is primarily a reader of the database and it contrib-
utes a large portion of the data-access activity in the No. 5 Ess. Since
call processing requires real-time response, its access to the data should
have high priority. Most changes to the database are not real-time
critical and the frequency of such activities is rather low in comparison
to call processing. Hence, our policy towards concurrency control is to
provide efficient access to read-only users and perhaps less efficient
access to read-write users.

The concept employed to control concurrent usage is based on data
duplication.” All updates are performed on a copy of the real data.
During the update period, all readers to the database can still access
the part of real data that is being updated. When the update is
completed, the updated copy will become the real data. The old copy
will be discarded when all current read transactions on this relation
are completed.

The copy scheme can present a problem when multiple users are
updating the same part of the database. In fact, this mechanism can
only be implemented effectively when no more than one writer to the
database is allowed in the system to update the same relation. This,
however, does not restrict the number of readers who have read-only
access to the relation. Furthermore, it does not restrict the number of
writers who are operating on the disjoint parts of the database. This
situation fits quite well in the EsSs environment where there are a lot
of readers and relatively few and infrequent writers.

Since the concurrency control scheme is based on duplication of
data, it is desirable to organize the storage structure in such a way
that the amount of duplication is minimized. A tree-like storage

2434 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

structure is most suitable for this kind of application. The amount of
data duplication required to perform an update in a relation consists
of all the blocks along the path from the root node to the leaf node. All
relations are in a tree-like structure regardless of what kind of access
method is employed.

4.3.2 Distributed data access

A design goal for the DBM is to make the distribution of data
transparent to its user so that the user need not be concerned with the
actual site of where the data is stored. However, it does not imply that
the pBM would be designed to handle the distribution of data in a
general manner. Hence, the object is to define a data-distribution
environment for the pBM that is more tailored to the needs of the
No. 5 EsS operations.

There are two aspects that need to be examined in defining the
scope of data distribution for the pBM. First is the type of data
distribution that is actually found in the central processor (cp) and the
interface modules (1ms). For example, a relation may be stored entirely
in the cp, or entirely in an 1M, or partitioned among the IMs, etc.
Second, there is a need to determine the kinds of data interaction
between the cp and the 1Ms. For example, it could be that a process in
the cP may request data from the IM, or a process in the IM may
request data from another 1M, etc.

4.3.2.1 Types of data distribution. The complexity of data distri-
bution depends on the granularity of the unit of data distribution. A
unit of data distribution is the set of tuples in a relation that will
always be physically stored in a site. A simple way to define a unit of
distribution is to use the entire relation. In other words, the entire
relation must be stored in one site. If multiple sites have the same
relation, it will be fully duplicated. In this case the granularity of the
unit of data distribution is the largest. Smaller granularity can be
formed by partitioning the relation. In general, a relation can be
partitioned horizontally, vertically, or both ways. A horizontal partition
can be defined by a Boolean expression on the values of a set of
attributes. A vertical partition can be defined by a projection on a set
of attributes. A combination of horizontal and vertical partition is
possible. In viewing the No. 5 Ess data, the partitioning is more
restricted than those described above. First, there is no vertical parti-
tioning. Second, horizontal partitioning exists, but it is rather re-
stricted. No general Boolean expression is used in defining the parti-
tion. The relation is partitioned according to whether the tuples are
used in a particular M. Third, some relations are not partitioned at all.

The types of data distribution in the first issue of No. 5 ESs can now
be categorized as follows.

DATABASE MANAGEMENT SYSTEM 2435

(i) cp single. The relation is stored entirely in the cp. No data is
stored in any 1M.

(i) cp-iM redundant. The entire relation is stored in the cp and is
duplicated in each of the 1ms.

(2i1) 1M reductant. The entire relation is duphcated in each M. No
data is stored in the cp.

(iv) 1M partitioned. The tuples of a relation are partitioned in the
manner described above in each of the iMs. No data is stored in the cp.
4.3.2.2 Data interaction between sites. The complexity of the DBM
software for distribution depends on the data interaction between the
processes. It is necessary to examine the kinds of data interaction that
exist between the cp and the imMs, and among the ms. Currently,
most call-processing programs access data in its resident processor.
Hence, most data access is done at the local site. Since most global
data updates are from the central processor, these global updates can
be controlled in a single site. Hence, the central processor naturally
becomes the primary site for locking. Local updates are handled
individually at each local site. The control of all global updates at the
central processor has significantly simplified the mechanism for global
concurrency control.

Based on the data usage of existing subsystems, three variations of
data request can be identified. They are cp local, 1M local and cp-im
remote. CP local means that the data request is originated from the cp
and the data is located in the cp. 1M local means that the data request
is originated from the 1M and the data is located in the M. cP-IM
remote means that the data request is originated from the cp and the
data is located in the 1M. cP local and 1M local are mainly used by call-
processing programs that access data in the local processor. The cp-im
remote is used by the recent-change and verify system that performs
administration functions on the database.

V. SUMMARY

The database management system (DBMS) is designed and imple-
mented. It is a real-time database management system based on the
relational data model. The DBMS provides two levels of interface in
accessing the database. The two levels of interface achieve different
degrees of data independence for users with different performance and
data-usage requirements. A data-definition facility is available for the
user to define the schema of the database. The data-definition process
is done off-line to reduce software complexity in the No. 5 Ess. The
pBMS allows multiple users to access the database concurrently. To
satisfy real-time requirements, the concurrency control mechanism is
devised to provide efficient access to the readers and somewhat less
efficient access to the writers of the database. Since most global

2436 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

updates are initiated in the central processor, it becomes the primary
site for locking. The control of all global updates at the central
processor has significantly simplified the mechanism for concurrency
control in a distributed environment.

REFERENCES

1. W. B. Smith and F. T. Andrews, Jr., “No. 5 ESS—Overview,” Bell Telephone
Laboratories, U.S.A., International Switching Symposium, Montreal, Canada,
September 1981.

9. J. H. Davis, J. Janik, Jr., R. D. Royer, and B. J. Yokelson, “No. 5 ESS—System
Architecture,” Bell Telephone Laboratories, U.S.A., International Switching Sym-
posium, Montreal, Canada, September 1981.

3. S.'M. Bauman, R. J. Carline, J. S. Nowak, and H. Oehring, “No. 5 ESS Software
Design,” Bell Telephone Laboratories, U.S.A., International Switching Sympo-
sium, Montreal, Canada, September 1981.

4. A. K. Arora and C. P. Carlson, “The Updatability of Relational Views Based on
Functional Dependencies,” Proceedings of Computer Software and Application
Conference, Chicago, Illinois, November 1979, pp. 415-420.

5. Y. E. Lien and P. J. Weinberger, “Consistency, Concurrency and Crash Recovery,”
Proc. ACM SIGMOD Int. Conf. on Management of Data, Austin, Texas, 1978.

DATABASE MANAGEMENT SYSTEM 2437

i o T g Al

