Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in U.S.A.

Database Systems:

Database Administration System—
Architecture and Design Issues

By C. C. WANG and C. P. HUANG
(Manuscript received September 22, 1982)

The Database Administration System (DBAS) is a software system
designed for the Bell Operating Companies to administer several
remote, on-line, call-processing-related databases. These remote
databases include, for example, the Billing Validation Application
files associated with mechanized calling card service, and support
for the Automatic Intercept Centers. Briefly, DBAS accepis service-
order inputs and forwards them to other databases. DBAS serves as a

buffer between the high-speed, real-time-sensitive billing validation
applications and low-speed, nonuniform, service-order inputs. DBAS
also provides an on-line database to support various admintstrative
functions for the Bell Operating Companies. The major challenge to
the pDBAS design lies in the size of the database (up to 12-million
telephone station records) and its throughput update volume (up to
100,000 random updates per 10-hour day).

I. INTRODUCTION

The Data Base Administration System (DBaS) is a PDP 11/70
computer system under the control of a real-time UNIX* operating
system designed for the Bell Operating Companies (Bocs) to adminis-
ter several remote, on-line, call-processing-related databases. These
remote databases, among others, include the billing validation appli-
cation (BvA) files located at different network control points for the
purpose of providing mechanized calling card service." Briefly, DBAS

* UNIX is a trademark of Bell Laboratories.

T Other remote databases, administered by the DBAS, are not-in-service telephone
number data located at the automatic intercept centers and originating (telephone)
station treatment data located at the traffic service position systems.

2439

accepts service-order inputs and forwards them to the Bva databases.
Because the Bva databases are queried under real-time constraints for
processing telephone calls, direct access to them by the Bocs would
degrade the performance of the Bvas. DBAS serves as a buffer between
the high-speed, real-time-conscious Bvas and the low-speed, nonuni-
form, service-order inputs. An on-line database at the DBAS site is
introduced to further relieve the load of the Bvas from most associated
administrative functions: for each telephone station with data located
at a BVA, a DBAS on-line database contains a superset of the data about
that station. This superset data includes what is needed for providing
mechanized calling card service and much more indirectly related data
needed by the Bocs for administrative purposes.

The major challenge of the DBAS design lies in the size of the
database and its throughput update volume. A large DBAS database
consists of up to 12 million telephone station records and has the
capacity to process up to 100,000 random updates per 10-hour day.
These figures are equivalent to (i) on-line secondary storage size of
close to 1 billion bytes and (ii) a limitation to no more than nine disk
accesses for an average random record update.

Crash recovery is also very important in the DBAS design. Note that
the DBAS database itself is not part of the switching system for call
processing, whereas the Bva is. A duplex design of the DBAs database
to ensure its high degree of availability would be too expensive because
no calls are missed when the pDBAS is down. On the other hand, the
DBAS database must be available most of the time in spite of system
failures because most Bocs plan to operate their DBASs on a six-days-
per-week schedule. Since initial loading or reloading of a DBAS database
may take from two to five days, the integrity of the database must be
maintained at all times so that recovery from a system failure rarely
requires reloading the pBAs database.

Given the size of the DBAS database, no existing general-purpose,
minicomputer-based database management system (DBMS) satisfies
the pBas update throughput requirement. Clearly, the DBAS applica-
tion is a special-purpose one. In planning the DBAs architecture, the
easy way is to decide what should be included and what should be
removed from a typical DBEMS to meet the DBAS application. For
example, multiple views of the database are supported to provide data
independence among different application programs (APs) accessing
the database. These APs include clerk input, administrative queries,
order processing, order transmitting (to Bvas), and audit (between Bva
and DBAS databases). Multiple views allow the flexibility of late binding
time among these Aps. The interactions among these APs are minimized
so that they can be programmed with ease by different people at the
same time. Transaction processing is not supported because a

2440 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

Table |I—Characteristics of DBAS

Supporting systems PDP 11/70

C language

Real-time UNIX* operating system

UNITY database-management system
Data model Relational

Application programs in C language

Access database through function calls
Features Multiple users

Multiple user views

Multiple reads and writes

Extendible hashing file access

Variable length records

Secondary storage management

Database checkpoint

Hierarchical locking

Deadlock prevention

Secondary key retrieval

Buffer cache

Shared segment

Separate read-only and writable disks
Simplicity in coding and debugging Message

User space code

Synchronous, physical I/0
Capacity and performance 6 RP-06 disks

12 million records

3 disk accesses per random record retrieval

Average 4 to 5 disk accesses per order update

10,000 order updates per hour

100,000 records per hour at initial load

* UNIX is a trademark of Bell Laboratories.

“transaction commit” usually requires more disk accesses per record
update and this hinders the objective of pushing the high volume of
updates through the database. However, a database checkpoint
scheme is implemented to facilitate crash recovery. An existing data-
base-management package, UNITY,! was adopted for high-level query
processing at an early stage of the project so that the available human
resources can be directed at designing efficient lower-level access
modules. The lower-level modules are directly responsible for meeting
the throughput objective. Table I lists the major features of DBAS.

This paper does not cover any of the APs. The overall architecture
is described next. Design issues and their solutions by various com-
ponents of the lower-level access modules are detailed in the remainder
of the paper.

Il. ARCHITECTURE

From the pBAs database viewpoint, APs fall into one of two cate-
gories: (i) order processing and (if) administrative report generating
and query processing. Order processing is the primary objective of the
DBAS in supporting mechanized calling card service. Report generating
and query processing serve as the only interfaces between the machine
and the Boc administrators. Order processing, which runs all day in

ARCHITECTURE 2441

APPLICATION ORDER

PROGRAMS PROCESSING
™~
AN
N
\\ DBMS
UNITY e
COMMAND I uniy l LOW-LEVEL
PROCESS | INTERFACE ACCESS MODULES
e | —_—— -]
| I

REAL-TIME UNIX* OPERATING SYSTEM

UNITY
DATABASE

DBAS DATABASE

*TRADEMARK OF BELL LABORATORIES

Fig. 1—DBAS architecture.

the background, is disk 1/0 intensive. Report and query programs, run
in the foreground, are not as complex as the queries that would appear
in a general-purpose DBMS. Response time is important in most data-
base designs. However, the throughput rate is the main concern in the
DBAS design.

The block diagram in Fig. 1 reflects the above perception of the Aps.
All effort is put in the design of a set of highly efficient lower-level
access modules. They are made not only directly accessible to the
order processing programs but also to other Aps. A random record
retrieval and its subsequent update take, on the average, from four to
five disk accesses. For high-level processing, a UNITY interface mod-
ule is planned. The UNITY interface module is to retrieve data from
the DBAs database via the lower-level access modules and convert
them to the relational format required by the UNITY command
modules. The relational operators available in the UNITY command
modules are then used for high-level query processing.

2.1 Data models

Telephone stations, their associated equipment and services are the
main entities concerning the DBAs database. There are conceptually
two types of relations. They are the Billing Number Group (BNG)
relation type and the Billing Number Record (BNR) relation type.”

2442 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

These two types are hierarchically related: for each tuple in the BNG
type relation there is an instance of the BNR type relation (containing
all BNR tuples for that BNG). The tuples of the BNG type and BNR type
relations are respectively called the BNG records and BNR records.

A BNR record has the 10-digit telephone station number as its key.
The first 6 digits of a 10-digit telephone number identifies a unique
BNG record and is also the key of the BNG record. The tuples of a BNR
relation represent all active telephone stations with identical six-digit
prefixes in their telephone numbers. The lower-level access module
does not provide high-level data-manipulation language operations.
The basic database access functions provided at the tuple level include
(i) retrieve, (ii) store, (iii) replace, and (iv) delete a tuple. At the
relational level, a complete relation of either the BNG or the BNR type
can be retrieved. A complete BNR relation can also be stored or deleted
from the database in a single request. A lower-level access module
supports a restricted form of predefined views under which an AP may
access the database.

2.2 Message and processes

Simplicity in design is the key to the success of a project. We have
strived not to duplicate any functions already supported by the UNIX
operating system unless the throughput objective is at stake. In the
area of interface between an AP and a database process, the following
constraints are observed to achieve simplicity: (i) each AP has at most
one outstanding database request and waits while the request is being
serviced, (if) a database process services one request at a time and
uses no multi-tasking nor asynchronous 1/0 techniques, and (iii)
database requests and replies are communicated between an AP and a
database process using messages. However, multiple APs can issue
database requests to a database process at the same time. They are
served in the FIFo order. Even though messages are expensive in terms
of machine instructions, their usage minimizes the asynchronous con-
trol problem in dealing with multiple database requests from different
APs. The handicap of using messages is minimized by passing almost
all data among database-related processes through the shared seg-
ments.

The pBAS database-management functions are partitioned into more
than one process because (1) they are too big to fit into the address
space of one process and (i) system performance would suffer if both
complex low-frequency and simple high-frequency types of database
requests from multiple APs were all served by a single database process.
The database process would clearly be the bottle neck and would not
be able to take full advantage of the multiprogramming services offered
by the UNIX operating system. The DBAS database processes (Fig. 2)

ARCHITECTURE 2443

OPENDB

CLOSEDB

BEGIN_SESSION DATABASE
END_SESSION MANAGER
READ_TRACE PROCESS

RETRIEVE_BY_DATE
DB_CHECKPOINT

DATABASE

RETRIEVE
STORE ACCESS
DELETE

TASK
REPLACE prASK
LOCKDB
FREEDB

Fig. 2—DBAS Process.

consist of a single Database Manager (DBM) and several identical
Access Task Processes (ATps). The DBM assumes all work that is best
suited for a single, centralized process to do. For example, since the
free page-address stack is shared and accessed by all database proc-
esses for the purpose of allocation and deallocation of disk pages, the
jobs of replenishing the stack when it is empty and managing stack
overflow are the sole responsibility of the pBM. Specifically, the DBM
sets up and initializes most of the data structures required in the
shared segments, semaphores variables for use in dealing with critical
sections, and processes database checkpoints. The ATPs are restricted
to moving data in and out of the database according to requests by
Aps. The binding of an AP’s view and its server ATP occurs at the
database view opening time. The benefit is, again, in simplicity of
design for no dynamic server scheduler is needed in offering multiple
ATPS.

2.3 Data-manipulation primitives

Table II lists a set of data-manipulation primitives for an AP to
interact with database processes. They are implemented as a set of
standard library functions residing in each Ap’s address space. Mes-
sages sent to and received from the database processes are embedded
in these routines and therefore transparent to the aAps. The primitives,
OPENDB and CLOSEDB, also connect and disconnect the shared
segment in the AP’s address space when necessary. When a view is
opened by an aPp, the DBM allocates a system work area in the shared
segment. For each database request, the work done by the correspond-
ing routine on the AP side includes moving data between the AP’s

2444 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

Table ll—Data manipulation primitives

DBM ATP
OPENDB RETRIEVE*
CLOSEDB STORE*
BEGIN_SESSION DELETE*
END__SESSION REPLACE
READ__TRACE LOCKDB
RETRIEVE_BY__DATE FREEDB

* The amount of data is either a tuple or a relation.

workspace and a specific system work area in the shared segment, and
sending a message to and waiting for a reply from the database
processes.

The amount of data passing through the system work area is one
tuple at a time. The format of the tuple, including the ordering and
data types of the fields in the tuple, is according to an AP’s view. An
entire relation, in a restricted form, can also be retrieved in a single
retrieve command: in this case, the bulk of the data is passing from
the ATP to the requesting AP in a file.

2.4 Shared segments

The database processes rely heavily on the shared segments sup-
ported by the real-time UNIX operating system. They are used as
storage for common data, as means to save core space, and to get
around the limitation of small virtual address space imposed by the
machine. A shared segment is also used in moving data between an Ap
and database processes.

Segments used in DBAS are named () AP-segment, (ii) ATP-segment,
and (i) buffer-segment. The aAp-segment is shared among the DBM,
all ATPs, and all APs accessing the database. For each view opened by
an AP, a unique system work area in the AP-segment is allocated for
the purpose of moving data between the Ap and ATPs. The ATP-segment
is internal to the database processes and not shared with the aps, Data
structures, shared internally among the database processes, include,
among others, the free-page address stacks, the top level of the
database tree, and concurrency control structures. Most structures on
the Ap-segment and ATP-segment are dynamically allocated and freed.
Routines of the UNIX operating system are modified for the purpose
of managing the individual segment space.

Buffer caches are implemented through buffer-segments. A con-
nected segment always occupies the same address space within an ATP
so that address pointers within a segment are always meaningful. An
ATP can connect to only one buffer-segment. There are more buffer-
segments than there are ATps. A buffer-segment, disconnected from an
ATP and saved at the end of a retrieval-type database request of an

ARCHITECTURE 2445

order update, is most likely reconnected by the ATP to process the
subsequent replacement type database request from the same AP. This
type of buffer cache eliminates three disk accesses per order update
(i.e. per-paired retrieval and replacement-type database requests).

IIl. DESIGN AND IMPLEMENTATION ISSUES
3.1 File structure and file access

The pBAS application and its throughput requirement impose the
following constraints on the database file structure design.

@ A file large enough to deal with up to 12 million records.

® Records of variable length. They can be dynamically inserted and

deleted.

® Access of a random record that requires as few disk accesses as

possible.

® Facility to retrieve all BNG records and all BNR records of a given

office code, npa-nxx.

The reasons that the file and directory structures of the real-time
UNIX operating system can not meet the needs are discussed in
Section 3.4. Among the other candidates for the choice of a suitable
file structure, the B-tree® and extendible hashing methods*® require
the fewest number of disk accesses in retrieving or storing a random
BNR record out of a population of 12 million. An order update accesses
both a BNR record and its hierarchically related BNG record. The
interesting problem is how one structures the BNG records in an
efficient manner such that they do not cost additional disk accesses in
an order update. The solution used in DBAS is a two-stage extendible
hashing algorithm. The structure of the data (Fig. 3) is essentially a

ROOT PAGES
BILLING NUMBER BILLING NUMBER - BILLING NUMBER
GROUP PAGES GROUP PAGES GROUP PAGES
BILLING NUMBER BILLING NUMBER
RECORD PAGES RECORD PAGES

Fig. 3—Primary database structure.

2446 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

two-level hierarchical one consisting of BNG records of an operating
telephone company at the first level, and BNR records (of individual
billing numbers) at level two. Extendible hashing is used at both levels
to access respectively the BNG record and the BNR record.

' 3.1.1 Extendible hashing algorithm

Briefly, given a key, the algorithm first computes its hashed key
value (hkv), and then makes use of the hkv to search a binary tree,
stored in bit-vector form, to compute a logical page address (la). The
la is a mask of the low-order bits of the hkv. The size of the mask
(number of bits) depends upon the level of the node in the binary tree.
From la and a logical address-to-physical address map (LPAM), the
corresponding physical page address (pa) is known. The disk page at
pa is read into the memory buffer, and the records within the buffer
are sequentially searched until the one with the matched key value is
found.

The process of storing a record follows the same steps as searching
a record in bringing a page into the memory buffer. Room for the new
record within the unused area of the (page) buffer is allocated. The
new record is then moved into its assigned area of the buffer and the
buffer content is written out onto disk to complete the insertion
operation. In case the page brought into memory does not have enough
room for the new record, a new page is allocated. The records within
the page just brought in and the new record are distributed among the
two pages according to their hashed key values. The two pages are
each assigned a new logical page address according to the hashed key
values of the records it contains. The bit vector, which represents the
relationship of all defined logical page addresses, is consequently
updated. Similarly, the entries corresponding to the affected logical
page addresses within the LPAM are also updated.

3.1.2 Data structures used in extendible hashing

The following types of input data structures are needed for each
application of the extendible hashing algorithm:
® A bit vector, its height and size.
® The LPAM pages. The size of the LPAM varies dynamically. It
can occupy several disk pages. Its size grows and shrinks more
easily if it is not required to occupy consecutive physical page
addresses.

3.2 Concurrency

Concurrent operations are necessary for the DBAS to achieve its
throughput objectives. At the hardware level, multiple disk controllers
are used to maximize the data-path bandwidth between the disks and

ARCHITECTURE 2447

the main memory. At the software level, multiple APs can access the
database at the same time. Multiple copies of the ATP are simultane-
ously running to serve the APs to minimize the cpu idle time.

Locks are used to solve the data-conflict problem. In order to
simplify the implementation of any locking scheme, locks on logical
records are assumed to be translated into equivalent locks on the
corresponding physical pages. The locks are chosen so that (i) they
are easy to use and to design, and (i) they provide a high degree of
concurrency. The following considerations are immediately noted.

3.2.1 Logical and physical locks

A race condition exists when two different APs attempt to update
the same data at the same time. The negative consequence of a race
condition is that the database may no longer be consistent. Data
conflict may occur at either the logical record level when APs access
the same BNG record (or the same BNR record), or the physical record
level when APs access different BNG records (or BNR records) that
happen to be located on the same physical page. Since physical pages
are transparent to the aps, locking on physical pages takes place
implicitly when an AP explicitly locks a logical record.

3.2.2 Lock granularity

Clearly, the smaller the sizes of lock granules are, the higher is the
degree of concurrency that can be achieved. However, locking of a BNR
record, the smallest logical record in the DBAS database, necessitates
the implicit locking of several physical pages. There is therefore a
direct link between the lock granularity and complexity in implement-
ing it.

3.2.3 The location of a lock

The locks can be kept in the main memory or on the disk next to
where the locked data item is. The shortcomings of keeping them on
disk include (i) more disk accesses are required in accessing the locks,
and (ii) the data items locked by an aborted AP may become perma-
nently inaccessible.

3.2.4 Deadlock

When an AP is allowed to issue more than one lock, there is the
probability of deadlock occurring.® Locks left by aborted aAps may also
introduce the deadlock problem.

The pBAS locking scheme is a much simplified version of the hier-
archical locks described in Ref. 7. An AP can either lock the entire
database or a BNG record for exclusive access. When a BNG record is
locked, the associated physical page containing the BNG record is

2448 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

implicitly locked. Because of the size of the database, the probability
of two random BNG records residing on the same page is much less
than one hundredth. Even though the size of the lock granule is grossly
large, the degree of concurrency is adequate for DBAS applications.
Moreover, the distinction between logical and physical locking is
practically eliminated from the implementation. An AP is permitted to
own at most one lock at any time so that deadlock due to multiple
active APs waiting for one another can be prevented. Locks left behind
by aborted APs are cleared periodically at about 5-minute intervals to
avoid causing the system to wait indefinitely.

Data structures for the locks and their corresponding queues are
kept in the main memory. Specifically, since they have to be accessed
by all the ATPs, they are located in the shared ATp-segment. Lock and
free lock can be either stand-alone database requests or piggy-backed
to other types of database requests such as retrieve and replace to
minimize the message overhead in using them for order processing.

3.3 Database checkpoint

The DBAS database must be reliable. It does not need to be opera-
tional every minute. However, it should not be down for extended
periods such that the system cannot clear its backlog of updates. A
database update operation comprises, in general, several disk writes.
A database transaction is commonly defined as a sequence of updates
that transforms the database from one consistent state to another
consistent state. Because minimizing the number of disk accesses per
update is the main concern in the DBAS design, and adopting database
transactions to handle updates would have incurred more disk ac-
cesses, DBAS does not have the concept of a database transaction. It
follows that the database may become inconsistent if the system fails
in the middle of an update. The most undesirable way to restore the
consistency of the database is to reload the database. Since it takes
more than three days to reload an average DBAS database, the consist-
ency of the database must be maintained under the condition of system
failure so that reloading becomes unnecessary. This is solved by
performing periodic database checkpoints. At each database check-
point, a consistent copy of the database is saved on disks. When the
system is restarted after a failure, the most recent consistent copy,
saved at the last database checkpoint before the failure, is used, and
reloading of the database is avoided at the expense of losing the
updates entered between the last checkpoint and system failure.

As a further precaution to confine the catastrophe due to fatal disk
1/0 errors to a small region, we partition the database disks into read-
only disks and writable disks. The read-only disks contain the most
consistent copy of the database at the end of each day. The writable

ARCHITECTURE 2449

disks are initially empty at the beginning of the day, and contain an
increasingly larger portion of the database as the day progresses. Fig.
4 illustrates the update effects on the writable disks. At the end of the
day, the contents of the writable disks are all merged onto the read-
only disks to give a new consistent copy of the database. The proba-
bility of a hardware write-protected disk drive having a fatal 1/0 error
is much smaller than that of a drive permitting both read and write.
Consequently, almost all fatal disk 1/0 errors are confined to the
writable disk drives. The work lost due to a fatal disk 1/0 error is
therefore limited to one day’s work of updates. A duplex system was
also considered for DBAS database and rejected because of its cost.

3.4 Secondary storage management
3.4.1 Introduction

The real-time UNIX operating system supports both contiguous and
noncontiguous files. The noncontiguous file has the advantage that the
management of free pages is part of the file system function. However,
the number of disk accesses to retrieve a page of a large (noncontig-
uous) file is too many for the pDBAS application. In the case of contig-
uous files, the file system uses the concept of multiple extents to
provide the capability of file growth and shrinkage. All these advan-
tages can be fully utilized if the sizes of the files are not bigger than
the size of the host file system. The major difficulty lies in the
restriction that the size of a file system can not exceed the capacity of
a special device (174 million bytes in the case of RP-06). In other
words, a file system in the UNIX operating system does not span more
than one disk drive. The DBAS database needs a file of size much larger
than one RP-06 disk. This large file would have to be artificially
partitioned into multiple file systems if one insisted on using those
provided by the UNIX operating system. The negative impacts include
(i) unusually large number of file systems have to be mounted at the
same time when the mount points are already scarce resources in most
systems, (if) an unusual number of files would have to be introduced
to take advantage of the space-management facility of the UNIX
operating system, and (iif) more file-open and file-close operations
would have to take place due to the limitation on the number of files
that are allowed to stay open at any time for each process. These
negative impacts obviously affect the DBAs throughput objective.

The following considerations are noted in the design of a special
Secondary Storage Management module (ssM) for DBAS use. (See

Table III for a list of ssm features.)
3.4.1.1 Transparency of multiple database disks. The ssm should make

the distinction between multiple database disks and a single database
disk transparent to the file-access method. On the other hand, the ssm

2450 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

MAIN MEMORY DISK

4 TRANSIENT STABLE
(R AND W) (R ONLY)
BEFORE UPDATE:
ROOTPAGE [— ™ ROOT

{ROOT LPAM)

B [———

BNG, BNG, “ee

|
|
|
|

: BNR, BNR, [=o+
|
AFTER: (BNG',, BNR'; ARE UPDATED COPIES OF BNG,, BNR,) |
|

ROOT : ROOT
[|
i
T \

|

BNG', | BNG, BNG, | ==*
[
[
]
|
|

BNR’, | BNR, BNRy | oe-
[

Fig. 4—Illustration of the update effects on the writable disk.

should separate the read-only disks from the writable disks such that
data on the read-only disks can take advantage of the hardware write

protection feature.
3.4.1.2 Efficiency. Allocation and deallocation of a block should

require almost no disk accesses. Reading (or writing) a block from (or
to) a disk takes exactly one disk access. Data movement in reading or

writing a block should also be minimized.
3.4.1.3 Contiguous disk space. Reading from (or writing to) successive

disk blocks requires fewer disk seeks than from (or to) disjoint blocks.
In general, the number of 1/0 calls is the same as the number of blocks
being moved from (or to) the disk. The ssM can provide a further
improvement in efficiency by issuing exactly one 1/0 call in moving
multiple blocks when the source and the destination are known to

ARCHITECTURE 2451

Table ll—Secondary storage-management
features

Up to 6 RP-06 disks

2K-byte disk blocks

Write 1 to 4 contiguous blocks in 1 system call
Separation of read-only and writable disks
Contiguous free-space management
Fragmented free-space management

Data placement heuristics

Support for database checkpoint

Support for multiple copies of ATPs

occupy contiguous space. Since the DBAS updates are confined to the
writable working disk during the day and merged to the read-only disk
each night, all blocks on the working disk are free in the morning when
the system starts. Moreover, all read-only disk blocks are also, ob-
viously, free when an initial database load starts. Careful management
of contiguous space cuts down daily update time and the long period

required for database load.
3.4.1.4 Fragmented disk space. The choices of data structures for

managing fragmented disk space include, among others, the following.
(i) A free-page bit vector. The position and the binary value of a
bit is used to represent, respectively, one page and its allocation status.
One bit vector is required for each database disk.
(ii) External free-page address file. A file, external to the database
disk space, is used to record all the free-page addresses.

(iii) Internal free-page address file. A linked list of blocks, where
each block is a part of the database disk space, is used to record all the
free-page addresses.

The first two data structures occupy space that can otherwise be
allocated for other purposes. The third one, similar to the structure
used in most cases to manage the main memory free blocks, occupies

the spaces that are free and unused due to fragmentation.
3.4.1.5 Checkpoint support. When modifying a block, if the old

content is needed for the purpose of restart after a system crash, then
the old block cannot be over-written, and a new shadow block must be
used for the storage of the modified content. Even though the contents
of the old block are obsolete, the deallocation of the old block for reuse
must be deferred until the shadow block is checkpointed. The ssm
should manage the deferred free blocks efficiently to support the

database checkpoint.
3.4.1.6 Data placement heuristics. The BNG records in the DBAS

database are obviously accessed thousands of times more frequently
than the BNR records. The BNG record should be placed in a special
disk area so their accesses cause the least amount of head movements.

Other considerations in the ssM design include 2K (2048) byte block
size, disk reconfiguration for database growth, and migration.

2452 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

3.4.2 Implementation

The picture of the database disks, presented to the file-access
method by the ssM, is a large, virtual, contiguous file with multiple
extents of usable and nonusable space. Each of the multiple extents of
usable space corresponds to a database disk. The blocks, each having
2K bytes, of this large virtual file are addressed by 32-bit numbers.
The first five of the 32 bits is used to address a database disk and the
remaining bits to address the block offset within the disk.

The multiple extents of usable space of this large virtual file are
further partitioned into three types of areas.

(i) BNG area. A set of cylinders close to the center of a read-only
disk is dedicated for the storage of BNG related record. Since the BNG
records are presumed to be accessed at a high traffic rate, the space of
the remaining areas of the same disk is allocated in a discrete manner
so that there is always a high probability that the disk head stays
within the BNG area at all times.

(if) BNR area. With the exception of the BNG area, all other areas
on the read-only disks are used to store BNR records and other
miscellaneous data.

(¢zi) Working volume area. The areas on the writable disks are for
the purpose of update processing.

Each area of the three types has contiguous unused space and
fragmented free space. A contiguous unused space is simply managed
by keeping its size, and its lower- and upper-bound block addresses in
the system. The fragmented space of an area type is managed through
the aforementioned internal free-page address file. The names of the
three (internal) free-page address files are GFL, RFL, and WFL for
respectively the BNG, BNR, and working volume area types. Further-
more, to achieve efficiency during the allocation and deallocation of
the blocks of each area type so that no extra disk accesses are incurred,
a free-page address stack is maintained for each area type. They are
replenished from, or overflowed to, their respective free-page address
files when nearly empty or full.

The management of deferred free pages in supporting database
checkpoints is similar to that of fragmented free pages of the working
volume area. A fourth (internal) free-page address file, called DFL,
and a companion free-page address stack are allocated and operated
the same way in managing the deferred free pages.

Finally, when multiple copies of the ATPs are running, they all need
to access the ssM data structures. These data structures are all placed
on the commonly shared ATP-segment and accessed through the use of
semaphores to avoid any critical section problems from occurring.

3.5 Buffer management
A set of page buffers is statically allocated within the user address
ARCHITECTURE 2453

space to form a buffer pool. A block of data that is moved in and out
of the database must first be placed in one of these buffers. They are
time shared among the different page types of the database. The
objectives are to minimize the amount of data movement and to
facilitate implementation of the extendible hashing algorithm. The
following considerations are noted in the buffer management design.

3.5.1 Number of buffers

The data space of 64K bytes allowed to each process on the PDP
11/70 sets an implied upper limit on the amount of space that can be
allocated to buffers. The internal operation of the database requires
page splitting, which can demand 4 to 6 pages to be buffered simulta-
neously.

3.5.2 Contiguity of multiple buffers

Contiguous free space on disk is used to reduce the number of disk
1/0 operations in updating a record. This requires that at least some
set of buffers in the pool occupy contiguous memory space.

3.5.3 Buffer cache

Updating requires two accesses to the same record. A cache buffer
arrangement is implemented to keep the record in memory between
these two accesses, while allowing the ATP to act on other requests.
With this arrangement nearly 50 percent of accesses will find the
record already in memory. This hit ratio is even higher when a large
number of sequential records are updated, since they will usually go to
the same page.

Each buffer has 2K bytes. An ATP has a pool of six buffers in its
address space, four of the six occupying a contiguous 8K shared buffer-
segment. Buffer-segments are used to provide the buffer cache capa-
bility. A buffer-segment stack, located on the ATp-segment, is used to
manage the free buffer-segments.

To support database checkpoints, the ssm time-stamps each page
when it is written on disk. When a block is to be copied from a memory
buffer to a disk, the time stamp decides whether the old disk block can
or cannot be overwritten. If the time stamp is earlier than the last
checkpoint time, then it must be saved for the purpose of restart after
a system crash, and a new disk block, onto which the modified buffer
contents are copied, must be allocated. Clearly, writing the buffer
contents to a new disk block may affect pointers in other buffers. The
accurate processing of this chain reaction is part of the objective of
the buffer descriptor array.

The state of the buffers in the buffer pool is described by a buffer-
descriptor array. Each entry of this array records whether the buffer

2454 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

is free or used, disk block addresses from which and to which the
contents of the buffer is copied, and the relationship of the buffer
contents to other buffers.

3.6 Secondary key retrieval

A service order containing a future service-effective date is called a
pending order. Because of the size of the DBAs database, it is impossible
to scan through the entire database to find all the BNR records with a
given effective service date. The DBAS database management system
provides a restricted secondary key retrieval capability for the purpose
of processing and administering pending orders. Given a (future)
service-effective date, the retrieval-by-date function lists the keys
(telephone station number) of all BNR records that contain the given
(service effective) date.

Since the retrieval-by-date function is not expected to be used very
often, the main concern is to devise a structure so that its maintenance
during a regular order update will not incur extra disk accesses. An
inverted list is chosen for the secondary key retrieval. During normal
updates, new entries of the inverted list are piled on top of the old
ones in a dedicated main memory buffer similar to a free-page address
stack. Whenever the buffer is full, its contents are moved to a disk
block and linked to the rest of the inverted list.

When processing a retrieval-by-date request, the inverted list is
sorted and filtered to produce the results. Obsolete entries of the
inverted list are removed nightly during database merge time.

3.7 Database load
3.7.1 Introduction

The initial loading of the pBAs database from magnetic tapes pre-
pared by an Bocs data centers is an expensive, time-consuming process.
For a large database, it takes four days to load the database from
scratch to its full size. If regular updates were used to insert one record
at a time to the database, the loading time would be at least ten times
longer (e.g. 40 days). The main goal of the DBAS database initial-load
program is to shorten the total database loading time. Features used
to achieve this goal include (i) a linear depth-first search algorithm® to
avoid repeated writing of the same disk blocks, (if) taking advantage
of the contiguous disk space to reduce the number of disk writes, (iit)
options of running multiple copies of the database initial-load program
to increase throughput rate, and (iv) a checkpoint to minimize the
degree of work loss due to system crash. The following linear depth-
first search algorithm—which stores all BNR records of a given BNG
record in the database—illustrates where contiguous disk space is used
to reduce the number of system calls.

ARCHITECTURE 2455

3.7.2 Store-all algorithm

Assume that the records R1, R2, ..., Rn are prearranged in ascending
hashed key values K1<K2<...<Kn. Initially, the binary tree, T, consists
of only the root. The current buffer, CB, is empty and is assigned the
logical page address 0 at current level L = 1.

1. [Iteration]. For i=1,2,...,n do steps 2 to 7. At the end of this
iteration, a clean-up operation is done to complete the loading.

2. [Input]. Read record Ri.

3. [Output current buffer to disk?] Compute the logical page address
Pi and level Li from Ki and current binary tree T. If Pi is the same as
the current buffer logical page address, do step 4. Otherwise, the
content of CB is stablized. If CB is non-empty, it is written onto a disk.
A new CB is allocated and initialized, and its logical page address is set
to Pi. The current level L of CB is set to Li.

4, [Add record to current buffer]. If the current buffer has room for
the in-coming record Ri, place Ri on the current buffer and go to step
2 to process the next record. Otherwise, since the current buffer CB is
too full for record Ri, do steps 5 to 7.

5. [Allocate an additional buffer for tree splitting]. Allocate a buffer,
CB'.

6. [Grow tree T by splitting contents of CB at level L]. Split the
contents of the full buffer CB at level L between CB and CB’ at level
L+1: The logical page address of CB and CB’ at level L+1 are
LCHILD(Pi, L), and RCHILD(Pi,L). The logical page address of each
record of the full buffer CB at level L is recomputed, if it agrees with
the new logical page address of CB at level L+1, it remains in CB.
Otherwise it is put in CB'.

7. [Select the new current buffer]. Compute the new logical page
address Pi from Ki and the newly split tree T. If Pi agrees with that of
CB, keep CB as the current buffer. In this case, CB’ must be empty,
and CB is still too full for record Ri. Set L to L+1 and repeat step 6. On
the other hand, if it agrees with that of CB’, then the content of CB is
stabilized. If CB is non-empty, it is written out onto disk. Let the new
current buffer CB be CB’, set L to L+1 and repeat step 4.

Note 1. By writing out a buffer contents immediately after it becomes
stabilized, the description of the algorithm is simplified. In reality,
buffer contents are not written out until no more contiguous buffers
can be allocated. Contents of contiguous buffers are moved to consec-
utive pages on disk in a single system call. This reduces not only the
number of seeks from (up to) 4 to 1, but also economizes the cPU usage
during initial load.

Note 2. The cleanup operation moves what remains in the buffer
pool to disk. These buffers include the contiguous ones that contain
records not yet stored on disk, buffers used to build the logical-to-

2456 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

physical address translation, and the buffer containing the BNG record
with the newly constructed binary tree in bit-vector form.

Note 3. The left child node has logical page address LCHILD(Pi, L)
= Pi. The right child node has the logical page address RCHILD(Pi,L)
= 2**L + Pi.

IV. Experiences

DBAS, being a vital link between an Boc and the Bvas at network
control points in supporting the nation-wide mechanized calling card
service, is a production database management system. Most BOCs in
the Bell System have committed themselves to installing DBAS by
second quarter, 1982. The turnover of the DBAS Generic 2DB3 to its
first customer, Southwestern Bell in St. Louis, Missouri, was right on
schedule in June 1981. An early Generic, 2DB2, was also on schedule
in its delivery to New York Telephone in July 1980. The data, collected
so far from the field, show that the design has very successfully met its
capacity and throughput rate objectives.

The following are some of the contributing factors towards the
success of the project.

(f) The pBAS design team is throughput conscious and goal ori-
ented. The time and coding complexities of each component have been
closely monitored throughout the design and implementation stages.

(ii) The pBas database-management modules comprise approxi-
mately 30-thousand lines of the C language code. Its modular and
layered structure has made the debugging and trouble-shooting tasks
manageable.

(iti) The interaction among the application programs is minimized
through multiple user views (supported by pBAS). The programmers,
developing the Aps, do not have to go through cumbersome and error-
prone tasks in negotiating a common data header among themselves
in the process of designing and debugging their individual programs.
The benefit is also apparent in the shorter overall system testing and
integration time.

(iv) The evolutionary approach—getting the essential programs to
work first and partitioning the entire job into two stages (Generics
2DB2 and 2DB3)—has the function of boosting the confidence and
morale of the developers and other members of the DBAS project in
delivering the products on schedule.

V. ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions from the other
members of the DBAS design team. In particular, D. A. Dixon imple-
mented the user interface modules and played the role of a database
administrator in incorporating all APs’ views into the DBAS database;

ARCHITECTURE 2457

G. M. Jensen implemented an earlier version of the secondary storage
management modules; and J. E. Simpson assisted in the preparation
of this paper. Finally, the authors wish to thank the testing and
integration team for its efforts in debugging the system and the
management team for its continuing trust during the course of this
development.

REFERENCES

1. D. T. Chai and P. D. Ting, “UNITY—A Microcomputer DBMS Stand-alone and
Distributed Environment,” The 1979 IEEE Electronics Conference, New York
City, April 24-26, 1979.

2. J. W. Schmidt, “Some High Level Language Constructs for Data of Type Relation,”
ACM Trans. Database Systems, 2, No. 3 (September 1977), pp. 247-261.

3. D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Reading,
Mass.: Addison-Wesley, 1972.

4. R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible Hashing—A
Fast Access Method for Dynamic Files,” ACM Trans. Database Systems, 4, No.
3 (September 1979), pp. 315-344.

5. P. Larson, “Dynamic Hashing,” BIT, 18, No. 2 (1978), pp. 184-201.

6. A. I-(I:g'._]_lSh?;' Logic Design of Operating Systems, Englewood, New Jersey: Prentice-

, 1974,

7. J. N. Gray, “Notes on Data Base Operating Systems,” in Operating Systems: An
Advanced Course, Vol. 60, Lecture Notes in Computer Science, New York: Spring-
Verlag, 1978.

. A. V. Aho, J. E. Hopcroft and J, D. Ullman, The Design and Analysis of Computer
Algorithms, Reading, Mass.: Addison-Wesley, 1975,

(e <]

2458 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

