Copyright © 1982 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in U.S.A.

Database Systems:

Implementation of a Distributed Database
Management System to Support Logical
Subnetworks

By D. COHEN

(Manuscript received November 3, 1981)

This paper describes the design and implementation of a special-
purpose distributed data management system. The design and imple-
mentation were parts of a study to evaluate the database management
needs of software-defined logical subnetworks. The paper describes
the authorization model used to define logical subnetworks and the
related subnetwork management transactions. The definition of the
subnetworks and their service capabilities are stored in a distributed
database. The distributed database architecture and the imple-
mented software architecture are described. The requirement to de-
sign and implement within a specific time frame has kept the design
simple, but the nature of the application dictated that we consider
many aspects of the more general distributed data-management
problem. The database management issues that are addressed in this
paper, in the context of transaction processing, include multicopy
updates, concurrency control, and crash recovery. A version of the
primary node concept for multicopy updates was adopted. Data
inconsistencies, created by premature termination of transaction
processing (e.g., system crash), are detected and removed by the
software.

I. INTRODUCTION

The advantages of distributed data processing in general, and dis-
tributed data management in particular, have been presented in many
publications. In spite of wide interest in its potential cost benefits,

2459

distributed data management has met little acceptance in the field
because of its potential impact on the way organizations are accus-
tomed to managing their data-processing facilities."” Issues such as
who is responsible for purchasing of equipment, or who is responsible
for availability of services have to be revisited in the distributed
processing environment. This paper presents the design of a distributed
database management system. The implementation was part of a
special study investigating the feasibility of software-defined logical
subnetworks. However, the design is general in that many issues of
distributed database management are addressed and solved.

The database contains the definition of logical subnetworks, their
users, and the service features to which the users subscribe. In soft-
ware-defined subnetworks, customers can be provided direct control
over their own subnetwork. This aspect of the service is referred to as
customer subnetwork management. The customer subnetwork capa-
bilities deny customers control over other customers’ subnetworks,
and protect the network from customer-initiated activities. The data-
base architecture selected, in the context of a nation-wide service, can
be applied to a variety of communication services.

Section II defines the requirements placed on the database manage-
ment system by the application. Section III describes the database
architecture selected in response to the reliability and performance
requirements of the service. Section IV describes the software archi-
tecture developed to maintain the distributed databases. Section V
presents solutions to major database issues.

Il. APPLICATION

The specific application under study was in the context of a com-
munication service—a service assumed to be operational 24 hours a
day, 7 days per week.

2.1 Definitions

2.1.1 The network

The service is handled by a collection of physical nodes. Each
physical node supports one or more logical nodes, called service areas
(sAs). A service area cannot span physical nodes. A service area
provides service through a set of network addresses. An sa is identified
by a six-digit number. A network address is identified by a ten-digit
number that includes the six digits of the associated sa. For example,
201-777 is a service area name, and 201-777-4444 is a network address
associated with it. Figure 1 shows the network as a collection of
physical nodes, each supporting one or more service areas.

2.1.2 Users
A user is an entity that can be provided service. Users are grouped

2460 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

NETWORK ADDRESS
201-777-4444

Fig. 1—Nodes and service areas in the network.

according to their service capabilities (e.g., set up calls, terminate calls,
disable service to another user, etc.). At any one time, a user may only
be a member of a single group. All the users of a given group share the
same set of capabilities. A customer account is a collection of user
groups. A user is identified by the combination of a group name and
a home address. The home address of the user is a ten-digit number
and it identifies the service area that is normally used by him/her to
access service. But, a user may access (if authorized) network services
through network addresses associated with any other service area. The
customer account name is part of the group name. For example, BELL,
BELL.RESEARCH, BELL.RESEARCH:201-582-9999 are account,
group, and user names, respectively. An instance of a user requesting
service at a particular address is referred to as an active user. Users of
an account are provided service by their home sas, which were selected
by the customer. Therefore, an account may span several sAs according
to the distributed nature of the customer’s business.

Each user is assigned a data profile. Actually, a user’s data profile is
constructed from his/her account, group, and home address profiles.
A user profile contains a list of the service features subscribed to by
the user and some status information. These may include features to
transfer information between users (communication features such as
“call setup” and “send message”) and/or features to control other
users’ service capabilities (subnetwork management features such as
“disable and account,” “‘a group,” or another user).

2.2 The authorization model

A shared network must preserve the rights of its users. The author-

DATABASE MANAGEMENT 2461

ization model defines the format of the authorization policy specified
by the customer, and the enforcement mechanism used to control user
access to the service.

2.2.1 The authorization policy

The collection of users, network addresses, and groups associated
with an account is referred to as a logical subnetwork. The authori-
zation policy of an account is the database representation of its logical
subnetwork. Logical subnetworks can be created or removed only
through service provisioning, i.e., changes in the database. The capa-
bility of a user to modify the authorization policy of an account is
referred to as subnetwork management. The operations support users
are also organized in one or more accounts. These accounts are
identified through reserved names and associated users may be as-
signed to customers. Subnetwork management is used by operations
support users to create, modify, and remove logical subnetworks.
Customers are provided access to some limited customer subnetwork
management capability. Users who can exercise customer network
management capabilities are referred to as administrators. Adminis-
trators are restricted in their scope of control to their own customer
subnetworks. For example, an administrator in one account cannot
disable service to a user from another account. An administrator can
modify the authorization data associated with existing users, but he/
she cannot create or remove either a user or a network address.

We recall that an account consists of one or more groups. The
implementation supports account and group administrators. An ac-
count administrator can exercise control over his/her whole account.
For example, the account administrator can disable service to his/her
whole account, to a group, or to a specific user. A group administrator
is assigned control over one or more groups within his/her own
account, but a group can be assigned only to a single group adminis-
trator. Group administrators can exercise subnetwork management
functions only over groups under their control. Group administrators,
by definition, cannot be members of a group under their control. The
subnetwork management capabilities available to customer adminis-
trators differ only in their scope of control. For example, an account
administrator of account Al has the same capabilities as account
administrator of account A2. But each administrator is restricted to
exercise his/her capabilities within his/her own account.

In summary, the authorization policy of an account is stored in a set
of data profiles associated with logical subnetwork entities such as
users, network addresses, and groups.

2.2.2 The enforcement mechanism

The authorization policy is used by the enforcement mechanism to

2462 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

ADMINISTRATORS USERS SERVICE ADMINISTRATORS

SUBNETWORK COMMUNICATION
MANAGEMENT SERVICE
REQUESTS REQUESTS OPERATIONS SUPPORT
REQUESTS
ENFORCEMENT PERMIT/DENY
AUTHORIZATION MECHANISM REQUEST
POLICY

Fig. 2—The enforcement mechanism.

authorize all user service requests. This applies uniformly to requests
issued by customer or operations support users. With respect to
customers, the enforcement mechanism is invoked to authorize both
communication and subnetwork management service requests. Figure
2 illustrates the enforcement mechanism and the related authorization
policy as defined by the model. A customer service request is author-
ized using the policy stored in the related user profile. To minimize the
enforcement delay associated with a service request, a copy of the user
profile is cached in main memory at the service area used by the active
user to access the network. The following section describes the au-
thorization database architecture used to maintain software defined
subnetworks.

lll. DATABASE ARCHITECTURE

3.1 Is distributed database management necessary?

The application described in Section II specifies a use of data
management to support the maintenance of user profiles. The need for
distributed database management was one of the most important
design decisions. An evaluation of the application showed that distrib-
uted database management is necessary for four major reasons: load
sharing between the nodes, enforcement mechanism performance,
communication service reliability, and node software standardization.

User profiles must be available at the node which provides service
to support authorization enforcement. If all user profiles were stored
at a single node, the system could not meet its performance and
availability objectives. The node that maintains all user profiles may
become a bottleneck whenever large numbers of users wish to initiate
service concurrently. It was also concluded that it would be disadvan-
tageous to develop and maintain two different node software versions,
one for the node maintaining the profiles, and another for the nodes
providing communication services. Therefore, it was decided to dis-

DATABASE MANAGEMENT 2463

tribute the database management load associated with user profiles
across all service areas (all nodes).

3.2 Physical distribution of data

User profile data is distributed at three different levels to minimize
enforcement delay associated with communication service requests, to
improve availability of the service, and to maintain consistency of
replicated data elements. At any point in time, a user’s profile may
exist at: the account’s sa (first level), the user’s home saA (second level),
and the access sas that support all related active users (third level).
Data at the first level is used to coordinate the update of replicated
data elements that have been stored at all three levels. Data at the
second level is used to enhance the availability of service. As long as
the user’s home SA is operational, a user may be guaranteed service by
this site. Data at the third level is stored in volatile memory and is
used mainly to decrease the delay associated with enforcement.

3.2.1 The first level

All authorization data associated with an account (e.g., group pro-
files, user profiles, address profiles, etc.) are stored in a customer
authorization database (CADB) at a specific service area. This service
area is referred to as the account’s sA (or the first level). The cADB of
a service area may contain the authorization data of one or more
accounts. The authorization model does not allow any logical data
dependencies between accounts. This design decision simplifies signif-
icantly the maintenance of data integrity of logically related profiles
within an account. For example, the system rejects a “create user”
transaction if the related group and home address profiles do not exist.
The account’s sa is selected by operations support personnel according
to load-balancing considerations, independently of the service areas
that will provide service to users.

The primary node concept for multicopy updates was chosen to
support profile updates.*® All changes in authorization information
will occur first in the cADpB, and will be propagated to the other levels
if necessary.

3.2.2 The second level

Whenever a user is created, a user profile is downloaded from the
CADB to the users’ home sA (or the second level), and stored in
nonvolatile memory. All secondary copies at a service area are stored
in the secondary copy database (scDpB). A scDB includes profiles of all
users homing on this service area, independently of their account
membership. Users can be provided service as long as their home sA
is operational, even if their account’s sa is not.

2464 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

SA4

O PRIMARY COPY

[:| SECONDARY COPY

Fig. 3—Primary copy concept—multiple copy updates.

Secondary profile copies can be updated only through the account’s
cADB. Therefore, subnetwork management requires that both the
user’s home sa and the account’s sA be operational. Figure 3 shows an
instance of the primary copy concept. Profile Fa has its primary copy
installed at sA1, sA2, and sa3. Similarly for profile Fb, the primary copy
is installed at sa2 (Fb’), and secondary copies exist at sA3 and sa4. A
secondary copy of profile Fa is installed at sa1 because the primary
copy is not used to support enforcement. This decision simplifies the
development of the software responsible for migrating caApBs and
scpBs, independently from one node to another. For example, the
caDBs of several accounts can be homed to a new service area at a
different node without any changes in the content of the scDBs at the
old node. Network growth and/or load balancing considerations will
require the migration of databases between nodes.

3.2.3 The third level

A user may be provided service through a network address only
after a log-on procedure verifies his/her identitiy. If log-on is successful,
a session associated with an active user is established. During a session,
an active user may submit one or more service requests. For each
active user, a copy of his/her profile is cached in main memory at the
access service area (or the third level). This may or may not be the

DATABASE MANAGEMENT 2465

— ——+ (U2:NAZ2)

O USER PROFILE AT THE FIRST LEVEL
[] usER PROFILE AT THE SECOND LEVEL
/\ USER PROFILE AT THE THIRD LEVEL

Fig. 4—User profiles.

home service area of the user. The cached profile copy is created to
further minimize enforcement delay associated with communication
service requests. The active user profile is kept in volatile memory for
the duration of the session. The system can provide service concur-
rently to one or more active instances of a user. The user’s home sa
keeps track of all active instances of a user. Figure 4 shows account A1
homing on service area SA1. Two users of this account, U1 and U2,
home on service area SA6 and SA3, respectively. An active instance of
user U2 is created when he/she requests service through network
address NA3, associated with service area SAS5. Other active users,
U1:NA1 and U2:NA2, are provided access through service areas SA6
and SAS3, respectively.

Each node maintains a routing table which identifies the sas of all
accounts. Update transactions are routed, using this table, to the
appropriate account’s CADB. Each profile in the CADB maintains a list
of sas, where related secondary copies have been installed. This
information is used to propagate update transactions to the second
level.

Changes to a profile at the third level take effect after session
termination of the affected active user. All new sessions are established
using the updated version of the profile at the second level. To
minimize interference during a session, the administrator may or may
not request immediate activation of the change. If an immediate option

2466 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

DISTRIBUTED ACCESS OPERATING .
USER | APPLICATIONS DATABASE METHOD SYSTEM
MANAGEMENT

Fig. 5—Functional partitioning of the software.

is specified, sessions of all affected active users are terminated. If the
immediate option is not specified, the update at the second level will
affect only future sessions.

In the rest of this paper, discussions will be restricted to issues
associated with the first and second levels of the database architecture.

IV. SOFTWARE ARCHITECTURE

The UNIX* operating system was chosen as the implementation
environment.” At the time of the study, a commercial database man-
agement system controlled by the UNIX operating system was not
available. To limit development resources, a decision was made to
concentrate most of the effort on the distributed aspects of the prob-
lem. The centralized database management system supports file direc-
tories, sequential files, and single key files, built over the UNIX file
system. The assumption was that centralized database management
could be upgraded in the future, once a commercial package became
available. Figure 5 shows the functional partitioning of the software.
The design effort concentrated on key issues such as multicopy up-
dates, concurrency control, and crash recovery. Tight dependencies
were detected between these issues. Similar dependencies were re-
ported in Ref. 6. Section V presents some of these dependencies and
their impact on implementation.

4.1 Process structure

The two functions associated with multicopy updates of the cADB
and scDB are supported by two data managers. The first manager,
referred to as the primary copy data manager (PcpM), updates profiles
at the first level and coordinates the distribution of secondary copy
updates to the affected scpBs. The second manager, referred to as the
secondary copy data manager (ScbM), updates profiles at the second
level—stored in the scDB—in response to PCDM requests and supports
enforcement at the user’s home service area. The two data managers
are implemented as separate processes because of size limitation
imposed by the operating system. Figure 6 shows the uniform process
structure selected for all service areas.

* Trademark of Bell Laboratories.

DATABASE MANAGEMENT 2467

SA3

© PRIMARY COPY DATA MANAGER

@ SECONDARY COPY DATA MANAGER

Fig. 6—Data management process structure.

The design of both data managers follows a layered approach with
well-defined interfaces. This facilitated parallel development of the
layers, and allows easy upgrading of existing layers in the future.
Database updates of first-level copies are supported through four
layers. The first layer provides local data access and secondary storage
management. The second layer (PcDM) supports centralized control of
updates, data consistency within the primary copy’s node, concurrency
in transaction processing, deadlock prevention, and crash recovery.
The third layer allows data distribution to be transparent to node data
managers. The fourth layer, as a user interface, transforms user queries
into database transactions. This layer also includes an access control
mechanism based on the capability model.**

Enforcement requests and updates of secondary copies are sup-
ported through two layers. The first layer provides local data access
(the same one as for the first-level copies). The second (scpm) updates
secondary copies and supports enforcement. Figure 7 shows the data-
base management system’s layered architecture.

V. TRANSACTION PROCESSING

The design process was implementation driven. In all cases in which
a simple solution was available, it was adopted. Initially, we decided to
review issues one at a time. However, we soon discovered that some

2468 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

READ ONLY UPDATE
REQUESTS REQUESTS

4 L

USER INTERFACE

DISTRIBUTION

DISTRI-
BUTION

ACCESS METHOD

SECONDARY
COPIES

COPIES

SERVICE AREA;

Fig. 7—System software architecture.

aspects of distributed data management are interrelated and cannot
be examined separately. For example, the update algorithm had to be
revised numerous times while crash recovery was investigated. As long
as crash recovery was not considered, all update algorithms were
satisfactory. The following sections review the transaction types sup-
ported, the update algorithm, and the crash-recovery mechanism.

5.1 Input transaction types

The pcbDM accepts three types of transactions. (i) Customer subnet-
work transactions are issued by an administrator to exercise control
over his/her logical subnetwork. These include access requests to
either verify or modify the status of the logical subnetwork. (ii)
Process control transactions are issued by maintenance personnel to
monitor and control PcbM functionality. For example, these transac-
tions can be used to disable the processing of a particular type of
customer subnetwork transaction for all customers because of a soft-
ware problem. (iii) Response transactions are issued by sDcMs in
response to PCDM-initiated update transactions.

Process control and response transactions have a uniform high
priority, and are processed before all new subnetwork management
transactions. Customer subnetwork transactions are processed by the
PCDM at one of three priorities. Administrators may specify the priority

DATABASE MANAGEMENT 2469

1. LOCK MASTER COPY RECORD(S}
2. UPDATE MASTER COPY RECORD(S)

3. PROPAGATE CHANGES TO THE SECOND LEVEL(S)
WAIT FOR ACKNOWLEDGEMENT(S}

4. UNLOCK MASTER COPY RECORDIS)

5. ACKNOWLEDGE TRANSACTION

Fig. 8—Update algorithm.

of each transaction submitted. If not specified, a default priority is
assigned by the system uniformly for all customers.

The scDM accepts three types of transactions. (i) Update transac-
tions are issued by PCDMs to create, remove, or modify profiles in the
scpB. (ii) Process control transactions are issued by maintenance
personnel to monitor and control scpM functionally. (iiZ) Enforcement
transactions are issued by other processes to verify the capabilities of
a user in the context of a service request. A user’s request to initiate a
session, or to make a call to another user are examples of requests that
have to be authorized by the scDM.

Process control and enforcement transactions have a uniform high
priority, and are processed before all new update transactions. All
update transactions are processed at a single-priority level because
they are issued by the pcDM.

5.2 The update algorithm

The update algorithm handles transactions to add, modify and
remove the profile. Each update transaction is routed to the PCDM at
the account’s home service area. The pcpM updates the first-level
copy(ies) in the cADE and coordinates the update of all related second-
ary copies if necessary. Once all secondary copies have been updated,
the pcDM returns an acknowledgment to the user interface process
which originated the transaction. Figure 8 describes the update algo-
rithm. The algorithm is similar to phase one of the two-phase commit
protocol.” But, once the transaction is received at the scpM, the
response to the PcDM represents the fact that the change has been
committed. If one or more scbMs do not acknowledge completion, the
PCDM terminates the transaction and notifies node maintenance of the
potential existence of a database inconsistency. Node maintenance is
provided with software tools to restore database consistency. The role
of these tools is further discussed as part of the recovery strategy.

5.2.1 Locking
The locking mechanism supported by the system has four major

2470 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

functions. First, it is used for concurrency control to enforce the
serializability of multisource updates.'”'" For example, different active
users may submit authorized update transactions related to the same
profile. The locking information is maintained in a system lock table
and not with the data entities being updated.

Second, it is used to recover update transactions that have been
abnormally terminated as a result of a system failure. The lock table
is maintained in nonvolatile memory. If the lock table survived the
crash, it is used by the recovery process to identify potential database
inconsistencies. The lock table contains sufficient information to re-
store database consistency using roll forward or backward techniques.'

Third, it is used to prevent data-resource-related deadlocks.” Each
update transaction locks a priori all data elements that are to be
modified at the CADB, in the first step of the update algorithm. Most
updates require the locking of two or three records in the caps. The
system supports locking granularity at the database, the file, and the
record level. Using the primary copy concept, locking at the first level
also implies locking at the other levels. Therefore, it is not necessary
to acquire and release data locks across different nodes. If a transaction
cannot acquire all the locks it needs, the system suspends its process-
ing, and an attempt is made by the system to retry it later.

Fourth, the locking mechanism is used to enforce the cADB order of
updates at the respective scpBs. The communication network used to
propagate changes from PDcMs to SCDMs does not ensure the delivery
of transactions in the order they were sent out." To prevent “race”
conditions, the update algorithm releases the locks only after all
secondary copies have been updated.

To prevent locking of data for long periods of time, the PcDM times-
out each update transaction propagated to an scpM. If acknowledg-
ment is not received within a predefined time interval, the transaction
is aborted and node maintenance is notified. Retransmitting update
transactions to nonresponding scpMs was not found useful. The loss of
the initial update transaction is the only case where a retransmission
is useful, but this is a rare occurrence in existing communication
networks. Whenever the scbM is overloaded or out of service, retrans-
missions may actually worsen the situation.

5.3 Crash recovery

The authorization policy is stored at three levels. Failures which
disable access to these databases may result in communication and/or
subnetwork management service interruption. This makes the recov-
ery mechanism a critical element of the database management system.
The main objectives of the recovery mechanism are to restore service
by a service area as soon as possible, and to minimize the permanent

DATABASE MANAGEMENT 2471

loss of data. It is also important to eliminate recovery dependencies
between nodes of the network. A node should be able to recover on
command, by itself, and restore service. The design assumes that
database inconsistencies will occur, but service does not depend on
complete consistency. The software is designed to detect database
inconsistencies during normal transaction processing. Once an incon-
sistency is detected, node maintenance is notified. Node maintenance
is provided a set of synchronization transactions to restore consistency
within the first level, or between the first and second levels. These
transactions are similar to regular update transactions, and differ only
in the way they handle error conditions. Only after this manual method
proves itself in the field will we consider automatic removal of database
inconsistencies.

Appendix A provides a summary of the components used in recovery.
Appendix B describes the pcDM and scDM recovery algorithms used to
restore service.

VI. SUMMARY

The development of a distributed database management system and
of a subnetwork management application has been completed. The
study demonstrated the feasibility of software defined subnetworks
associated with a single nationwide network. We presented in this
paper distributed database techniques and the feasibility of their
implementation. These integrated database techniques are currently
applied in the design of new communication services.

One of the issues not addressed in this paper is the development of
tools for testing and debugging in a distributed processing system. The
effort required to develop these tools was equal in scope to the
development of both the pcpm and scpm. The results in this area will
be reported separately.

VIl. ACKNOWLEDGMENTS

I wish to thank D. F. Hayden and M. M. Rochkind for their support
and encouragement during this project; E. M. Rifkin for his assistance
in the design and implementation of the data managers; J. A. Santillo
for her implementation of the local database capability; J. E. Massery,
F. K-F. Ng, R. G. Kayel, and M. B. Sury for their suggestions which
helped improve the clarity of this manuscript.

REFERENCES

1. G. M Booth, “Distributed Data Bases, Their Structure and Use,” INFOTECH State
of the Art Report: Distributed Systems, 1976, pp. 201-13.

2. J. B. Rothnie and N. Goodman, “A Survey of Research and Development in
Distributed Database Management,” Proc. Third Int. Conf. on Very Large Data
Bases, Tokyo, Japan, 1977, pp. 48-62.

2472 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

3. R. H. Thomas, “A Solution to the Update Problem for Multiple Copy Databases
Which Uses Distributed Control,” Bolt Beranek and Newman Report No. 3340,
July 1975.

4. P. A. Alsberg and J. D. Day, “A Principle for Resilient Sharing of Distributed
Resources,” Report from the Center for Advanced Computation, University of
Illinois, 1976.

. C. A. Ellis, “Consistency and Correctness of Duplicate Copy Database Systems,”
Proc. 6th ACM Symp. on Operating Systems Principles, November 1977, pp. 67-
84,

. M. Stonebraker, “Concurrency Control and Consistency of Multiple Copies of Data
in Distributed INGRES,” Third Berkeley Workshop on Distributed Data Man-
agement and Computer Networks, 1978, pp. 235-58.

. D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” B.S.T.J, 57,
No. 6 (July-August 1978), pp. 1905-29.

8. G.S. Graham and P. J. Denning, “Protection Principles and Practice,” Proc. Spring
Joint Computer Conf., 40, 1972, pp. 417-29.

. A. K. Jones, “Protection in Programmed Systems,” Ph.D. Dissertation, Department
of Computer Science, Carnegie-Mellon University, June 1973.

10. P. A. Bernstein et al., “Analysis of Serializability in SDD-1: A System for Distributed

Databases,” Computer Corporation of America, Report No. CCA-77-05, 1977.

11. P. A. Bernstein, J. B. Rothnie, D. W. Shipman, and N. Goodman, “The SDD-1
Redundant Update Algorithm,” Computer Corporation of America, Report No.
CCA-77-09, 1977.

12. J. N. Gray, “Notes on database operating systems,” IBM Research Report, RJ-2188,
February 1978.

13. E. A. Menasce and R. R. Muntz, “Locking and Deadlock Detection in Distributed
Data Bases,” IEEE Trans. on Software Engineering, SE-5, No. 3 (May 1979), pp.
195-202.

14. F. Heart et al., “The Interface Message Processor for the ARPA Computer Net-
work,” SJCC AFIPS Conf. Proc., 36, 1970, pp. 551-87.

o

=]

-3

o

APPENDIX A
Components of the Recovery Mechanism

Each node is equipped with the following components to be used in
the recovery process:

(i) Duplex hardware is provided to protect service against single
hardware failures.

(ii) The operating system maintains two copies of each data ele-
ment on separate disk drives.

(iii) The node creates periodically a local, off-line, backup copy of
the database for checkpointing.

(iv) During transaction processing, the system maintains on disk
the lock table and a completed update transaction log. The completed
update transaction log is maintained at the physical page level and is
used only by the recovery process. Physical logging was selected to
improve performance during crash recovery when the database is
rolled forward. The log maintains sufficient information to roll the
database both forward and backward.”” The log is kept until the next
checkpoint is established. Audit trails for subnetwork management
transactions are maintained separately at the logical level by the
application programs.

(v) Node maintenance has a set of synchronization transactions
for restoring database consistency at all levels.

DATABASE MANAGEMENT 2473

APPENDIX B
The Recovery Algorithm

Using the recovery components specified in Appendix A, service can
be restored in the following way:
(i) At the pcpMm

a. Check file consistency on disk.

b. If both disk copies are lost, install backup copy, and inter-
nally run the completed update transaction log. Interactions
with other processes, as part of normal transaction process-
ing, are not necessary.

c. Use the lock table to back out prematurely terminated
transactions (synchronize within the first-level database and
between the first-level and second-level databases).

d. Renew subnetwork management service.

e. Detect inconsistencies during normal transaction processing
and notify node maintenance.

(if) At the scom

a. Check file consistency on disk.

b. If both copies of the database on disk are lost, install backup,
and internally run the completed update transaction log.
Interactions with other processes, as part of normal trans-
action processing, are not necessary.

¢. Renew communication service.

d. Inconsistencies detected during normal transaction process-
ing are forwarded to node maintenance.

2474 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

