Copyright © 1982 American Telephone and Telegraph Company
THE BELL SysTEM TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in U.S.A.

Database Systems:

Design of a Prototype Videotex System

By. N. H. GOGUEN
(Manuscript received October 20, 1981)

A prototype videotex system was developed for a concept trial. The
system was based upon existing white-page and yellow-page services
in an electronic medium. This paper describes the architecture for
the message-driven, distributed system with functional specialization,
which was developed to meet the prototype system requirements.

I. INTRODUCTION

This paper describes a prototype interactive videotex system built
for a concept trial in which home and small business users would
access a variety of services based on existing white- and yellow-page
listing services using a modified television equipped with a full alpha-
numeric keyboard. As the term interactive videotex connotes, the user
would have available a two-way information-delivery system providing
selective access to electronic information transmitted over telephone
lines from a computer system. The concept trial, and the system
supporting it, would provide an experimental test-bed for determining
user reaction to the medium and to the services provided in that
medium. Independent waves of users would have access to the system
over the trial period, and services offered could be added, modified, or
removed from wave to wave based on user feedback in preceding
waves.

The system design for the prototype had to accommodate several
requirements:

(i) The system must be flexible to provide for growth in the services
offered over the trial period. This growth could include the addition of
new services with significantly different functional requirements, in-
cluding transaction services utilizing database-management capabili-

2475

ties and personalized user services for the creation, storage, and access
of individual user files.

(if) The system must support dynamic tuning and reconfiguration.
Since the services provided in the concept trial were not typically
available in the home user market, no historical data on usage patterns
and transaction mixes existed on which to engineer the system. Fur-
ther, as users gained familiarity with system services, usage patterns
were anticipated to change. In addition, based on the set of services
available within a wave, usage from wave to wave could vary signif-
icantly. Dynamic tuning and reconfiguration capabilities would provide
the means for allocating system resources based on actual usage.
Reconfiguration capabilities would also be used to provide degraded
service in the event of hardware failure.

(zzi) Most importantly, changes in the services being offered must
be made in a timely fashion. The system must facilitate rapid modifi-
cation of services to provide maximum user response data on service
preferences during the trial period.

(iv) A flexible database access capability must be provided to allow
users to access a database of one million telephone listings by a variety
of inputs. T'o meet schedule requirements, an existing prototype listing
retrieval database system for use by telephone operators, which ran
under the UNIX* operating system on a minicomputer, would be
enhanced to provide this capability.

Il. APPROACH

The initial design phase benefited from the existence of an earlier
prototype in a laboratory environment on which performance studies
were conducted as input to a system model. The studies were made
under the UNIX operating system on a minicomputer and included
the implementation of telephone-listing retrieval services that utilized
the usual UNIX process structure—a tree of processes created via
“fork-exec.” That is, a new process was created and executed when a
customer process requested a service and terminated when the cus-
tomer process no longer needed the service. In analyzing the resource
requirements and performance characterized by the system model, the
need was demonstrated for more efficient interprocess communication
facilities beyond the standard UNIX “fork-exec” to meet the prototype
system service requirements.

To satisfy the system requirements and to provide the needed
extended interprocess communication capabilities, a system design

* Trademark of Bell Laboratories.

2476 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

based on a message-driven process architecture was adopted. Services
were implemented as sets of distinct, cooperating processes that com-
municated via message passing. The UNIX operating system was
augmented with a device driver called the distributor, which provided
an interprocess/interprocessor store-and-forward message-passing fa-
cility among unrelated processes.

To ensure adequate resources for the initial set of services, reconfig-
uration resources in the event of processor failures, and a growth path
in the event that significant new services and/or additional users were
added in the trial period, the system was implemented as a local
network of minicomputers interconnected with a high-speed bus. The
distributor implementation supported message passing among unre-
lated processes on a single processor and with processes connected to
distributors on other processors.

The message-driven process architecture provided a disciplined ap-
proach for the design and implementation of the services. Each process
was designed, wherever possible, to provide a generalized function that
could be used by more than one service in the system, as for example,
user input validation. Each process was data driven and provided a
well-defined set of tasks. In addition, the message-driven process-
architecture approach provided the application developer with a uni-
form view of distributed resources. The developer did not have to
program differently based on process location. Explicit awareness of
resource location could be taken into account as needed for perform-
ance considerations, but the message passing access to resources
allowed hiding the explicit location level of detail in the higher levels
of abstraction in the program design. This design approach facilitated
timely implementation of services.

The network implementation provided the opportunity to function-
ally specialize one or all of the minicomputers. This enabled us to
provide efficient use of resources at the possible expense of the loss of
flexibility in reconfiguring in the event of processor failure. Based on
the performance and modelling studies conducted on the early instance
of the prototype telephone-listing retrieval service implementation,
one of the minicomputers in the network was configured as a backend
database machine. The studies had shown that telephone-listing re-
trieval requests were characterized by a small amount of input data, a
variable but larger amount of output data, and a CPU-intensive resource
utilization. Further, performance measurements on the high-speed bus
indicated that the response-time overheads for the communication-
link transmissions would be minimal in the overall response time for
processing a user request.

The remaining sections of the paper examine the approach in greater
detail, including the hardware and software used in the system. The

VIDEOTEX 2477

LISTING
RETRIEVAL
PROCESS

LISTING
FORMATTER
PROCESS

TERMINAL
PROCESS

CUSTOMER
TERMINAL

LISTING
RETRIEVAL
VALIDATOR
PROCESS

INDEX
PROCESS

Fig. 1—Listing retrieval process structure.

final section summarizes what we learned in the implementation
process.

lll. SYSTEM STRUCTURE

Logically, the prototype system services can be viewed as a collection
of independent processes running on various computers in the local
network and communicating via messages. A user service available on
the system, such as telephone-listing retrieval, is provided by a set of
cooperating server processes with well-defined tasks that process a
given user request. The application programs that respond to the user
request are data-driven at the process level, with messages being
passed among the set of server processes that handle the request.

The process structure shown in Fig. 1 illustrates the message flow
corresponding to a user request for a telephone-listing retrieval. The
terminal process receives all user input from, and provides all user
output to, a specific user terminal. The listing retrieval validator
process receives requests to validate all user input for listing retrieval
requests. If the user inputs an invalid request, the listing retrieval
validator process sends messages to the terminal process for display to
the user to allow correction. At the point when a valid request is made,
the listing retrieval validator process sends to the index process a
message specifying an expression consisting of the values of fields in
listing records. The index process determines which primary and
secondary index data can be used to select the records that satisfy the
user request by parsing the selection expression. The index process
produces a list of keys of candidate records that meet the request. The
index process sends a message containing the list of candidate keys to

2478 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

the listing retrieval process which then retrieves from physical storage
the records associated with the keys.

Any further processing required by the user request is handled by
the listing retrieval process. The remaining records are sent as a
message by the listing retrieval process to the listing formatter process
for further application processing, including the formatting of the
listings for display on the user terminal. The listing formatter process
sends a message to the terminal process to display the formatted
listings to the user. In fact, each server process described provides
considerably more functionality than mentioned in the example.

In the message-driven process architecture, increasing the function-
ality of server processes to handle additional feature specifications was
made easy. New message types were defined for the functions added,
and the sender-receiver message communication was extended to
include the additional types. Similarly, server processes that supported
new classes of functional capabilities were incorporated. In the listing
retrieval service, incorporation of a new capability to provide color/
graphics advertisements associated with business listings required (i)
increasing the functionality of the listing retrieval validator process to
handle validation of requests for advertising, (if) adding advertising
fields to the listing records containing pointers to a database of ads,
(¢i2) building additional indices on the advertising fields, (iv) increasing
the functionality of the listing formatter process to recognize and
display advertising codes, and (v) increasing the functionality of the
terminal process to permit the display of advertising associated with
business listings returned in response to the user request. In addition,
an ad interface server process was implemented to control the adver-
tising database requests. A new message type was defined for com-
munication between the terminal process and the ad interface process.

IV. COMMUNICATIONS SYSTEM

The mechanism for providing message passing was the distributor
device driver extension to the UNIX operating system. The distributor
is a store and forward message processor that allows independent
processes to communicate with each other. A process sends a message
to the distributor for delivery to a receiver process. The distributor
queues the message for the receiver process in its local memory until
the receiver process is ready to accept it. No blocking of the sender or
receiver process is involved, so that both the sender process and the
receiver process can continue to operate in parallel. However, the
distributor must provide message buffering capabilities and manage
buffer pools. The solution to message buffer pool management is an
upper bound on the number of messages that can be on a queue, with
that upper bound tunable by the system administrator.

VIDEOTEX 2479

The distributor is configured with a number of independent channels
for use. Channel initialization defines how the channel can be accessed
by sender processes and what characteristics pertain to receiver proc-
esses for outgoing messages. One of the channels has special charac-
teristics, including the ability to clear an internal statistics buffer
maintained by the distributor, and is known as the control channel. In
the prototype system, a control process is attached to the first available
channel and is used to monitor system status and to supervise the
distributor.

At system initialization, a startup function reads a command file
that includes information on the names of all server processes associ-
ated with each subsystem of the prototype system being initialized.
Optional run-time parameters associated with each process can be
included in the command file, as, for example, a host option specifying
the host processor on which the process should be initialized. The
commands are parsed and placed in a message buffer, with run-time-
option information placed in flags included in the messages. The
messages are sent via the distributor to the control process on the
machine specified by the host option, with each process listed in the
command file being sequentially executed.

Each process that communicates through the distributor must com-
municate through a unique distributor channel. The control process
dynamically allocates distributor channels to processes at run-time
and makes these channel identifiers globally available in a data area
called the environment. In addition to distributor channel information,
the environment contains parameter data common to all processes in
the system.

Terminal interface processes are created and destroyed dynamically
when a user logs in and out of the system. At log-in, the startup
function opens and sets a distributor channel, forks and executes a
terminal interface process, sends a notification message to the control
process, and exits.

The control process maintains a route-table of status information
for processes on the distributor. In the prototype system, services are
provided in a multiprocessor environment. A distributor and a control
process are on each processor in the network. Interhost communication
is managed by the control processes. Since server processes are ad-
dressed by name, the actual address of a process that provides that
service is associated with the name in the route-table entry for that
name. The address contains a host identifier that specifies which host
the server function is on. Control processes on all active processors in
the network communicate via a set of message types to keep the route-
table on the processors accurate and consistent. The message types

2480 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

handle creation, deletion, and modification of entries in the route-
table.

Several other capabilities of the distributor were used extensively in
the prototype system. The first is the concept of a function group. A
function group is a pool of server processes, each member of which
provides the same set of tasks. When a process sends a message to a
function group, the distributor places the message on the input queue
of the function group member with the shortest input queue.

The function group capability provides flexibility in starting up the
number of processes required to establish a particular set of tasks in a
system. This creates a powerful tuning mechanism based on actual
demand for a particular set of tasks and on availability of overall
system resources. Based on system-usage characteristics, the number
of members of a function group are adjusted either at system initiali-
zation time or dynamically.

Tuning based on system-usage characteristics over a period of time
is useful in a mature system with a stable set of features. In an
environment where the features may change rapidly because of evolv-
ing customer demands and where the customer’s actual usage patterns
vary, the ability to dynamically modify the number of servers available
is needed. In this case, the control process monitors the queue lengths
of members of a function group in conjunction with the overall demand
for system resources. If queue lengths for all members of a function
group are long, additional members are started up based on availability
of system resources. Similarly, if queue lengths are small, some mem-
bers of a function group can be shut down to free system resources for
other service demands.

The system was also designed to allow a sender process to commu-
nicate with a specific member of a function group. This capability is
used in cases where a message exceeds the standard message size and
is broken into a first message and a series of continuation messages.
When the first message is sent, the sender process requests the return
of the channel identifier of the member of the function group which
received the message. The continuation messages are then sent to the
same member of the function group by specifying that channel id.

Another capability of the distributor is the availability of two special
channels to which messages cannot be directly sent. The first, the sink
channel, is used in the prototype system for system error logging. This
channel is the only one that allows multiple opens. A process which
does not wish to receive messages can open the sink channel and send
messages to processes through the normal mechanisms. The second
channel, called the “abandoned channel,” is used to accept messages
that are being abandoned. This channel can be used as part of a

VIDEOTEX 2481

recovery mechanism for abnormal termination situations. On abnor-
mal termination, if messages are present on an input queue for a
process when the process closes its channel, the messages are lost
unless the abandoned channel is open. Messages from the abandoned
channel have two message headers which identify the message source
and the intended receiver.

In this communication system, messages sent to a process are queued
first in, first out, with no priority classes available. In this environment,
signals are used to support interprocess exception handling. Excep-
tional events include power failure, death of a child process, untrapp-
able kill, and quit (used for emergency shutdown). Signals are used to
implement controlled shutdown.

V. MESSAGE FORMAT

A message is composed of three components: a distributor header,
a system header, and message text. The two headers are fixed size and
the message text variable size. The distributor header contains infor-
mation for use by distributor routines, such as host origination or
destination, channel identifier, and subdevice identifier. The system
header contains information of global interest to the application proc-
esses. This includes the originating source of the transaction, timing
information associated with a transaction, message modifier flags, a
message type indicator, and a count of the number of bytes in the
message text. The message modifier flags are used to indicate that an
acknowledgment is requested on receipt of the message, that this is an
acknowledgment of a message, and that this transaction continues.
Message text is specific to the sender and receiver processes.

Variable-length messages are required since the text portion of a
message can include as contents such items as all the telephone listings
that matched a customer’s listing retrieval request. In a single proc-
essor environment, a file could be used to pass large amounts of data
between processes. In general, since the prototype system was imple-
mented in a multiprocessor environment, all interprocess communi-
cation has been via messages, which avoids the interprocessor file-
handling problem.

VI. BACKEND DATABASE MACHINE

One of the processors in the network is dedicated to providing a
backend database function for the telephone-listing retrieval service
to improve the overall system throughput and performance. In the
prototype system, a general-purpose minicomputer is tuned for data-
base functions. Since the operating system is limited in kernel address
space, only those drivers required for the backend functions are in-

2482 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

cluded. Correspondingly, the host machine is configured without the
drivers required for the data-management functions, and system re-
sources are tuned for application functions.

Figure 2 depicts the host-backend connection in the prototype
system, together with the placement of the application processes
executed by the host machine and the database-management processes
executed by the backend machine. Note that the scenario described in
Section II for processing a customer request for a telephone-listing
retrieval applies here. Since the concept of the backend Database
Management System (DBMS) is simply a special case of a computer
network, the communications system required to support the concept
is available in the distributor implementation described in Section II.
Host and backend interface functions are provided by the distributor.
A message containing the database request is sent from the listing
retrieval validator process to the distributor on the host destined for
the index process. The address of the index process in the route table
indicates that the host for the listing formatter process is the backend
machine. The message is sent across the interprocessor link to the
distributor on the backend machine that places it on the queue of the
index process. Processing of the database request involves both the
index process and the listing retrieval process. The data and status
information returned as the result are sent as a message from the
listing retrieval process to the distributor on the backend machine for
delivery to the listing formatter process. The route table indicates that
the host for the listing formatter process is the host machine. The
message is sent across the interprocessor link to the distributor on the
host machine which places it on the queue of the listing formatter
process.

The database management modules operating on the backend proc-
essor are multiprogrammed. Function groups are used for the index
process and listing retrieval process, with the number of members in
each function group initially established to handle the projected tele-
phone-listing retrieval-request traffic, with tuning as appropriate. The
database tasks originated from user requests received on a host proc-
essor that were transmitted through the distributor and the commu-
nication system to the database-management modules.

Because telephone-listing retrieval services were the major set of
services available in the trial, a heavy demand for such services was
anticipated. By distributing the application programs and the data-
base-management modules across two processors, overall throughput
capacity was increased by allowing parallel execution of application
programs, database-management modules, and disk accesses. This
throughput capacity increase was at the expense of slightly increased
total response time to the user based on transmission time across the

VIDEOTEX 2483

Isvav.iva
X3aNI

ISvav.iva

ONILSIT

‘wIe)sAs adLj0j01d 9y Ul weysAs JUSWIIFRURUI ISEQEIED PUSYIRE—F, 8

aN3NovE

L1SOH

$$3004d

X3aNI

8§5300Hd

IVAIIHLIY
ONILSIT

HOLiNgIy1sia

ONILSIT

SS300Hd
HIALIYINHOAS
AVAIIYL3Y

§53004d
HOL1valnvAa
AVAIHLIY
ONLLSIT

HOLN8Iy.1s1a

§5300Hd
IYNINYIL

ANIT

HOSS300H4HILNI

IYNIWHIL
H3IWOLsNJ

2484 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

high-speed bus and additional overhead in the communications sub-
system. Since the modelling studies had shown that database access
was the major system bottleneck, and since trial schedules did not
permit moving to a new processor line with increased capacity, the
specialization of one of the processors in the network to a backend
database machine provided the throughput required.

Cost is another consideration in using a backend database machine.
One factor in cost is the communication and interface software re-
quired to implement this alternative. In our case, the local network
architecture selected included communication and interface software
which could be used. Since all the processors were in the same family,
secondary storage media compatibility and conversion overheads as-
sociated with the incompatible character sets, data formats, etc., were
not issues.

VIl. HARDWARE AND SOFTWARE ENVIRONMENT

The prototype system was installed on a local network of minicom-
puters linked together using an interprocessor bus with a 1-Mbyte-per-
second data-transfer rate.

The system ran under the UNIX operating system, augmented with
a number of device drivers used to extend the core operating system
capabilities to support the application requirements. Driver require-
ments occurred in several areas of the system. A terminal driver was
written to support color/graphics user and frame-creation terminals.
These were block mode, asynchronous terminals which used an X3.28
protocol. Another driver was written to support database requirements
for semaphores used in locking.

The network-control functions and message-driven architecture
were made possible by development of several drivers: the distributor,
a driver to support the interprocessor link, and a driver to support the
interface of the distributor to the interprocessor link.

An in-memory files driver was written to provide a shared data
capability for processes that were guaranteed to run on the same
processor based on performance considerations. This driver was re-
placed with the shared memory capability when version 4.0 of the
UNIX operating system became available. The application was written
in C language.

VIIl. CONCLUSIONS

The original requirements specified for the prototype system were
met in the course of its design and implementation. New services were
proposed as, for example, the advertising services associated with
business telephone-listing retrieval, and these were designed and in-

VIDEOTEX 2485

corporated into the system in timely fashion. The message passing
process architecture, in which distributed resources could be viewed
as logically centralized, aided the rapid and disciplined development of
new server functions. New services, or service-providing functions,
could be added, deleted, or relocated by modifying a systemwide route
table, without requiring changes in program logic or in resource access
mechanisms.

Using the function group capability and the monitoring of process
queues, the overall system configuration could be tuned to meet the
actual processing requirements in a particular period. The availability
of processor capacity in the local network provided hardware for
reconfiguration in degraded mode in the event of hardware failure.
The route-table definition of the location of processes provided the
logical basis for reconfiguration.

The specialization of one of the processors to provide backend
database-management functions allowed us to provide acceptable
throughput using the existing telephone-listing retrieval components,
modified to run in the message-passing process architecture, and to
provide new functions required for the prototype system services.

IX. ACKNOWLEDGMENTS

The design and development of the prototype system has been a
team effort of many people over a few years. The author wishes to
acknowledge the contributions of all the people whose work is sum-
marized here. The original design of the distributor driver was done by
Marc Pucci and extended for the prototype system by Don Cragun.
The pioneering work in the area of backend database machines was
done at Bell Laboratories by Rudd Canaday and his associates.

2486 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

