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Database users make choices, form queries, and understand output.
Good computer systems must accommodate the ways that humans
best accomplish such tasks. Here we review relevant facts and prin-
ciples from experimental studies of human information processing.
We discuss known characteristics of human memory, language use,
and problem solving, and suggest ways in which such knowledge can
be applied to the design of systems that will render better service.

I. INTRODUCTION

Intended functions of many interesting electronic database systems
require humans to ask questions and be satisfied by the answers. This
is no easy matter. Even a system that stores and retrieves vast
quantities of information with great efficiency can fail utterly to satisfy
its human partners. Somehow, information systems must be made to
provide what users want, even when the users don’t really know, or
can’t say very clearly. It seems fairly obvious that, to do this, database
system design will have to incorporate systematic knowledge about
people, as well as knowledge of hardware, algorithms, and data struc-
tures.

The knowledge needed about people will be human-factors psychol-
ogy, but of a somewhat new kind. In the past, machines (even electronic
machines, like gun controllers or PBXs) primarily augmented people’s
perceptual and muscular abilities, and improving person-machine co-
operation required psychological optimization of displays and control
devices. Electronic databases will augment—serve as prosthetics for—
people’s memories and problem-solving abilities. The collaboration
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between people and their machines is going to be at a much deeper
level.

We probably should not talk about improving human-computer
“interfaces”—instead we should talk about improving human-com-
puter integration. No matter how powerful a system, if the functions
it performs are not comprehensible or useful to its users, no amount of
tinkering with its screens and command languages will make it ac-
ceptable. We cannot just build a complex system, then hope to give it
an appropriately fitted surface; we have to go beyond matching faces
to something more like a meeting of minds.

Unfortunately, not nearly enough of the needed applied human-
factors psychology exists yet. There is some informed opinion and
analysis available. References 1 through 4 provide good reviews of
psychological issues in database access. But, directly relevant empirical
research has only been going on for a few years. There is also a good
deal of pertinent general psychological background (methodology,
data, and theory) and some preliminary attempts have been made to
see how it might be applied.” " We do think that some progress has
already been made, by us and by others, in comprehending the nature
of the problem and how to attack it. In this paper, we offer a sample
of relevant background knowledge, research results, and ideas. First
we describe some exemplary problems, some signs and symptoms of
the underlying issues in need of exploration. Then we offer a very brief
overview of some relevant psychological facts and principles. Next we
describe some examples of recently collected data that may improve
our understanding of the problems, and some ideas whose pursuit may
help to alleviate them. Finally, we offer some technical and hortatory
remarks on the methods and strategies that we think will be required
for significant progress.

Il. A SAMPLE OF SOME PSYCHOLOGICAL PROBLEMS RELATED TO
DATABASE SYSTEM USE
Here is a partial list of some kinds of problems that are frequently
encountered in the use of current database systems.
1. Novice freakout.
2. Synonymy and polysemy.
3. Unknown or mismatched categories, features, dimensions, and

values.
4. Abstractness and complexity of categories, addresses, and speci-

fication.

5. Unsatisfactory browsing and traversal.
2.1 Novice freakout

Novice freakout is simply what sometimes happens when an expe-
rienced typist or executive first meets the machine. Despite a lot of
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public speculation, no one really knows whether the source of this
problem is plain old-fashioned novelty, or something especially
frightening about semi-intelligent computers. We are fairly sure, how-
ever, that the diagnosis that “It’s because it doesn’t speak English” is
a symptomatic response to the problem, not a valid analysis of its
cause or prescription for its cure.

2.2 Synonymy and polysemy

Humans can, and often do, express the same idea (i.e., describe the
same object or category) in many different ways. And, they often use
the same word in many different ways. Computer systems do not know
the same things as humans and are not as good at using context to
disambiguate expressions. Therefore computers need to be much more
careful in the use of language. One result of this is that computers and
humans are constantly criticizing one another. When humans use
relatively unconstrained vocabulary in entering their requests into a
system (e.g., in a bibliographic database search), they typically use a
greater variety of expressions than the system recognizes.’ This is the
synonymy problem. Often, the user and system employ the same words
but with different meanings. This is the polysemy (or homography)
problem.

2.3 Mismatched features, dimensions, and values

If the features, dimensions, and values by which categories and
their members are specified by one partner in the human-computer
team are not known to the other, ill results can be expected. Typically,
the data in a database are logically arranged for efficient system
processing. Unfortunately, there is no guarantee that the partitioning
or connections of data objects in the system will correspond to their
partitioning or connections in the user’s mind. An object that belongs
in Category A in the system may be thought of as a member of
Category B by the user, or the user may not know to which category
to assign it. For example, books on computer science are categorized
under “Generalities” in the Dewey Decimal System.

When the Dutch began to set up their version of the British Prestel
home information system, they discovered that information could not
be found easily using the existing British search tree.'” In response,
the designers convened a group of experts that included information
scientists, human factors psychologists, and software experts to im-
prove the first three levels of the menu structure. The improved
version was tested by having representative users try to find repre-
sentative targets. The discouraging result was that, on average, users
traversed the first three levels correctly on only about half their
attempts. Wrong decisions seemed to be primarily the result of inac-
curate category names and overlapping categories.
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We call this the Yellow Pages problem. The Yellow Pages provide
a systematic and logical partitioning of businesses and a certain
amount of useful cross-referencing. Nonetheless, it is not always easy
from the user’s standpoint to find a vendor appropriate to a desired
item. For example, if you look for copper sheets, you will not find them
listed as such. While many reasonable guesses as to the category of
business that might handle them (e.g., hardware stores, building supply
stores, sheet metal shops, heating contractors, roofing contractors) are
listed, they may all be wrong.

2.4 Abstract and complex definitions

We properly think of abstraction and careful symbolic notation as
vital implements of precise thought. We view declarative descriptions
with well-defined terms and operators as elegant and powerful ways of
specifying subsets of data. But the ways of thinking (and talking) that
are involved in using abstract symbolic notation are utterly foreign to
most people, and immensely difficult to learn. Computer scientists
enthusiastically employ these tools in their thought and work, because
it makes their business possible. Moreover, most of them are highly
selected individuals who got where they are by being good at abstract
logical thought from an early age. It is very hard for such people to
realize how different they are from most other people. As a result, they
often design systems that are powerful for them to use but difficult for
others.

2.5 Browsing and traversal

People often complain that automated database systems do not give
them the ability to comfortably “look around” for something they
might be interested in, or to try to find something that they cannot
specify exactly but know they would recognize if they found it. Here
the problem is probably one of a mismatch in the organization of data
structures, of links between one piece of information and another. The
system ordinarily has a sufficient, and perhaps even powerful method
of ensuring complete traversal. But it may not correspond at all well
to the thinking of the human user. Its field identifiers, arc labels, key
patterns, relations, etc. may have no counterpart in the user’s mind. In
addition, the scope and focus of search may be nonoptimal or too rigid.
For example, users may be provided only with a small amount of
detailed information at any one time, when the option of a more global
information view might be more useful.

While these are only some of the problems people have in using
automated data-access systems, they should suffice to show the seri-
ousness and depth of the problems. What is most important to notice
about all of these problems is that they could never be seen or

2490 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



measured on a system without a user. They are not properties of a
computer system but of a computer-human system taken as a whole.
To understand and work towards the solution of these problems we
will have to know some important properties of users: how they
remember, name, classify, organize, search, represent, and process
information. All of these topics are parts of the field of cognitive

psychology.

lll. OVERVIEW OF COGNITIVE PSYCHOLOGY

Cognitive psychology is a subfield of human experimental psychol-
ogy that has developed over the last two decades to deal with thought,
perception, and memory. It overlaps and draws extensively on linguis-
tics, philosophy, artificial intelligence, and neuropsychology. Although
it has developed primarily as an academic pure science, much of its
content offers a useful basis for understanding problems of person-
computer integration. The central method of cognitive psychology has
been to treat the human mind as a general information processing
system. The extension of this approach to the study of human-machine
partnerships is quite natural. In this section we highlight portions of
this field that are especially relevant to the data-access problem.

Human memory is, of course, enormous and marvelous. No good
method exists for estimating its true information capacity in a really
satisfactory way. The estimates one reads of 10" bits are based on
approximate anatomical numbers combined with some stunningly
gratuitous assumptions about the relations of anatomy to memory.
Nevertheless, observable facts about its performance are sufficient to
demonstrate that the capacity and capabilities of human memory are
impressive by current computer standards. The average undergraduate
at a highly selective college knows something about the meanings of
about 100,000 different words. Each word is a complex and variable
sound or light pattern with an associated complex set of knowledge
about meanings and relations to other words and objects. Most of
these words are capable of starting a person through a huge network
of associated facts. Consider what you know relevant to the word
“dog”. Dogs have four legs; some are brown and/or have tails; they are
related to wolves; your aunt Jane has one named Spot who bit a
postman named Dick; some are movie stars but none are presidents;
some pull sleds, have rabies, eat Kennel Ration, etc.

Each of one’s 100,000 known words constitutes a category, i.e., the
set of all the things to which it might refer. And there are many
unnamed categories in memory as well. Human categories come in
many varieties. They may be defined quite arbitrarily—essentially by
enumeration—or by heterogeneous family resemblances one to an-
other, or by a common resemblance to one or more prototypes. Mental
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categories may also be rule-defined, and if so by a variety of kinds of
rules; consider coins, relatives, fruits, and Chinese food. It is rare that
the categories people spontaneously use are precisely defined; it is
much more common that they are fuzzy both in the sense that one
category overlaps with many others and that many elements in any
one category are only probabilistically known to be contained in it.
What is known about each category, about the relations among cate-
gories, and about each member of a category is always variable both
between one person and another and between one time and another
for the same person. The reason is simply that human knowledge is
acquired continuously from the world by a large amount of highly
idiosyncratic and somewhat haphazard experiences.

Another interesting fact about human mental or linguistic categories
is that they are often highly context-dependent and flexible: what is
“big” depends on whether one is talking about buildings or insects.

The relations among categories are also less orderly, and generally
more flexible than the ones we would like to use for artificial infor-
mation systems. There is some hierarchical, nested organization, but
not a lot. If people are presented with an extremely common object
like an apple or car, they will easily give it an appropriate name and
there will be a fair amount of agreement between any two people on
what to call it."® But if one asks for the superordinate of a common
object, e.g., “What is the superordinate of car?”, people are usually
able to give an answer, say “vehicle,” but there is much less agreement
on the appropriate class name. If they are then asked for superordinate
categories for the superordinate they may not even be able to give a
sensible answer, and the consistency between people in what they
nominate becomes very low. The same is true for subordination. A
subset of apple may be MacIntosh, but what is a subset of MacIntosh?
There are possibilities, of course, but they tend not to be compelling
or unique, and will generate little agreement between different people.
The organization of the information stored in human memory appears
to be fairly flat; there are at most a handful of levels, and the
hierarchical structure that does exist is not identical for every person.
Rather the mind appears to contain a multitude of fairly specific
connections between one concept and others.

Our ability to recognize things and words, that is, to place them in
at least one known category and, still more, our ability to associate
other information with every fact, is quite remarkable. But we are very
poor at listing all of the members of a large class, any one of which we
could quite easily recognize as such. For example, the name of every
state in the United States is easily identified as such, but most
Americans are unable to recall them all in fifteen minutes.

Another thing people are naturally very bad at is formal logic.
Incorrect simple syllogisms like, “all women are mortal, Sally is mortal;
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therefore, Sally is a woman,” are judged correct by a very large portion
of the population. If the statements or premises are stated in very
abstract form, or if their content is familiar but leads towards a
different common sense conclusion than that implied by the statement
itself, people are particularly error prone.'” Most people are also poor
at the skills required to represent problems as mathematical or logical
abstractions. For example, given the word problem, “At Mindy’s
restaurant, for every four people who order cheesecake, there are five
people who order strudel.” Then, of those people who can form an
equation at all, the majority will erroneously write down “4c = 5s.” '®

In making inferences from available evidence, people are guilty of a
wide range of failures, most notably a tendency to grossly overvalue
the most easily remembered information.” Even simple arithmetic is
a difficult matter for the human mind. While the associative memory
feats described earlier compare quite well with modern computing
techniques, humans can only add about one single digit number per
second for a few seconds. Unfortunately, all of these weaknesses in
logical and computational abilities are pretty much true of even the
most intelligent, well trained people. “Easy” syllogisms are incorrectly
judged by college students after taking logic courses; algebra word
problems not only contribute to most of the population dropping out
of mathematics at an early age, but evoke errors even in mathematics
and computer science graduate students.’® Essentially, only statisti-
cians actually make decisions by applying Bayes’ rule. In short, ordi-
nary human beings act as if they had the memory of the largest
computer system ever built, but the logical and computational ability
of a LISP program running on a pocket calculator!

For present purposes, perhaps the most important principle of all
concerning the human mind is this: New knowledge depends inti-
mately, pervasively, and automatically on old knowledge. In a sense,
information does not exist until it is coded or categorized, that is, until
it is interpreted in terms of and fit into some existing knowledge.
Humans, with their enormous capacity for associative memory, inter-
pret new pieces of information in enormously rich and variable ways.
The way humans perceive or understand an event is to code it with
respect to what they already know. Since what a human already knows
is complex, huge, and unique, each experience is interpreted in an
extremely complicated and personal manner. The simple use of one’s
native tongue provides an example. The phrase “my name is Tom”
seems quite effortlessly and directly interpretable to an English
speaker. The elaborate reference to previous knowledge involved is
hidden from conscious awareness. The phrase “mimi yako nani
Mbogua” is roughly equivalent in Swahili, but when spoken strikes
the Western ear as totally uninterpretable sound.

The coding involved in translating the sound to meaning is almost
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entirely involuntary and unconscious. In this respect language is not
alone; a similarly complex and unconscious process is involved in the
interpretation of any meaningful event. The more we know relevant to
that event, the more richly it will be interpreted and the more our
experience of it will differ from that of other people.

One important moral from all this is that there is simply no way
that an unaided, naked-eyed expert can see things the same way as a
beginner. This is especially true with regard to the perceived ease of
use of complex systems. Almost anything appears easy to do to the
person who has learned how to do it well. One person’s introspective
feeling of ease does not assure that another person will not have
difficulty. Certainly it is better to try to put oneself in the user’s place
than not to do so. Keeping the end-user in mind throughout system
design and development, and trying one’s best to imagine what it is
like to know nothing, certainly can’t hurt. But even the best efforts of
intuition and empathy often fall far short. All too often, documents
beginning “This system provides a simple, easy-to-use and easy-to-
learn - .. ,” really mean that the author, after hundreds of hours of use
of whatever it is, finds it quite familiar and handy. It is very much like
the child who says “English is so easy, why is French so hard?” In
truth, only systematic and controlled observations of actual users can
lead to accurate appreciation of the novice’s or occasional user’s
perspective.

A final topic from cognitive psychology that we wish to discuss in a
little more depth is the psychological structure of human knowledge.
How is knowledge represented and organized in the mind of an
individual? What we mean by structure is the relation between differ-
ent elements of knowledge and the resulting constraints on how one
can think about them. There are many ways in which knowledge is
structured by humans and there are several quite good methods for
revealing important aspects of this structure, at least for relatively
simple cases.

An example of a means of revealing knowledge structure is proximity
scaling.”” Given items from a domain of knowledge, we wish to repre-
sent how people think about the similarity relations among them.
Take, for example, knowledge of the spectral colors. We choose a set
of pure colors spanning the spectrum, pair them in all possible ways,
and ask people to assign a number corresponding to the perceived
similarity between members of each pair. We then assume some kind
of underlying structural representation (e.g., Euclidean space, hierar-
chical tree) and attempt to fit the data to it. Typically, this is accom-
plished by an iterative numerical estimation procedure. In the case of
colors, the similarity judgments can be modeled very well by a three-
dimensional Euclidean space in which each color is assigned three
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YELLOW

BLUE

VIOLET

Fig. 1—T'wo-dimensional spatial representation of psychological similarity of 14
colors.

orthogonal coordinates. Figure 1 shows a commonly used representa-
tion of the two dimensions of this space needed to represent the aspect
we think of as hue. Distances in this inferred structure quite faithfully
predict the judgments of similarity between any two colors differing
only in hue. If you are not familiar with this picture, note that the
psychological perception of similarities in colors places the physically
most different colors (in terms of wavelengths) near each other. One
could not have guessed what the structure in the perception would be
from a knowledge of the physics of color; one needed to make the right
observations on the human receiver of the stimulus.

Actually, the difference between “physical” and “psychological”
structure is well worth amplifying. Even in the simple case of color,
the bending of the spectrum into a circle is not the only divergence of
the two realities. A colored object in the world around us generally
reflects a myriad of different wavelengths at various relative intensities.
To specify that reflectance would require an infinite list of numbers,
one for each wavelength (technically, spectral reflectances form an
essentially infinite dimensional vector space). This is by no means
what humans perceive. What they do perceive instead of this physical
reality has been a topic of psychological study for over a century and
is in fact very complicated: e.g., we see “colors” that have no corre-
spondent in the spectrum, we can see blues (or greens or reds) when
there is no spectral blue (or green or red) present at all. For our
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purposes here, the most important psychological aspect of color is that
the infinite dimensional space of colored light maps quite well into a
perceptual space of only three dimensions—basically the plane in
Figure 1, plus a third dimension of brightness. Instead of the infinite
string of numbers needed to indicate spectral composition, it takes
only three numbers to characterize a perceived color. Some of this
research diffused into the popular culture long enough ago that this
may seem a trivial, almost physical fact. It is not. It is a psychological
reality that is highly nontrivial. Physics could not have discovered this
nor the fact that the color world of bees has four dimensions and that
of cats only two. The point is that our internal representation of the
structure of color, or sound, or objects in the world is not a simple fact
about the external world, but is very strongly shaped by our perceptual
and psychological mechanisms and experiences. These psychological
effects must be studied explicitly, and multidimensional scaling is one
tool to do so. The color circle in Figure 1 is just a simple example.

If instead of colors, we have people rate the similarity between pairs
of named animals, the results do not fit very well into a Euclidean
space. What they do fit in this case is a hierarchical tree structure. If
one assumes that the conceptions of animals are arranged in a tree
and that the perceived difference between any two is a function of the
minimum arc length connecting them, then a structure can be induced
that reflects human judgments quite well. Figure 2 shows an example
for judgments of sixteen animals. Left-right position is essentially
meaningless in this diagram. The up-down distances and connections
show the structure and the strength of the relations.

In a recent paper,” Pruzansky, Tversky, and Carroll surveyed a
large number of perceptual and cognitive domains in which pairwise
similarity judgments had been obtained. They found that any partic-
ular domain was almost always fit considerably better by one or the
other of dimensional or hierarchical models. There are, of course,
variants within each of these general types of structure; and there are
other kinds of structures as well. Methods are available for fitting
some of these others to data. But there is a good deal more work to be
done in exploring new kinds of structures, and structures based on
relations other than judged similarity. Current methods are also quite
cumbersome, if not prohibitive, for very large sets of objects.

IV. APPLICATIONS, IDEAS, AND DATA

In this section, we want to consider how one can use knowledge
about people’s knowledge to improve data access. Let us start by
pursuing our discussion of knowledge structure, which will allow us to
develop a simple example of an application.
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CAMEL
— GIRAFFE
ZEBRA
ELEPHANT

GOAT
— L SHEEP

Cow
PIG

B - LIoN
TIGER

L LEOPARD

WOLF

CHIPMUNK
I:- SQUIRREL
Fig. 2—Hierarchical tree representation of similarity judgments for 16 animals.

4.1 Knowledge structure

In subdividing a set of data for humans to use, it is necessary to
respect the psychological structure of that data. Humans will probably
prefer to specify and be told about subdivisions and relations that they
can already understand. Appropriate and meaningful access paths for
the human user will depend on the human user’s knowledge structure
(which will not necessarily be the most convenient for system design).
Imagine a system allowing a textile dyer to retrieve the chemical
formula for a dye of any desired color. What we know about the
continuous, three-dimensional structure of psychological “color space”
argues strongly for an interface device with three analog controls, e.g.,
three knobs that could be continuously manipulated with the resultant
color displayed on a screen. A tree-structured menu, while not impos-
sible, is likely to be inferior, because a tree just does not do justice to
the psychology of the domain: it requires the artificial introduction of
successive orthogonal partitions into a space that is psychologically
continuous and of low dimensionality. On the other hand, suppose one
built an information device for zoo visitors, in which they could specify
a particular animal and obtain information on a computer terminal.
Here the tables would be turned: a menu tree should have a strong
advantage. There are more diverse things that must be specified about
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an animal (and about some sets of animals but not others) than can be
captured in two or three continuous parameters. In dimensional rep-
resentations the aspects of variation are equally well defined through-
out the space (bright/dark variation makes sense regardless of hue).
This requirement is repeatedly violated with animals, e.g., the differ-
ences among fish are typically irrelevant to mammals. Tree structures,
on the other hand, are very well suited for diverging classification
criteria, so that a hierarchical menu system, with sequential choices,
first among broad classes, then among subclasses, and so forth, would
be superior because it better matches how people think about the
domain about which they are trying to retrieve information.

What about other structures and other differences between struc-
tures? The strict hierarchical tree structure is represented, and prob-
ably well served, by typical menu selection systems. A strict hierar-
chical menu, however, assumes a logical partitioning of the domain at
each step (i.e., each object belongs to one and only one subset). But
what if, as is frequently the case, people’s categories overlap? The
structures that one can use to represent overlapping categories are
necessarily not as neat and search-efficient. The matter at issue is
whether there are ways to accommodate the complexity of people’s
minds and still help them retrieve information in powerful ways.

One approach is to consider alternative knowledge structures that
can incorporate important features of human representation but still
form the basis of systematic search procedures. Furnas has taken this
approach to the problem of category overlap and multiple superordi-
nates.”? Given an object like a house, a person can think of it as a
dwelling, an investment, a tax entity, a subclass of monthly expenses,
ete. All are different, somewhat overlapping, superordinate categories.
How can one build a retrieval system that captures this richness? A
typical, strictly hierarchical menu system is inadequate, since it allows
only one superordinate for each node. A keyword access system would
be representationally adequate, but has the drawback (especially se-
rious for novice users) that it provides no guidance about what is in
the database. Users must spontaneously generate keywords in efforts
to second-guess a possibly unfamiliar set of system keywords necessary
to reach a target. A long history of psychological research points to
the greater difficulty of this spontaneous generation procedure when
compared to the mere comprehension involved in menu selection.
(Recognition/recall differences in the literature on learning date at
least to 1904.2%) Another possibility, then, is to use a menu-driven
retrieval system, but allow connections to form less constrained struc-
tures than trees. Consider arbitrary general graphs, for example. These
too are representationally adequate, but again at the expense of a
virtue which trees possess. Trees allow a user to begin with high-level
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choices, thereby eliminating large classes of descendants from any
further consideration. An unrestricted graph structure provides no
such guarantee of successive narrowing of the search. Without any
top-down strategy available, retrieval could conceivably require an
exhaustive traversal to search the graph, with the concomitant tedium
and memory taxing record keeping (i.e., “Have I looked here before?”).
Moreover, the number of choices offered at any node might be large,
thus frequently overtaxing people’s limited short-term memory and
decision capabilities. Thus, one might want to represent information
in some graph structure with intermediate restrictiveness. Furnas has
explored directed acyclic graphs, where links are conceptually
“directed”, connecting superordinates to their subordinates. This ar-
rangement allows the representation of overlapping subsets and mul-
tiple superordinates, and thus offers one plausible compromise between
complete representation and manageable organization.

Furnas has implemented these as a menu retrieval system in which
at each node the user has a choice of both multiple subsets and
multiple supersets. Like more familiar tree-structured systems it is
well suited for top-down, general to specific, retrieval (with no risk of
getting caught in cycles in the refinement process). Its greater gener-
ality allows a richer variety of interaction, however. An example is
given in Panel A of Figure 3, for a system that allows access to a recipe
file. In a typical menu access scheme, as illustrated in Panel A, the
user would arrive at a node for salads and be given several choices of
different kinds. If none was satisfactory, the only choice would be to
retreat up the one link from salads to the superordinate from which it
was originally reached, say “early courses.” But the user might not
really be interested in early courses any more, but rather in salads as
a kind of cold food. In that case a different superordinate would be
more useful, as illustrated in Panel B. Still another possible superor-
dinate for salad is shown in Panel C. What the experimental system
does is to offer a reasonable set of upward (as well as downward)
choices at each node. Such a scheme retains a good deal of the
constraint of a menu system, thus providing guidance for the user but
is presumably less unnaturally restrictive. It is one example of a novel
access method that is motivated by concern for the human user’s
representation of the knowledge. There are a number of problems to
be resolved in learning how to construct and use such a structure
effectively. A particularly important issue is how to obtain the infor-
mation about user knowledge that will allow one to choose optimum
superordinates.

4.2 Symbolic codes
For the next example, consider the problem of learning symbolic
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EARLY COURSES

SALADS
CAESAR SPINACH TOSSED
SALAD & SALAD
MUSHROOM
SALAD
(a)
COLD CUTS GREEN
SALADS SALADS BEANS
CAESAR SPINACH TOSSED CAESAR SPINACH TOSSED
SALAD & SALAD SALAD & SALAD
MUSHROOM MUSHROOM
SALAD SALAD
(b) (c)

Fig. 3—Illustrations of a menu access scheme with multiple superordinates.

codes to stand for objects in a database. Shorthand abbreviations or
codes are not necessarily evil, nor are they new annoyances occasioned
by the introduction of computer systems. Almost anyone who keeps
large numbers of records very soon falls into the habit of making short
codes to stand for otherwise lengthy entries. However, the advent of
electronic devices has exacerbated the problem simply because more
people are entering more different things. For example, the repair-
installation personnel in some telephone companies now have to make
entries that require as many as seven different coding schemes, one of
which has many thousands of different codes. It seems quite likely that
frequent users of database systems will always want to refer to entities
by short, symbolic codes. It is one thing to say that these should be
mnemonic, but something else to know exactly what makes something
easy to remember and use for such a purpose.

A principle governing at least one aspect of the problem comes from
a theorem derived by Shepard from a model of how errors are gener-
ated when humans learn to associate a set of symbols to a set of
objects.?* The minimum number of errors, and presumably the fastest
learning, is shown to result from a mapping in which labels that are
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perceived as similar (and therefore likely to be confused with each
other) are assigned to objects that are also perceived as similar. Briefly,
the reason is that an error generated by confusing two codes will
sometimes be compensated for by errors in selecting the objects to
which they apply; whereas other mappings will preserve all errors. We
demonstrated a possible application of this conjecture in the following
way. From previous work we knew that animal names correspond well
to the structure shown in Figure 2.** We also knew from previous work
that digits and letters of the alphabet are more similar the closer they
are in lexicographical value.” > We constructed 16 alphanumeric codes
and assigned them to 16 animal names, as shown in Fig. 4.

(A)  (B)

LEOPARD F5 D4

CAMEL B9 Al
ELEPHANT D4 A9
WOLF Al D7
GOAT F1 Bl
TIGER B6 D2
RAT F7 F2
SQUIRREL A3 F7
ZEBRA D2 A6
SHEEP A9 B3
cow F2 B6
CHIPMUNK Dl F5
MOUSE B3 Fl
LION A6 DI
PIG Bl B9
GIRAFFE D7 A3

Fig. ——Assignments of alphanumeric codes to 16 animal names. Column A shows a
random assignment, and column B shows an assignment based on the similarity relations
of Fig. 2.
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For one group of subjects the assignment was made at random, as
shown in column A. For another group of subjects the assignment was
such that codes that are perceived as like each other were assigned to
animals that are like each other according to the structure of Fig. 2.
These are given in column B. It is probably not obvious from Fig. 4
that the mappings in the two columns are systematically different or
that one would be easier to learn than the other. However, columns A
and B of Fig. 5 show the lack of correspondence and the correspond-
ence, respectively, of the underlying mappings to the structure of Fig.
2. (Note that subjects were not shown anything like Fig. 2 or Fig. 5,
column B. They were just shown sequences of name-code pairs in
random order, as in Fig. 4.)

The mapping based on Shepard’s theorem produced almost 50-
percent faster learning than did the random mapping. You may say to
yourself something like, “But of course, the systematic mappings make
sense and the others do not.” This is the point. Also important is the
fact that the relations among symbols were arrived at in a systematic,
mechanical way that might be applied in places where “what makes
sense” is not so obvious.

(A) (B)

CAMEL B9 Al
GIRAFFE D7 A3

ZEBRA D2 A6
ELEPHANT D4 A9

GOAT F1 Bl
L——— SHEEP A9 B3
COow F2 B6

PIG Bl B9

LION A6 DI

B — TIGER B6 D2
—— LEOPARD F5 D4
WOLF Al D7

_ ——MOUSE B3 FI
RAT F7 F2
| [ CHIPMUNK DI Fs

SQUIRREL A3 F7
Fig. 5—Assignments of alphanumeric codes to 16 animal names. The codes in column

B are assigned so as to correspond to the underlying psychological structure; those in
column A are randomly assigned.
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For a “real life” example of this problem on a much larger scale,
consider the Dewey Decimal System for library classification. The
codes are intended to convey information about the content classifi-
cation of a book. They were developed by the thoughtful application
of librarians’ knowledge, intuition, and opinions about content rela-
tions. They undoubtedly serve the internal filing and retrieval func-
tions of libraries quite well, and most certainly reflect at least the
grosser aspects of the academically conventional categorization of
fields of knowledge. It is doubtful, however, that they come close to
optimizing the ease with which a new user of a library can learn the
codes, or use them to go directly to the shelf where information of
interest may be stored. T'o improve the utility of codes for this purpose,
it is necessary to study the structure of knowledge domains as con-
ceived of by the user, and incorporate corresponding perceived struc-
ture in the codes mapped to them.

4.3 Natural data designators

An alternative to providing people with menu paths, or prespecified
codes to be memorized, is to allow them a relatively free choice of self-
generated names or descriptions of the information they seek. Key
word schemes and indexes allow people to generate candidate patterns
which may give access to information that was previously stored in
the system with the same designation. Query languages usually com-
bine this approach with methods by which the user can specify
combinations or other logical or arithmetic operations on the data
referenced by the input terms. The vocabulary and syntax for data
specifications may be strongly restricted, or they may be virtually free-
form. For any such system to work, it is essential that the vocabulary
and logical expressions with which the system deals be similar to those
that people can easily use. If the query language is highly restrictive,
it will require more learning if it forces the user to communicate in
new and unfamiliar ways. If the user’s input is relatively free-form, it
is even more likely that the success of the system will depend on its
ability to understand correctly the user’s words and phrases. In any
case, then, it is essential to know as much as we can about the kinds
of words and expressions people find natural to use in specifying data.

First consider the matter of vocabulary. Anyone who has used a
bibliographic search system, or even a common book index, will
recognize that the users’ description often fails to match any of the
entry points provided by system designers or indexers. The problem
is, thus, communication between system designers and users. The
vocabulary part of the problem is whether these two groups of people
use the same words. Because we know that people can say the same
thing in more than one way, and because we observe less than perfect
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performance in information retrieval systems, we suspect that vocab-
ulary frequently does not match. But how bad is the mismatch,
especially in circumstances where designers and users are trying their
best to agree? We have collected data bearing on this question in a
variety of domains.”® In one study Gomez and Kraut asked cooks to
provide three to seven key words, in order of importance, for index
descriptors of a large set of recipes. Overall, the chances that the first
word used by any one cook (e.g., a user) would match that used by
another (e.g., the indexer) was less than one in five. In a study of text
editing by Landauer, Galotti, and Hartwell, secretarial students were
asked to describe changes indicated by author’s marks on a manuscript.
The likelihood that any two secretaries used the same main verb to
describe the same editing operation was less than one in ten. Similar
results have been obtained by Furnas for people giving superordinate
categories for sale items and by Dumais for people specifying common
objects. In somewhat less formal studies, we have asked programmers
and computer scientists to provide a one-word name for a program
that gives information about entertainment events. Here, the fre-
quency with which any two people used the same name was much less
than one in ten. In all these cases, the name providers were under
instruction to give terms they thought that others would use. They
simply could not do it.

The implication of these results for retrieval system design is clear;
ways must be found for dealing with synonymy. In the long run, this
will probably require knowing more about the psychological nature of
word meanings. However, some useful prescriptions can be made now.
Computer entities, such as data files and objects, commands and
programs, should be specifiable by many different names. Rather than
a single name, or a few aliases for each entity, the system needs to
recognize a large number of alternative names. Our data® show that
10 to 20 names may be needed to account for 80 percent of untrained
users spontaneous “keywords” for an object. One way to implement
this is with an adaptive indexing scheme that keeps track of the entry
words actually offered by users, adding new pointers as it gains
experience. (Of course, this will generate ambiguities, but they can be
interactively resolved.)

Furnas has installed such a system as an experimental help facility
(called AID, for Adaptive Index to Documentation) for the UNIX*
operating system user’s manual, and some other utility databases and
documentation on our local machines. Suppose a user tries a word that
fails to return the desired object, but eventually finds that object by
another route. Subject to user verification, the AID program estab-

* UNIX is a trademark of Bell Laboratories.
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lishes a new index pointer from the user’s earlier word to the final
target. Then the next time this user, or anyone else, tries that new
word, the computer will have some idea what to return. The program
deals with ambiguity by giving the user a frequency ordered list of all
objects previously referred to by a given input. We are still studying
this scheme and so do not yet have conclusive data on its utility. But
we think the general approach of having the system adapt to the users’
vocabulary as well as the users to the system’s is certain to be
advantageous.

Overcoming the vocabulary mismatch problem is, unfortunately,
only part of the solution. Even if we assume that we can correctly
understand all the words people use, we may still not be able to know
what information they are really seeking when they form a query.
Database management systems typically require the user to enter well-
formed expressions that logically specify a particular subset of the
database. We have already noted that people do not do logic very well.
They do not accurately form or understand complex Boolean or
relational calculus expressions. They make frequent errors in using
and interpreting quantifiers or distributed negatives. In natural spoken
language, delimiters, like parentheses, or locutions, such as “the quan-
tity,” are rarely used. Yet these kinds of constructions are essential to
specify data in most query languages.

In everyday speech, people seem to skirt this problem by avoiding
expressions such as “not a cow or not brown and not big.” What do
they do instead? Clearly, people do manage to tell each other what
pieces of information they would like. They often query other human
beings with apparent success. Dumais and Landauer have studied the
way people naturally specify data, using a version of the password
game.” They gave college students from New York University 50 well-
known objects (e.g., “Newsweek,” “Empire State Building,”
“motorcycle”) and asked them to provide a description that would
allow another person, or a fictional computer, to guess each of the
objects. The only restriction was that they were not to use the object
word itself in the description. Later the descriptions were given to
other people who tried to guess what was intended. The communica-
tions were reasonably successful; on the average the guesses were
correct about 80 percent of the time. The more interesting aspects of
the data are qualitative, involving the kind of statements that the
students used. The expressions were rarely precise and seldom involved
complicated relations. The most common form of specification was a
single superordinate category, plus a few features: for example, for the
target San Francisco, “a large California city, famous for cable cars
and the Golden Gate Bridge.” Another common form of specification
was a set of several subordinate or associated categories: for example,
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for the target motorcycle, “Yamaha, Suzuki, and Harley-Davidson.”
Lengthier Boolean expressions than these were uncommon. They
made little use of negation or exclusion. For example, the target
Newsweek, which was included to lend itself easily to this kind of
specification, was almost never described as “a popular weekly news
magazine that is not Time.” Perhaps the most striking feature of the
descriptions was that they were, strictly speaking, quite vague. That
is, they seldom specified the particular object uniquely. The most
common specification for the target Empire State Building was some-
thing like “a tall building in New York City,” whereas a specification
like “next tallest building in New York City after the World Trade
Centers” was quite rare. (Recall that the subjects were New York City
college students.)

It is apparent that people rely heavily on presuppositions about
knowledge in the receiver. They appear to assume that the other
person will give back a “most memorable” response in the absence of
further specification. The specifier unconsciously assumes that there
is a strongly ordered priority among the possible items, and that the
other person will share that priority sufficiently to be able to guess
what is intended.

Apparently, in order to make data access more natural, we are going
to have to build into systems more of this kind of knowledge of the
world. Note that we are not necessarily claiming that systems will
need to know nearly as much about the world as humans do. It may
suffice for them to have a certain amount of statistical knowledge of
what is usually meant by what.

V. ENSURING AND VALIDATING USABILITY

The common way of discussing the human factors problem in
computer systems design is to speak of improving machine-user inter-
faces. Often this implies a design process in which the designer thinks
of and specifies a system to perform a particular function, builds it,
and then seeks help in optimizing the input, display, and sometimes
command language aspects of its interaction with the user. These are
good things to do, but they are unlikely to suffice in making data
access systems maximally valuable to human users. What is necessary
is to design systems that represent and provide data in ways that
people are best able to think and communicate about. For those
database systems whose principal users will be humans (rather than
other machines), this means one should start the design process by
obtaining information about the user. One needs to know what kind of
information the users will really want, how that information is thought
about by them, how it is described by them, what they will want to do
with it, and in what ways they can best understand its description.
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Only with this kind of information in hand can one really decide what
the system should do in the first place. The next step is to invent a
flexible trial system, and build a prototype in which alternative design
ideas can be tested. Ideally, any conceptually separable aspects of the
data representation and access methods that will impinge on the user
should be designed and tested separately before being put together
into an overall system. The notion of modular design has become well
accepted in programming. Among other things, it allows the designer
to separate and test parts of the program for their correctness and
efficiency. The same idea can be applied to usability. To be more
specific, such things as the choice of the best data model, the best
mode of query (e.g., whether menu or keyword or something else), the
size, kind, and vocabulary of the query language, and its syntactic
rules, should be explored separately to be sure they are appropriate
for the intended users and purpose before they are incorporated in an
overall system.

At each step, and once the total system is assembled (unfortunately
easily used parts do not necessarily combine into an easily used whole)
the test of whether it “works” needs to be considered carefully. The
traditional test applied by an engineer to a newly constructed invention
is to “try it out”. Without much outside help, the inventor can run the
device through its paces and adequately evaluate whether it does what
it is supposed to. This kind of test is, unfortunately, not sufficient for
human usability purposes. The essence of the difficulty is the enormous
influence that previous experience and knowledge has on the way a
person perceives and interacts with the world. What may seem to be
a very clean and easy system to use for its inventor, or even for
colleagues with roughly similar backgrounds and motivations, may be
totally unacceptable for other people. It is necessary to test a system
on people who are like those who will eventually use it.

This prescribed procedure will seem quite time-consuming, difficult
and tedious. It is. Currently, the only known way to get substantial
improvement in the usability of systems is to design, test, design, test,
through several iterations. Unfortunately, we do not yet have a large
enough pool of well-tested and general principles to allow confident
usability design from the outset. Nor do we have a large store of
reliable pieceparts with proven usability qualities. What will eventually
provide such principles and components, we believe, will be two
developments. First, more research into the underlying issues in hu-
man-computer integration will lead to increased general understand-
ing. Second, modular and iterative testing with representative users
will lead to the accumulation of parts and techniques that are known
to work at least sometimes, and which will make better starting places
for the next system. Convergence is more rapid with a good starting
point, so usable systems should get easier and easier to develop.
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Another way to make convergence more rapid is to make the
iterations easier. One way of doing this is to use simulations that can
be easily changed. For example, one can simulate a system or module
by having a human do part of what the program is intended to do. One
puts a representative user at one terminal, and the designer at another.
When the subject interacts with the “system”, the designer responds,
perhaps with the help of a relatively simple program, in one of several
ways that the intended system might. This kind of experiment will
almost always provide surprising information about what users ac-
tually do, and what aspects of the system’s features are easy and hard
to use.

All this elaborate testing with real users is a great added burden
that will make systems much harder to design and build on time. We
believe the effort is worthwhile because we believe the goal is impor-
tant and there is currently no good alternative. Certainly, in developing
large systems, it is essential to have human factors specialists working
along with hardware and software specialists from the earliest design
stages, and during trials and revisions. They will act as committed
advocates of the intended users’ interests, and their professional train-
ing and experience will make them more sensitive and knowledgeable
about usage issues, and less likely to overvalue untested intuitions. But
it is important to realize that the formulas, tables, and principles that
guide traditional engineering are in short supply for usability aspects
of design, and there is no guarantee that psychologists will have
superior intuitions. What human factors specialists are best at by
virtue of their training is performing efficient evaluation experiments,
ones that can make “throw aways” and iterations much more effective
in producing humanly usable products.

V1. CONCLUSION

We subscribe to the view that the electronic information revolution
will rival the invention of movable type in its impact on people’s use
of knowledge. The technology of print kept serving civilization better
as centuries of trial and error added authors, publishers, bookstores,
indices, tables of contents, page numbers, libraries, librarians, card
catalogues, and universal schooling. Undoubtedly, many of the com-
parable improvements for the electronic age will also come from
natural evolution. Our hope, though, is that modern knowledge of
cognitive psychology, experimental methods, and data analysis, sys-
tematically applied, will speed the course of evolution this time around.
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