Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in U.S.A.

Database Systems:

Design and Implementation of a Production
Database Management System (DBM-2)

By T. C. CHIANG and G. R. ROSE
(Manuscript received September 18, 1982)

The DBM-2 is a transaction-oriented database management system
designed to track activities within an organization. Being a produc-
tion system, DBM-2 has different requirements and design criteria
than exploratory database management systems. To support such
applications in a production environment, DBM-2 is required to have
high performance and flexibility. An extended entity-relationship
(E-R) data model provides a basis for DBM-2 in meeting the require-
ments. The extended E-R data model simplifies the handling of
existence dependency between data records by DBM-2. This paper
presents the design and implementation of pBM-2. Special attention
is given to the implementation of “associations” between records,
because the implementation is critical for supporting the E-r model.

|l. INTRODUCTION

The pBM-2 is transaction-oriented database management system
designed to track business activities in an enterprise. The first appli-
cation is the Loop Maintenance Operation System (LmM0s-2),' a trans-
action system for tracking repair activities of an operating company.
The pDBM-2 together with the LMo0s-2 application software has been in
field trial since October 16, 1980, and will be deployed in most of the
Bell operating companies in the United States in 1982. Thus, DBM-2 is
a real production system. It is programmed in C,” and runs under the
UNIX* operating system version 4.0 on a DEC PDP 11/70
computer.” Work is being done to transport bBM-2 to a DEC VAX 11/
780 computer.

* UNIX is a trademark of Bell Laboratories.
tDEC is a trademark of the Digital Equipment Corp.

2511



To support transaction systems with tracking applications in a
production environment, DBM-2 is required to have high performance
and flexibility. A transaction system is one that performs a predefined
set of tasks. A transaction performing a task is normally required to
have a fast response time and may involve many database retrievals
and updates. A tracking system normally has a large database and a
heavy transaction load. These requirements put a premium on DBM-2
performance. Furthermore, the functional requirements of our appli-
cation, probably typical of most transaction systems, are ever changing.
This implies that bBM-2 must provide data independence and enable
easy change to the database structure and definition. Data indepen-
dence means that a database can be changed without affecting existing
application programs. Ease of change implies that we have to have
tools for making the changes and modular system design for isolating
changes in the system. However, DBM-2 is not required to have a high-
level query language for arbitrary queries, since a transaction accepts
a fixed format input from a CRT terminal to perform the predefined
task.

The DBM-2 has been managing a database successfully in a telephone
repair application. The database is large in volume and complex in
storage structures. It has about 300-million bytes of data in 30 files.
There are 15 cross-record relationships, and up to 80 fields per record.
The transaction load on the application system is rated at 4000
transactions per hour, where the transactions average eight database
requests each. The application system is available 22 hours per day.
Many new fields as well as new views of existing fields have been
added to the database. Files have been reorganized to improve per-
formance. These changes have been made without requiring changes
in the existing application programs. Some of the changes have been
made without database conversion.

Overviews of DBM-2 have been presented in Refs. 4 and 5. This
paper elaborates on how DBM-2 provides flexibility (mainly data in-
dependence and ease of change) without sacrificing performance. This
paper also shows the judicious choice of modern database and software
engineering technology for a successful development of a production-
oriented database management system that is running on a minicom-
puter. There are many factors contributing to the success of DBM-2.
They include the use of an extended Entity-Relationship (E-R) model,
the internal data structures, mapping between internal and external
structures, a robust file system, and the program and process organi-

- _zations. One of the novel ideas reflected in the design of DBM-2 is the

extension of the existence dependencies semantics of the E-R model.
In the extended E-R data model existence dependencies among records
are considered as a property of an “association.” Special attention is

2512 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



given to the implementation of associations between records, because
the implementation is critical to the support of the E-R model.

Section II reviews the extended E-R model. Section III describes the
internal data structures and their interface. Section IV describes how
the mapping between the external views and internal data structures
is done. Sections V and VI present the software architecture and
performance statistics of bBM-2. Finally, Section VII presents the
conclusion that includes a summary on how each design decision
affects the flexibility and performance objectives.

Il. EXTERNAL VIEWS

The pBM-2 supports multiple external views of a database using an
extended E-R model. The advantage of using the E-R model is that it
provides: (i) rich enough constructs to capture the semantics of the
application, (if) a simple user interface, (iiZ) a high level of abstraction
to hide internal data structures from user programs, (iv) mechanisms
for achieving a high level of performance, and (v) structures for ease
of implementation. For example, the E-R data model, as defined later,
will allow not only relationships between records, but also various
existence dependencies between records to be expressed explicitly at
the user level. These two kinds of semantics are very important for
our applications. Even with the constructs for handling the added
semantics, the total number of objects in the data model is small and
the operations on the objects are simple. Therefore, it is possible to
define a simple user interface in terms of the data model. Such a
simple interface encapsulates the complexity of the internal data
structures. On the other hand, the constructs in the data model reflect
some important aspects of the internal data structures so that high
performance and ease of implementation can be achieved. All of these
points will be explained in this section, and in Sections III and IV.

2.1 The extended e-r data model

From a user’s (external) view, a database is considered as a collection
of files and a collection of “associations” among records. A record
represents an entity (e.g. a customer or a trouble report) in the real
world, while an association represents a set of relationships among
entities (e.g. a trouble report by a customer or a repair person respon-
sible for a reported trouble). A file is viewed as a two-dimensional
table, where the columns are fields and the rows are records. A
relationship can be viewed as a named link between two records of
perhaps two different files. In fact, as can be seen in Section III, an
association is implemented using a linked list. The use of named links
enables one to retrieve an associated record without a key search, and
without needing to know the implementation of the link. Thus, an

DATABASE MANAGEMENT SYSTEM 2513



association provides a convenient way for navigation in a database. In
addition to navigation, associations are also used to express update
dependencies. Update rules are defined as properties of associations.
As described in Ref. 4, four “coupling factors” to represent four sets of
update rules have been identified for the particular application. For
example, a very tight coupling factor has the following definition.

Definition: Given two files, E1 and E2, and an association A between
them, A is said to have a very tight coupling factor from E1 to E2 if
and only if:
1. Insertion of a record €2 in E2 is permitted only if there is a
record e1 in E1 that record e2 can be associated with,
2. Deletion of a record el in E1 implies the deletion of all its
associated e2’s in E2,
3. No deletion of a record e2 in E2 is permitted if there exists an
associated e1 in E1.

Note that coupling factors are directional. In the above definitions, we
assume the existence of a record €2 in E2 is dependent on that of a
record el in E1. A “very tight” coupling factor, in a way, indicates
that the two types of records are semantically very close. Closeness in
semantics usually is reflected at the physical database level; closely
associated records are stored together in one physical record. This
implies that associated records can be retrieved without multiple disk
accesses, which is extremely important for performance.

The definitions for the other types of coupling factors are relaxations
of one or more rules in the above definition. A “tight” coupling factor
is defined as the one that satisfies rules 1 and 2 above, a “regular”
coupling factor satisfies only rule 1, and a “loose” coupling factor
satisfies none. For some applications, one may need to define other
coupling factors. An example is a coupling factor satisfying rules 1 and
3.

Coupling factors have many interesting properties, e.g., transitivity.
For example, if the deletion of €2 in E2 depends on the deletion of an
el in E1, and the deletion of e1 depends on the deletion of an €3 in
another file E3, then the deletion of e2 depends on the deletion of e3.
The pBM-2 performs automatic updates of associated data items
according to the declared update rules. This is not only convenient for
programming, but also necessary for performance. Process and mes-
sage switching overhead can also be avoided. (Process organization
around DBM-2 is discussed in Section V.) Another interesting property
is the interference between two coupling factors. For example, let us
assume that two associations A and B between files E1 and E2 have
coupling factors C1 and C2, respectively. If C1 and C2 both contain
rule 1, but the insertion dependencies are in opposite directions (i.e.,

2514 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



the dependency of E1 on E2 versus the dependency of E2 on E1), then
record insertions cannot be performed on either E1 or E2. The prob-
lems of interference between two coupling factors have been discussed
in Ref. 6 in detail.

2.2 Data Manipulation Language

A Data Manipulation Language (DML) based on the E-R model is
' provided to the application programmers as a program interface to the
| database. The host language for the DML is the programming language
C. The pML is a set of C functions for retrieval, insertion, modification,
and deletion of records. The DML is divided into a set of regular bML
commands and “associated” pML commands. The regular bML com-
mands operate on a single file, while the associated pML commands
operate on files via associations. Most of the regular bML commands
have the following format:

setid = command_name(file, view, condition);

where setid is the identifier for the set of records on the command that
is operating, file is the file name, view is a projection of the file, and
condition a Boolean combination of field name and field value pairs.
The associated commands have the format:

command_name(setid, assoc, file, view, condition);

where setid is the id returned by a previous DML call, and assoc the
name of the association. An associated DML command may also return
a setid.

The following is an example of the use of DML. (Note that the syntax
used in the example is not exact.) Consider a user’s view of a database
consisting of two files, DEPT and EMP, and an association between
these files called DE. DEPT and EMP store, respectively, information
about departments and employees. DE captures the semantic of
“department of an employee” relationship. The files have the following
fields:

DEPT(DEPT#, # of emp, manager_name);
EMP(EMP#, emp_name, emp_salary);

The association DE is 1:m and has a loose coupling factor. The database
for the example is shown in Fig. 1.

DEPT }7 DE EMP

Fig. 1—Database example.

DATABASE MANAGEMENT SYSTEM 2515



Suppose a user wants to print the manager’s name and all the employee
names for the employees who earn over $30,000 and work in a depart-
ment that has more than 30 people.

The following DML calls may be used:

V1 = {manager_name};
V2 = {emp_name};
r = Dretrieve(DEPT, V1, "# of emp > 30"');
while ((r = Dgnext(V1, ) != EMPTY){
ri = Daretrieve(r, DE, EMP, V2, “"'emp_salary > 30000"");
while((r1 = Dgnext(V2, r1)) !|= EMPTY)
printf(‘'%s %sn’’, V1.manager_name,
V2.emp_name);

}

Dgnext in the above example is a DML command for getting the next
record in the set starting with the first retrieved record. In the above
example, the Dretrieve command retrieves a set of records that satisfies
the selection criterion and returns a set identifier r. The Dgnext calls
fill in field values in the views (i.e., V1 or V2), and move a current
record pointer to the next record in the set. For each record in setr, a
Daretrieve is called to retrieve associated records in EMP. For each
record in an r1 set, the program prints the names of the manager and
employees found in V1 and V2. '

Since the association DE has a loose coupling factor, a deletion of a
particular department will not affect the existence of the employee
records. However, if the coupling factor were very tight, the deletion
of a department record would trigger the deletions of all the employee
records associated with the department record.

2.3 Data Definition Language

The Data Definition Language (pDL) is provided for the Database
Administrators (DBA) to interface with the database. There are three
commands in the DDL: (i) Dfile, (ii) Dfield, and (iii) Das. Dfile is the
command for defining a file with a set of parameters:

Dfile filename filecode nxtfile Inkcode nfield vfield

where filename and filecode are respectively the file name and internal
file code, nxtfile is the file code for the next internal file in a link,
Inkcode is the code for the link, and nfield and vfield are respectively
the number of fields and the beginning byte of the variable fields. Note
that an external file may be implemented as many linked internal files.
The implementation of the mapping between an external file and the

2516 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



internal files and the use of nxtfile and Inkcode are discussed in Section
IV. Dfield is the command for defining a field in a file and has the
following format:

Dfield name code type class begin length usecode

where name and code are respectively the field name and field code,
type is the field type (e.g., INT and CHAR), class is either fixed or
variable, begin and length are respectively the beginning byte and the
length of a fixed field, and usecode is the user’s field code. The
command Das that defines an association between files has the follow-
ing format:

Das name type cfactor file1 I1 file2 12

where name is the association name; type is either 1:1, 1:m, or m:n;
cfactor is the code for coupling factor; file1 and file2 are the file names
for the files involved; and 11 and 12 are the implementation classes for
the two sides of the association (e.g. embedded key, linked keys, or
link).

A sequence of DDL commands for a file or an association is stored as
a UNIX file. The DDL processor (DDLP) converts the source files into
a machine readable form, called a database catalog (DBcAT) which is
a set of tables defined as C structures. The members in such a C
structure store values translated from the arguments of the ppL
commands. There are a file table, a field table, and an association
table. The DBCAT is read into main memory at system initialization by
DBM-2 to perform mapping.

For the database example in Fig. 1, the pDL source files may look as
follows:

dd1.DEPT:

Dfile DEPT 1 -1 -1 3 -1

Dfield DEPT# 0 CHARFIX 05 123

Dfield# of emp 1 INT FIX 6 2 124

Dfield manager_name 2 CHAR FIX 8 20 125
dd1.EMP:

Dfile EMP 2 -1 -1 3 -1

Dfield EMP# 0 CHAR FIX 0 5 126

Dfield emp_name 1 CHAR FIX 5 20 127

Dfield emp_salary 2 INT FIX 25 2 128
dd1.DE:

Das DE 1:m LOOSE DEPT EMBKEY EMP LNKKEY

DATABASE MANAGEMENT SYSTEM 2517



A -1 in a command line means “not applicable.” Note that to change
fields, add fields, and delete fields, the database administrator only has
to change the ppL source files using a database editor provided by
DBM-2 and reprocess the source files by using ppLp. The database
editor knows about both the external and internal data structures of
the database. It has a set of commands for changing the definitions of
these data structures, such as adding a field and deleting a field. The
existing application programs need not be changed. In some cases,
changes have been made without database conversion. For example,
if a new external view of a field is to be added to the database, it is
only required to add an entry into the field table for a file. This
requirement is also true for adding an internal field to a file with a
variable record format, since the number of fields in such a record can
be varied. These facilities permit quick response to system change
requests. The flexibility gained has proven important during the field
trial. At times, it has spared the system from expensive database
conversions when moving between different versions of application
software.

lll. INTERNAL VIEW AND DATA STRUCTURES

The internal view is a simple picture of the otherwise quite complex
internal data structures. The internal data structures include multi-
level indexes, variable and fixed length records, variable and fixed
length fields, records with variable numbers of fields, pointers among
records, integration of two external records into one internal record,
partition of one external record into several internal records, and up to
15 different field types (e.g. INT and CHAR). The internal data struc-
tures are designed for high performance and conservation of disk
space. The variable record format also provides a mechanism for
achieving flexibility.

A variable format record can have a variable number of fixed fields
and variable fields (up to the limit imposed by the size of DBCAT). A

_record is partitioned into a fixed-field portion and a variable-field
_portion. In the fixed-field portion, only field values are stored for
individual fields. In the variable-field portion, a field length is prefixed
to a field value. If a field is not presented in the record, only the field
length of zero is stored. Furthermore, DBM-2 performs data compres-
sion on the basis of a record. The compression algorithm converts
three or more contiguous blanks and zeros into two bytes, one byte
storing the length of the character sequence before compression and
the other specifying a sequence of either blanks or zeros. Hence,
storage space can be saved. Since a variable format record allows
variable number of fields, deleting or adding a field will not require
database conversion.

2518 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



The internal view consists of a set of internal files (1Fs), each of
which consists of a set of internal records (IRs). The records have fixed
formats, i.e., fixed record length, fixed field length, and fixed number
of fields per record. There are operations for getting a record (getrec),
adding a record (addrec), deleting a record (delrec), and replacing a
record (putrec). All the operations are defined on a single record for a
given key.

There may be links between records. Links provide a formal mech-
anism for creating references from one IR to one or more distinct IRs.
The purpose of having links is to eliminate the use of pointers at the
higher-level DBM-2 programs. The advantage is that changes in the
link-structure implementation, e.g., when a pointer is changed from an
integer to a long integer, would not require changes in the higher-level
DBM-2 programs. Links are used to implement indexes, associations,
and record partition. (Record partition is defined as the partition of an
external record into two or more internal records.) Examples of such
applications of links are illustrated in Section IV.

A link structure is the key to the simple representation of complex
internal data structures in the internal view. A link is defined as a
linked list that consists of a header internal record of a particular type
and a set of member internal records of another type. The link header
must be accessible by key, while the members may be accessed by key
or via the link. For performance, a link may be stored on a common
block of physical disk space. In this case, the link is referred to as a
closely held link. Normally, the members of a closely held link can be
accessed only via the link. Closely held links are used to implement
record integration, which is defined as an integration of two external
records into one internal record.

There are two distinct sets of operations on links. The first set is the
set of single-link operations, and the other is the set of multiple-link
operations. The single-link operations include: (i) get header (using
getrec), (if) get member (Igetrec), (iii) attach a member to a link
(link), and (iv) remove a member from a link (unlink). Since headers
or members are records of one or more files, record operations can be
applied to them (except for the closely held linked members). The
existence of a link requires the existence of the header. Therefore, a
deletion of a header implies the deletion of the instance of the link
headed by the header. For the closely held links, however, it also
implies the deletion of all linked members.

Conventionally, secondary indexes are implemented as inverted lists
or trees. The conventional way for processing secondary indexes re-
quires some Boolean operations on sets of pointers. The multiple-link
operations are for processing secondary indexes. While the secondary
indexes may still be implemented as trees or inverted lists, the opera-

DATABASE MANAGEMENT SYSTEM 2519



tions on these structures are done by using the multiple-link opera-
tions. One does not have to know about pointers or implementations.
A secondary index of a field value is viewed as a link. The record that
stores the indexed field value serves as the header of the link. The
members are the data records that have the field value. The multiple-
link operations are specially defined Boolean operations on the links.
For example, the intersection operation, *, is defined as the operation
on two links that produces a link with a virtual header that is a
temporary record created for the identification of the link. The mem-
bers are the intersection of the two sets of members of the two links
involved in the link intersection. Except that the virtual header is not
accessible, all other link operations can be applied to the resulting link.
For example, given links L1, L2, and L3,

X=1L1"L2
is a link, and likewise
Y=X"L3

is a link. The Igetrec operation can be applied to members of either X
orY.

IV. MAPPING

The pBM-2 hides the internal view from users by providing a
mapping function between the internal and external views. The func-
tion has two levels: (1) field level and (if) record level. The mapping

_function is table driven. The information that is needed for the
mapping is kept in various tables. There are tables for the descriptions
of files, fields, associations, and links. For example, in a file-description
table, each entry stores information about a file, such as external file
name, associated internal file codes, and pointers to the field table
entries for all its fields. The tables are created by using pDDL and stored
in DBCAT as described in Section 2.2.

4.1 Field-level mapping

At the field level, the mapping function translates 15 different field
types into the null terminated character string format (as used in a C
program), which is the canonical representation of an external field
value. Semantically, an external field value can be one of the many
types, for example; ALPHANUMERIC, STANDARD_TIME, and
LONG_TIME. The ALPHANUMERIC type is externally a string of letters
and/or digits; STANDARD_TIME is a string with a specified format
appropriate to time representation, and so on.

To support multiple external views of a field, one internal field type
may be mapped into several different external field types. For example,

2520 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



an internal field that is a LONG (long integer, 32 bits for the PDP 11/
70) can be mapped into a STANDARD_TIME type (e.g., 01-01-81
0001A) or LONG_TIME type (e.g., 347145200, the number of seconds
passed since the beginning on January 1, 1970).

A user can define new field types by supplying a routine that
interprets the new type. A relinking of DBM-2 and a change in DBCAT
are necessary then to install the new type.

4.2 Record level mapping

At the record level, the mapping function handles record integration
and record partition. It also translates between associations and links.
There are three basic methods for the implementation of an associa-
tion: (i) links, (i) embedded foreign keys, and (iii) links of foreign
keys. A link is the data structure defined in Section III. In a particular
record, an embedded foreign key is a key of another record embedded
in the given record. A link of foreign keys is a link that consists of a
header that is the given record and members that are keys of other
records. Figure 2 shows examples of an embedded foreign key and a
link of foreign keys, where r1 represents a record and ki, i = 1, 2, 3,
represents a key.

A variety of implementation methods can be derived from these
three basic methods. For example, a one-to-many association between
records of two different types can be implemented as an embedded
key on one side of the association, and a link on the other side.

In the case of record partition, a link connects two or more internal
records of different types with one of the internal records being the
header and the rest of the records being members of the link. The
mapping function accesses the internal records through the link mech-
anism and concatenates all the internal records to make an external
record. Figure 3 shows how the information stored in the file table in
DBCAT is used to do the record partition mapping.

In Fig. 3, E_file1 is the external file name, I filei, i = 1, 2, 3, are the
associated internal file codes, Nlfilei, i = 2, 3, points to the next internal

" K1 n m
(a)

(b)

Fig. 2—Examples of foreign keys. (a) Embedded key. (b) Linked keys.

DATABASE MANAGEMENT SYSTEM 2521



E_filel E_filel E_file1
1_file1 I _file2 I_file3

NI file2 /' NI file3 /" NI filel
I _link1 1_link2 1_link1

Fig. 3—Record partition.

k11 1E2

Fig. 4—Example of record level mapping.

file, and Llinki, i = 1, 2, are the links for linking the internal files, and
a -1 signifies the end of the chain of file-table entries. The file-
description table entries for all internal files of an external file are
chained by using the Nilfile field.

Secondary indexes are implemented as links. The link operations
described in the previous section are used to process the secondary
indexes.

In summary, for the record-level mapping, the mapping function will
interpret the links and map them into associations, record partitions,
or secondary indexes. An example is shown in Fig. 4 to illustrate such
mappings in general. Figure 4 also shows the contrast between a simple
external view and complex internal data structures. As shown, E1 and
E2 are two external files, and A is the association between E1 and E2.
IF1, IF2, and IF3 are the internal files for E1, linked together by L1
and L2. S1, S2, and S3 are secondary index files linked to the data
files via L4, L5, and L6. k21 is a key field of records in E2 linked to
IF3 via L7. This is the implementation of A (linked key) on one side.
k11 is a key field for records in E1 and is the implementation of A
(embedded key) on the other side.

V. SOFTWARE ARCHITECTURE

In this section, software architecture is described in two parts: (Z)
process organization, and (if) program modules. Process organization
is defined as the relationship of the DBM-2 process to other processes
in the system. The definition of the DBM-2 process itself in terms of
program modules and functional partition is the second topic.

2522 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



5.1 Process organization

The pBM-2 is implemented as a user process under the UNIX
operating system, version 4.0+, a version of the' UNIX operating
system augmented for transaction applications with dynamically allo-
cated shared memory. A robust file system (cFs)® is used instead of
the UNIX file system. The UNIX file system is considered inefficient
for production-oriented database systems, because of its long access
time and lack of crash-recovery mechanism and concurrency control.
The long access time of the UNIX file system is due to its multiple-
level directory structure and noncontiguous file organization. CFS is
an extent-based system; that is, a file is divided into large chunks of
contiguous storage spaces called extents. Each extent in turn is further
divided into blocks. The cFs provides block 1/0, concurrency control,
and crash recovery, and also efficiently maintains a buffer pool as a
cache for the data blocks. A transaction is considered as the unit of
consistency for both concurrency control and crash recovery. A trans-
action begins and ends in a consistent database state. All records
intended for update are locked by CFs on the behavior of a transaction,
until a “commit” command is issued by the transaction. Upon receiving
the committed message, CFS issues an atomic write of all the updated
records to a temporary file on disk. Then, individual writes of records
to the actual database files follow. CFs releases the locks after all the
writes are done. For system crashes due to software failures, the
updated records that have not been committed by the active transac-
tions will not be written to the database. The updated records that
have been committed and written to the temporary file will be written
to the database at system restart time. A journal tape is also main-
tained for recovery from disk crashes. Detailed discussions on the
UNIX operating system, 4.0+, and cFs are beyond the scope of this
paper.

A DBM-2 process (DBS) communicates with other processes via
messages and shared memory. The data sent between an application
process and a DBS are in a well-defined format that consists of a list of
(field name, field value) pairs.® The list resides in a work-area shared
between an application process and a DBS. DBM-2 is not involved in
scheduling and process management, which are done entirely by the
UNIX operating system. By design, there could be one or more DBS
and cFs for an application system. For the LMos system in the field,
two DBS processes are spawned at system initialization and locked in
the main memory until the system is brought down. (Of course, the
DBS text is shared.) Once a transaction is assigned to a DBS (via a
DBOPEN call), that pBs will serve the transaction until the transaction
either aborts or normally terminates. There is only one CFs process/
serving the two DBS processes on a first-comie-first-serve basis. The

DATABASE MANAGEMENT SYSTEM 2523



serving time in cFs has been proved to be small. The process organi-
zation is illustrated in Fig. 5, where T1, T2, ..., Tn represent trans-
action processes. The arrows represent transaction data flow.

5.2 Program modules

The pBM-2 software has a modular design that minimizes depend-
encies among the software modules. The DBM-2 software is functionally
divided into several modules: (1) DML processor (DMLP), (2) Mapping
Function (MaP), (3) Index Access Manager (1am), (4) Data Format
Manager (DFM), (5) Record Access Manager (RaM), (6) DDL Processor
(ppLp), and (7) Database Editor (DBE), and other DBA tools. The
interface between two modules is simple. An interface is a set of C
function calls specifying the operations for a particular module to
perform. The interprocess communication mechanism is hidden below
the interface. This ensures flexible implementation. Dependent on
memory size and execution time requirements, each module can be
implemented as either a process or a subroutine. For example, in one
version of DBM-2, RAM resided in the same address space as DMLP, MAP,
1AM, and DFM. However, as the system evolved, the text space of the
combined DBM-2 process was exhausted. Subsequently, RAM was

T T2 e o e Tn
DBS1 DsB2
CFS
|
UNIX*0OPERATING
SYSTEM
DATABASE

* TRADEMARK OF BELL LABORATORIES

Fig. 5—Process organization.

2524 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



moved to the cFs address space. Successive implementations of mod-
ules have had increased functionality. This is particularly true of RAM,
for which the design of the most general version is discussed below.

In addition to these software modules, the DBCAT file stores infor-
mation about the database, e.g., file schemata and association defini-
tions. The graphical representation of the software architecture for
pBM-2 and the surrounding processes is shown in Fig. 6, where
E1, ..., En represent the external views in the application processes.

The DBCAT is created by the DBA using the DDL, and is updated by
the pBA using the pBE. The DDL processor has been implemented
using “Yet Another Compiler Compiler.”® Other DBA tools includes
audit and load/unload programs.

The pMmLp has two parts. The first part is a set of subroutines
residing in the user program space. Within each of the subroutines,
the parameters of a DML call are set up in the shared work-area and a
message is sent to the second part of DMLP on the pBM-2 side. The
second part of DMLP then interprets and executes the DML command
by calling upon all the modules involved. The result is sent back to the
first part of DMLP on the user side. The mapping function performs the
translations that have been described previously.

The 1aM handles the semantics of access paths, e.g., the maintenance
of indexes, by using the mechanism provided by RaM. For example, an
index file that stored the indexes is just another internal file to the

DDLP

MAP
DBCAT
DBE 1AM

CFS

UNIX OPERATING
SYSTEM
4.0+

DATABASE

Fig. 6—The DBM-2 software architecture.

DATABASE MANAGEMENT SYSTEM 2525



RAM, but to the 1aM, it represents an access path to the data file. The
RAM provides access methods to both the index files and the data file,
while 1AM must maintain the consistency between all the index files
and the corresponding data file.

The interface to 1AM consists of a set of functions for retrieving and
updating the indexes. For example, the function getindex(file, select)
performs an optimal search and returns a set of indexes for file,
according to the selection criterion, select.

The Data Format Manager (DFM) handles variable format records
and data compression. Some flexibility can be achieved by using
variable formatted records, because fields can be added, changed, and
deleted without data conversion. Data compression coupled with var-
iably formatted records conserves disk space, but consumes cPU time.

The raM provides data access and maintenance functions designed
to support the internal view. These functions are above the level of
the crs. The RAM also provides access to the internal records. Each
internal record is partitioned into a data area and an (optional) key
area. Apart from this partitioning, no interpretation of content is
performed by RAM.

The RAM module is a simple set of C function calls that is an
implementation of the operations on records and links described in
Section III. The basic record retrieval function getrec(file, rcd, key)
illustrates this simplicity. All successful retrieval operations return a
retrieval identifier r for use in subsequent linking and update opera-
tions. For example, the function linkrec(link, r, r') creates a link
between the two internal records identified by r and r’. There are
twelve functions in all.

The implementation approach for RAM IF operations is to provide a
limited number of underlying physical file organizations and to map
internal files onto physical files via control tables. This is accomplished
by supplying a specific algorithm that corresponds to each general
operation for each type of file. Initially two physical file organizations
have been implemented.

The first is a data organization for binary-search that provides access
to internal records via a full key and also, with predefined restrictions,
to subsets of internal records that match the significant bytes of a
given key. This file type, which is restricted to main memory applica-
tions, is designed to minimize retrieval time at the expense of insertion
and deletion time.

The second is a hash organization intended primarily for disk files.
It supports both fixed- and variable-length records and permits a
mixture of record types to be recorded. The latter capability is the
vehicle for providing closely held records.

Links are implemented by reserving a fixed-length link area within

2526 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



each internal record in which IR addresses are recorded. The standard
format for IR addresses is block and mark, where mark is a unique
identifier with respect to a particular block. Direct access is performed
by reading the block and searching for the particular mark. This
scheme permits internal records to be moved within a block for garbage
collection.

There is also the concept of a set which is a subset of internal records
in an internal file with partial keys that match a given partial key.
Once a set is defined, its internal records may be accessed sequentially.

VI. PERFORMANCE

In general, a database management system adds overhead to an
application system in two areas: (i) main memory usage, and (it)
processing time. The version of DBM-2 presently supporting the first
application in the field requires about 95 Kbytes of main memory, of
which about 30 Kbytes are in the data space. DBM-2 CPU time is
discussed from two points of view: (i) absolute cpU time required to
retrieve a single external record, and (iz) percentage of transaction cpu
time that is spent in DBM-2.

The cpuU time for DBM-2 to retrieve a set of fields of a record from a
file is obtained empirically as follows:

t=5+06f+1,

where t is the cPU time in ms, f is the number of fields specified by a
user, and [ the interprocess communication time. For example, retriev-
ing 33 fields of a typical record of the application database takes about
35 ms, of which 10 ms are in I. From a recent study of system
performance,'’ the cpu time for a typical transaction is about 1273 ms,
of which 363 ms are taken by pBM-2 (120 ms of this time are spent in
interprocess communication). So, DBM-2 requires about 28 percent of
the total cPU time used by a typical transaction. The average fraction
of cPU resources consumed by DBM-2 during a day of operation is
about 22 percent.

VIl. CONCLUSION

In summary, DBM-2 provides a flexible production applications.
Fields can be added or changed without reprogramming, and in most
cases, without database conversion. Application programs are easier
to write because of the encapsulation of internal structures. The cost
of the added flexibility is increased cPU utilization: at most 20 to 30
percent for our application.

The many factors contributing to the success of DBM-2 have been
reviewed. The extended E-R model, the table driven software, the

DATABASE MANAGEMENT SYSTEM 2527



variable-record format, and the modular and multiple-level design of
DBM-2 have provided us with flexibility. Reflecting data semantics in
the physical database design, process organization, the large data
cache, the interprocess communication primitives, and the use of a
robust file system (rather than the UNIX file system) contribute to
the good performance.

Vill. ACKNOWLEDGMENTS

The development of the DBM-2 project has been done by the mem-
bers of the Database Systems Group in the Advanced Transaction
Systems Department, under the direction of R. F. Bergeron. We would
like to thank Mr. Bergeron for his support and advice. We would also
like to thank the other members of the group for their contributions to
the project. Special thanks go to A. Weinstein for his implementation
of the Record Access Manager for the first application, and to D. H.
Carter for his implementation of the robust file system. We would also
like to thank the Advanced Operating and Communication Group for
providing the UNIX operating system related support.

REFERENCES

. R. L. Martin, private communication.

. B. W. Kernighan, and D. M. Ritchie, The C programming Language, Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1978.

. D. M. Ritchie, and K. Thompson, “The UNIX Time Sharing System,” B.S.T.J., 57,
No. 6, Part 2 (July-Aug. 1978), pp. 1905-1929.

. T. C. Chiang, and R. F. Bergeron, “A Data Base Management System with An E-R
Conceptual Model,” Proc. of Int. Conf. on Entity-Relationship Approach to
System Design and Analysis, December, 1980.

B 0 BN

5. T. C. Chiang, and G. R. Rose, “Design and Implementation of An E-R Data Base
Management System (DBM-2),” Proc. Second Int. Conf. on Entity-Relationship
Approach, October, 1981.

6. T. C. Chiang, unpublished work.

7. D. H. Carter, unpublished work.

8. M. Rochkind, private communication.

9. S. C. Johnson, “YACC: Yet Another Compiler Compiler,” Computing Science

Technical Report No. 32, 1975, Bell Laboratories, Murray Hill, New Jersey.
10. J. Tsay, private communication.

2528 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982



