Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in U.S5.A.

Database Systems:

Issues in the Design of a Distributed Record
Management System

By J. P. LINDERMAN
(Manuscript received September 15, 1981)

Inexpensive processors will lead to powerful new tools for con-
structing software systems. However, the introduction of intelligent
hardware may be limited by software architecture. If intelligence has
been stripped away in the process of top-down refinement, new devices
will be constrained to behave like their unintelligent predecessors.
Software design will have to be flexible in distributing intelligence to
accommodate processor-based tools gracefully. I discuss a conven-
tional design for a record-retrieval facility. Some features that are
acceptable and even attractive in a single-processor environment are
shown to limit use of multiple processors and smart peripherals. 1
propose a less conventional design that can exploit special-purpose
hardware and provide a smooth growth path from single-processor
systems.

I. INTRODUCTION

The ideas in this paper are a result of my participation in the design
of an experimental data-management system. The goal of the design
is less to produce a database manager than to produce a system of
components from which a database manager, or many database man-
agers, can be constructed. Major components will have several inter-
changeable implementations exhibiting a range of price and perform-
ance. The design team hopes to assemble individual database managers
by matching the various components to the requirements of the
database system. The intent is to provide variety, not only through a
spectrum of algorithms, but also by allowing the components to be
distributed over general-purpose or special-purpose hardware.

2555

Section IT defines several of the record management functions I wish
to provide and outlines a conventional implementation. In Section III,
I consider the incorporation of additional processors into the design
described in Section II. Section IV offers an alternative design in
response to the problems raised in Section IIL The advantages of the
second design are presented in Section V. A summary in Section VI
concludes the paper.

Il. A CONVENTIONAL DESIGN FOR A RECORD MANAGER
2.1 Record management functions

What we call a record manager is not a database manager. The
record manager is meant to provide functions that are indispensable
for data management. These functions include

(i) Assignment of data to and retrieval of data from secondary
storage.
(ii) Protection of data from a class of device and software failures.

(iif) Support of the notion of transactions with access control to
prevent interference between concurrent transactions. (See Ref. 1 for
a summary of the important properties of transaction-oriented sys-
tems.)

Database designers differ about the merits of relational and hierar-
chical views and the means for defining and preserving the relation-
ships between a database and the enterprise it models. Few, however,
would dispute the importance of surviving a system crash with the
database intact. Our record manager will provide the functions most
would agree are necessary, thereby allowing the database designer to
concentrate on other problems.

2.2 Retrieval

For the purposes of this paper, it is sufficient to consider the design
of the data retrieval functions of the record manager. For additional
details on our approach to concurrency control and crash recovery,
see Ref. 2.

The interface presented by the record manager is intended to

(i) make users independent of the physical storage of data, and

(if) make it possible to retrieve many records with a single request.
Data independence makes software more maintainable. If programs
do not make implicit assumptions about the physical storage of data,
a database administrator is free to reorganize data to optimize global
performance. Dealing with records in the aggregate rather than one at
a time is often more natural, contributes to data independence, and
reduces communication overhead between the user and the (poten-
tially remote) record manager.

2556 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

2.3 Retrieval requests

A retrieval request contains several components.
(i) A selection expression that identifies, by content, which records
are to be retrieved.
(ii) A sort specification that determines the order in which records
are to be retrieved.
(itf) A projection specification that identifies those attributes to be
returned from the records that are selected.
For example,

SELECT NAME=L* & RATING=INCOMP & SALARY>30000
SORT SALARY {r}, NAME
PROJECT NAME, SALARY, DEPARTMENT

might be a request to retrieve the values of the NAME, SALARY, and
DEPARTMENT fields for all incompetent employees whose NAME
begins with letter L and whose SALARY is greater than $30,000. The
records retrieved are to be sorted in reverse order of SALARY, and on
NAME for groups of records with the same SALARY.

2.4 Designing the retrieval function

I can now outline the design of the retrieval function and discuss the
major components. Figure 1 shows a possible design. I will refer to this
as the conventional design. In this design, a retrieval-manager module
orchestrates the retrieval process. High-level operations are performed
by the record manager, using three submodules to carry out basic
operations. The next three subsections describe the interaction be-
tween the retrieval manager and the submodules in the course of
satisfying a retrieval request.

2.4.1 Page storage operations

Assume that secondary memory is divided into pages of a fixed size.
The record manager gains access to secondary memory using a few
simple page-storage operations.

7

INDEXING PAGE STORAGE
OPERATIONS OPERATIONS SORTING

RETRIEVAL
MANAGER

Fig. 1—Conventional design.

RECORD MANAGEMENT 2557

1. Begin a transaction. To control concurrent access, all references
to stored records must be associated with a transaction.

2. Commit or abort a transaction.

3. Allocate a page of secondary memory. I will assume that each
page is assigned a simple, numerical page id when it is allocated. This
id will be used to reference the page in read and write operations.

4. Write a page of secondary memory, given its page id and contents.

5. Read a page from secondary memory, given its page id.

Since the retrieval manager does not modify records, it only requires
the transaction start, read, and commit operations. In our system,
concurrent access is controlled by the page storage manager.

The retrieval manager has the responsibility for understanding how
records are packaged into pages and for determining the whereabouts
of individual records. The page-storage operations deal with pages as
featureless chunks of data.

2.4.2 Indexing operations

To speed retrieval, the record-management system will map the
values of certain indexed fields onto the records containing those
values. For example, if NAME is indexed, for each different value of
the NAME field, the record manager will keep track of the record or
list of records containing the value. A convenient way to identify a
record is to combine the page id of the page in which the record is
stored with the offset of the record in the page. This compact, numer-
ical quantity can be used by the retrieval manager to fetch the
appropriate page (using the page-storage operations) and then to
locate the record in it.

A collection of records can be identified by a list of these record ids.
If the lists are kept in numerical order by record id, the indexing
operations become very simple.

1. Open the list associated with the given value of a given field for
reading or writing.

2. Get the next record id from a list opened for input.

3. Put the next record id into a list opened for output.

4. Close an opened list.

Assuming the NAME and RATING fields are indexed, the retrieval
manager could find the records for incompetents whose names begin
with L in the following manner.

1. Merge all the lists for NAMEs beginning with L.

2. Intersect this master list with the list having incompetent RAT-
INGs.

The resulting list of records could be retrieved and further selection,
say on the basis of SALARY, could be performed by the retrieval
manager.

2558 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

It should be noted that the indexing operations described in this
example, although correct, may be ill-advised. The increasing order of
record ids within lists makes it possible to merge or intersect two lists
with only a single pass through each list. Still, pairwise merging of a
large number of NAME lists might require much more effort than
simply retrieving all records for incompetents and doing further selec-
tion for SALARY and NAME on the records themselves.

2.4.3 Projection and sorting

The previous sections have suggested how the retrieval manager can
use the indexing operations and page-storage operations to retrieve
the records that satisfy a selection expression. With the records in
hand, it is a simple matter to build a sort key that will produce the
specified sort sequence, to strip out unrequested fields, and to hand
the records and sort keys to a general-purpose sort utility. The retrieval
manager can return the sorted records to satisfy the original retrieval
request.

2.5 Summary

Although much of the rest of the paper will be devoted to discussing
the flaws in the design that has just been presented, the design has
several attractive features that deserve attention.

(f) The design is tool oriented. For example, the sort routine
employed by the retrieval manager is likely to exist on many systems,
eliminating the need to write and maintain a major component of the
design. It is less likely that a transaction-oriented page-storage man-
ager can be picked up off the shelf, but once it is written, it can be
used in other applications, such as a transaction-oriented editor. The
indexing operations will use the page-storage module for reliable
storage of the index data. The design therefore takes advantage of
existing tools and provides useful new tools for other applications.

(i) The simple interfaces make it easy to replace components.
Because the indexing operations are so primitive, it is possible to
support several different index implementations. For example, one
simple implementation stores the record ids as an ordered array.
However, it is often possible to save space by storing the difference
between record ids instead of the ids themselves, since the ids might
occupy 32 bits or more, while the difference between two ids might fit
in 16 bits or less. If record ids in the lists are numerically close, it may
save even more space to represent the lists as bit strings in which bit
n is on if and only if the record with id n is in the list. The most
economical representation depends on properties of the lists, but all
three representations can coexist because it is easy to support the
open/close/get/put operations that the retrieval manager requires.

RECORD MANAGEMENT 2559

(iii) Information is localized. For example, the syntax and semantics
of the selection expression are known only to the retrieval manager, so

changes would have no effect on the other modules.
These are all important features for flexible, maintainable systems.

We will want to monitor the effects of proposed design changes to
make sure the features are not lost without adequate compensation.

ll. THE NEXT STEP IN SOFTWARE DESIGN EVOLUTION

3.1 Cheap processors

Two principles have been in effect while software design methods
have evolved.

(i) Processors were expensive.

(it) Peripheral devices had limited capabilities.

A single processor was at the bottom of most software design, so
there was little pressure for high-level languages and operating systems
to address issues of multiprocessing. Since peripheral devices were
scarce, shared resources with limited capabilities, isolating them from
designers by an operating system, a high-level language, and several
levels of utility libraries seemed like a service rather than a flaw.

The price of processors has had twenty years to shape the tools
through which we use those processors. In a few years, the price of
processors will be negligible compared with the expense of designing
the software to use them. We cannot expect the design methods based
on the old processor economics to apply, without change, to the
exploitation of cheap processors.

3.2 Content addressable storage devices

As an example of the problems of integrating the new economics
with the old design methods, consider secondary storage devices. If
the price of a disk storage unit dwarfs the price of a processor, one can
produce a “smart disk” for the same price as a conventional one. Such
a device could

(i) Package variable length records into fixed length pages.
(ii) Look through the records in a page and retrieve only those
records containing specified values of certain fields.

(iii) Reformat records to eliminate unwanted fields.

These are operations our record manager must perform, so it would
appear that the device should fit in nicely with our retrieval system.
Unfortunately, with the design that has been presented, this is not the
case. The problem is that the device replaces a conventional disk, and
would therefore be under control of the page-storage module. However,
the responsibility (and the information necessary) for carrying out
record packaging, selection, and projection resides in the retrieval-

2560 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

manager module. To take advantage of the smart disk, the design must
change.

3.3 Another look at the problem

The weakness in the original design is not limited to accommodating
smart disks. A similar problem exists in taking advantage of hardware
support for indexing operations. The hardware should reside next to
the indexes, but the operations are performed by the retrieval manager.

The availability of special-purpose processors presents a real prob-
lem to a software designer. Anything I do in a combination of software
and hardware can, at least in principle, be done in hardware alone. If
I implement a function in software, I lose the advantage of having it
carried out by special-purpose hardware. On the other hand, if I insist
that a function be performed by hardware, I tie my design to the
existence of that hardware. What I really want is a design that can
take advantage of hardware capabilities if they are available and
attractive, but that does not depend on the presence of those capabil-
ities.

The problem with the retrieval-system design presented earlier is
that it committed the solution to software by withholding important
information at the level of the retrieval manager. By building the
retrieval manager on top of simpler abstractions that did not need to
know what operations were to be performed on the indexes and
records, I ruled out a solution in which the operations could be done
in hardware.

This is not to say that problems cannot be decomposed into smaller
problems. It appears that this is the only approach that will keep
software intellectually manageable. However, designers must break
the habit of assuming that all modules draw on the same processor
and are thereby limited in what they can accomplish. In the next
section, I will redesign the retrieval function to make it possible to
take advantage of special-purpose hardware without requiring that it
be present.

IV. A RETRIEVAL DESIGN THAT ANTICIPATES INEXPENSIVE
PROCESSORS

4.1 Ask much—demand little— withhold nothing

Let us redesign the retrieval function introduced in Section IT but
avoid the assumption that a single processor must support all the
modules in our design. We can assume that each module has at least
a share of a conventional processor underlying it, but a module may
also have a dedicated, special-purpose processor supporting it. In this
design environment, the capabilities of a module are bounded from
below by current software design techniques but limited from above

RECORD MANAGEMENT 2561

only by one’s willingness and ability to employ hardware. Stated
differently, it is much safer to define what such a module can do
(anything that a share of a conventional processor can now do) than
to define what it cannot do.

A good rule for design with these modules is

(i) To ask much (since the module can do no more than we ask),
(ii) To demand little (since we may have to rely on conventional
implementation techniques), and

(it)) To withhold nothing (so the module has the wherewithal to do
what we ask).

The little that I demand is what I call the primary function of the
module. By asking a module to do everything that remains to be done,
and giving it access to everything that has already been done, I can be
sure that I have not artificially limited its ability to contribute to the
solution.

4.2 A revised retrieval system design

The retrieval function of the record manager (see Fig. 2) can be
redesigned in accordance with the new principles as follows.

I will refer to this as the distributed design to distinguish it from the
conventional design already presented and to emphasize that the
modules in the design may be distributed over more than one proces-
SOr.

Initially, of course, the retrieval request is everything that remains
to be done. By turning the entire request over to the indexing module,
I can be sure I have not withheld any critical information. In general,
the request together with the results from the previous module will be
made available to the next module as a statement of what has already
been done and what remains to be done. A brief description of the
primary function of each of the modules should help clarify the design.

4.2.1 Index module

The primary function of the index module is to identify a superset
of the records that satisfy the selection expression in the retrieval

request.

It would be convenient if the index module identified precisely those
records that satisfied the expression, but this would be demanding too
much. For one thing, an expression may involve fields that are not
indexed. Returning to the example of

SELECT NAME=L* & RATING=INCOMP & SALARY>30000

assume NAME and RATING are indexed but SALARY is not. The
indexed fields can be used to identify all records that might satisfy the
expression, but the question of SALARY cannot be decided until the

2562 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

INDEX —* RETRIEVE SELECT SORT PROJECT

Fig. 2—Distributed design.

records are accessed. As was pointed out earlier, it might be better to
ignore the NAME information, which will require considerable effort
to extract, and simply use the RATING field to identify the superset.
Demanding too much precision from the indexing module would deny
us these important optimizations.

The index module can perform its primary function by ignoring the
request and identifying all records. This observation is not entirely
facetious. Such a module is easy to implement and provides a func-
tionally correct module for testing. For small collections of records,
this simple approach may be all that is necessary to provide adequate
performance.

4.2.2 Retrieval module

The primary function of the retrieval module is to retrieve a superset
of the records that satisfy the selection expression.

The retrieval module will have access to the complete retrieval
request and to the results of the index module. If the retrieval module
does no more than retrieve all the records identified by the index
module, it will perform its primary function. However, it is also free to
eliminate any records the index module identified that fail to satisfy
the selection expression.

4.2.3 Selection module

The primary function of the selection module is to evaluate the
selection expression on each record passed to it, and to pass along only
those records satisfying the expression.

If the index, retrieval, and selection modules correctly perform their
primary functions, the output of the selection module will always be
the records that satisfy the selection expression.

4.2.4 Sort module

The primary function of the sort module is to put the records passed
to it into an order compatible with the sort specification of the retrieval
request.

4.2.5 Projection module

The primary function of the projection module is to eliminate
unrequested fields from the records passed to it.

RECORD MANAGEMENT 2563

V. A COMPARISON OF THE TWO DESIGNS

The two retrieval system designs presented in this paper perform
the same functions, but in distinctly different ways. Both designs
permit us to hide how functions are performed, but in the conventional
design, we know precisely where each function is performed, while the
distributed design hides this information as well. The importance of
hiding this information is best seen by considering how changes can be
introduced into the designs.

5.1 Getting a conventional start

Since conventional, single-processor systems are likely to be with us
for some years, we begin with the question of implementing the
alternative designs on a single processor.

At first glance, the conventional design seems to have the advantage,
since it is constructed from simple components that may already exist
or that contribute to the collection of software tools. The indexing and
retrieval modules in the distributed design are not likely to exist and
not likely to contribute to unrelated applications.

This criticism is only skin deep. The distributed design can be
realized by repackaging the same general-purpose modules that go
into a conventional design. For example, the indexing module in the
distributed design can use the same index operations found in the
conventional design. The major difference is that the selection expres-
sion must now be processed in two places, once in the index module
and again in the selection module. This doesn’t mean additional
software—one has the subroutines to process the expressions in both
designs—it means the routines are no longer localized as nicely. In
exchange for this loss, one gains the genuinely useful selection module
that does not appear in the conventional design.

In a single-processor implementation of the distributed design, only
the primary function of each module would be implemented. This
affords the same simplification of the software as does the conventional
design. An important distinction is that the distributed modules are
made simpler by consciously choosing to ignore information available
to them, while the conventional modules are constrained to be simple
because they lack the information to be profound.

5.2 Making conventional improvements

To improve the conventional design, there are two primary ap-
proaches—build on a more powerful processor or improve the algo-
rithms. These approaches are equally applicable to a single-processor
implementation of the distributed design.

There are some algorithmic improvements that are easier to make
in the distributed design. For example, two indexes represented as bit

2564 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 19882

strings can be intersected or merged efficiently using common logical
operations. In the distributed design, the representation and operations
are contained in a single module, so the change could be introduced
without affecting other modules. In the conventional design, the rep-
resentation is hidden in one module and the operations performed by
another. Both would have to be modified to support the proposed
change.

5.3 Adding conventional processors

When a conventional design uses the biggest processor, the best
algorithms, and the fastest secondary storage devices, there is nowhere
else to go. Sorting and projecting might be offloaded to a separate
processor, but the processing bottleneck in the conventional design is
likely to be the retrieval manager module. It is responsible for much of
the work in processing a request, so even if all the other modules can
be removed to other processors without penalty, the retrieval manager
will continue to limit performance. Given the level of interaction
between the retrieval manager and the indexing and page-storage
modules, it is unreasonable to expect that an inexpensive separation
could be made.

The distributed design fares much better. Since modules interact
much less than in the conventional design, transporting one or more
modules to separate processors need not introduce excessive interpro-
cessor overhead. It therefore becomes a realistic possibility to move
the busiest module onto a processor of its own.

Further tuning is made possible by the open-ended assignment of
functions to modules. If retrieval is the bottleneck, more thorough
indexing can be done to reduce the number of records that must be
retrieved. If selection is the bottleneck, some of the selection can be
carried out by the indexing and retrieval modules.

5.4 Special-purpose hardware

The processors involved in the distributed design need not be
conventional. Special-purpose processors such as content addressable
storage devices fit nicely into the design. Since it has the selection and
projection expressions as well as the identifiers provided by the index-
ing module, the retrieval module can lend a hand with other functions
as it retrieves records. Any extra work the selection module can
perform is just that much less that needs doing later. If a smart disk
can do the entire job of selection, the retrieval request can be modified
to indicate that no further selection is necessary, and, with suitable
interprocess primitives, the selection module can drop completely out
of the path.

For a software designer, this is a delightful state of affairs. The
distributed design does not call for any special capabilities from pe-

RECORD MANAGEMENT 2565

ripheral devices, but the chances are good that it can exploit whatever
useful features are available.

VI. SUMMARY AND CONCLUSIONS

This paper suggests that if inexpensive processors and smart periph-
erals are the wave of the future, software design must change in two
related areas.

Software design has often proceeded by stripping away
“intelligence” at each level of abstraction. In the case at hand, a logical
record manager that knows about the contents of records employs a
physical record manager that knows how to pack objects of variable
length into pages of fixed length. The physical record manager uses
standard library routines to move the pages between primary and
secondary memory. At each refinement, there is less information about
what is being manipulated. This is fine until we attempt to introduce
“intelligent” devices at the bottom of the design hierarchy, and dis-
cover that they are several levels removed from the information they
require. If intelligence is to be allowed in from below, more intelligence
must propagate down from above.

The distinction between the function of a module and the primary
function of a module is a multiprocessor phenomenon. On a single
processor, the idea that the same function might be carried out in
several different modules would be viewed as fuzzy thinking, at best,
and a profligate use of instruction space. In a multiprocessor imple-
mentation, it is a reasonable hedge against the uncertainty of where
additional processor support may appear and the capabilities of that
additional support.

The principles that led to the distributed design are not limited to
database applications, but they are not completely general. The re-
trieval request is a concise summary of everything that must be
accomplished. The effort of passing the request from module to module
and of locating information of interest within the request is negligible
in comparison to the work carried out by each module. If an application
lacked such a convenient way of communicating the big picture, the
distributed approach would be less appealing.

VIl. ACKNOWLEDGMENTS

Bill Roome, Dan Fishman and Rudd Canaday have been reliable
sources of support and insight. Thanks also to my colleagues and the
referees whose suggestions substantially improved the form and con-
tent of this paper.

REFERENCES

1. M. J. Rochkind, “Structure of a UNIX Database File System,” B.S.T.J., this issue.
2. W. D. Roome, “A Content-Addressable Intelligent Store,” B.S.T.J., this issue.

2566 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

