Copyright © 1982 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 61, No. 9, November 1982
Printed in U.S.A.

Database Systems:

The Intelligent Store: A Content-Addressable
Page Manager

By W. D. ROOME
(Manuscript received September 29, 1981)

The Intelligent Store (1s) is a page manager for an experimental
local computer network. Typical clients of the 1s are a database
manager or a file manager. The 1s provides concurrent, transaction-
oriented, read-write-search access to a large database of pages. The
IS ensures that commitfing a transaction is atomic and permanent,
in spite of crashes. The 15 allows multiple, concurrent readers and
writers. Rather than using conventional wait-until-available locking,
the 15 uses an optimistic locking policy. That is, the 1s always allows
transactions to proceed, assuming they will not interfere. If two
transactions do interfere (e.g., if they both write the same page), the
18 aborts one of them. This paper gives some analytic results for the
interference probability. Two implementations of the 1S exist. The
first was designed to use one or more content-addressable disks. By
reading all tracks in a cylinder in parallel, and filtering each stream,
such a device can search an entire cylinder in one disk revolution.
This version of the 1S uses the content-addressable features internally,
as well as making them available to its clients. Unfortunately, suit-
able content-addressable disks are not commercially available.
Therefore, a second implementation of the 1S was designed to use
conventional disks. The two versions of the 1S present the same
interface to their clients, except that the conventional-disk 1s does
not provide search access.

I. INTRODUCTION
1.1 Overview

The Intelligent Store (1s) is a page manager for an experimental

2567

local computer network."! Typical clients of the 1s are a database
manager or a file manager. The 1s provides concurrent, transaction-
oriented, read-write-search access to a large database of pages. If a
hardware or software crash occurs, the 1s restores the database to its
most recent consistent state.

Note that the 15 is a low-level component of a Database Management
System (DBMS). Normally there will be several additional layers of
DBMS software between the 15 and end users or application programs.

The 1s is transaction-oriented. Clients can start transactions, read
or write pages for transactions, or commit or abort transactions. Many
transactions can be active simultaneously, and each transaction can
read and write an arbitrary number of pages. Writes for a transaction
are not effective until (and unless) the transaction commits. The 1s
ensures that commit is atomic and permanent, in spite of crashes.
“Atomic” means that either all writes become effective, or else none
do. “Permanent” means that once the 1s says that a transaction has
been committed, its writes will not be lost, even if the 1s crashes
immediately.

Aborting a transaction undoes all its effects. If a client crashes, the
1s automatically aborts all of that client’s uncommitted transactions.
If the 18 crashes, the 1s will (eventually) abort all uncommitted trans-
actions. Furthermore, the 1s reserves the right to abort any uncom-
mitted transaction at any time (for cause, of course, but the client has
no appeal).

The 1s ensures that transactions do not interfere with each other.
Rather than using conventional wait-until-available locking,** the 1s
uses an optimistic locking policy, similar to that of Kung and Robin-
son.! That is, the 1s always allows transactions to proceed, assuming
they will not interfere. If two transactions do interfere (e.g., if they
both write the same page), the 1s aborts one of them. Subsequent
sections give analytic results for the probability that the 1s will abort
a transaction.

A page contains one or more variable-size records. Pages have a
fixed maximum size (say 512 to 4096 bytes) set by a system adminis-
trator. The 1s assigns a unique page number to each page, and clients
can read or write pages by number. These page numbers are not
physical disk block addresses.

There are two implementations of the 1s. The first was designed to
utilize one or more parallel-search disks, and to demonstrate that they
could be used effectively in an update environment. A parallel-search
disk can search all tracks in a cylinder in one disk revolution. It is
functionally similar to the Mass Memory described by Banerjee, Hsiao,
and Kannan,”’ or to the search engine in the Content-Addressable
File Store® by International Computers Limited. This version of the 1s

2568 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

used the content-addressable features internally, in addition to making
them available to the client. For example, the client could ask the 1s
to retrieve all pages that contain a record with NAME = “Smith” and
DEPTNO = 1234.

Unfortunately, parallel-search disks are not yet commercially avail-
able (at least not at a reasonable price). We considered building our
own prototype of a parallel-search disk. However, it would have been
a year before we could use it, and at least another year or two before
anyone else could use it.

Because we wanted to demonstrate that the 1s could handle large
databases efficiently, we temporarily shelved the plans for a prototype
parallel-search disk. Instead we designed a second implementation of
the 1s, this time based on conventional disks. The two versions of the
1s have the same interface to the client, except that the conventional-
disk version does not provide search access. When it matters, I'll refer
to these as the “content-addressable” and “conventional-disk” versions
of the 1s.

The network may have several distinct 18’s. An Is can partition its
page database so that several different clients, each with a small
database, can share the same 1s. Conversely, a client with a very large
database could use several 1s’s. In this case, the 15’s cooperate to
provide the same consistency and atomic-commit properties as for a
single 18. The 18’s do not hide the distribution from clients: clients
must know which 1s holds which page. Clients may keep multiple
copies of data, but synchronizing those copies is the clients’ responsi-
bility.

1.2 Network environment

The 15 is one component in an experimental local network of small
computers.! A network kernel provides intertask communication ser-
vices, and does basic task scheduling. The kernel allows families of
tasks to run on a processor. All tasks in a family share a common
address space. Several families may share a processor, but all tasks in
a family must run on the same processor. For example, the 1s is
implemented as a family of about 15 tasks. The clients of the 1s would
be in one or more separate families.

Ideally, each 1s would run on a dedicated processor, as would each
client. Figure 1 shows a typical configuration. Here the 1s’s client is a
Database Management System (pDBMs). However, the 1s does not
require a dedicated processor. In the initial prototype, the 1s, the pBM™S,
and its clients all ran on the same processor.

The kernel provides a uniform, path-based, message-passing com-
munications mechanism, similar to that used in the DEMOS? and
Roscoe'® systems. The kernel uses whatever physical connections are

INTELLIGENT STORE 2569

DBMS
CLIENT

—l—l INTERFACE
| CONTROLLER

DBEMS

- DBMS CLIENT

7]

Fig. 1—Typical network configuration.

available. For example, in Fig. 1, a packet switch connects the DBMS to
its clients, but the 1s and DBMS processors are connected by a high-
speed bus. The kernel hides this nonuniformity, and provides tasks
with a uniform communications mechanism. Thus, the 15 uses the
same mechanism to talk to the DBMS as the DBMS uses to talk to its
clients. Replacing the high-speed bus might degrade performance, but
wouldn’t require changes to the 1s or DBMS.

The kernel provides simple, nonpreemptive task scheduling: a task
runs until it needs to receive a message. The kernel does not provide
swapping, time-slicing, or 1/0. The kernel turns interrupts from devices
into messages to tasks.

1.3 Organization

Section III deseribes the consistency model, and Section IV describes
the interface which the 1s presents to its clients. Together, these define
the abstract “1s machine,” without describing how it’s implemented.
Section V describes how to implement the 1s with parallel-search disks,
and Section VI describes how to implement the 1s with conventional
disks. But first we need some philosophy.

Il. DESIGN CHOICES

This section discusses several fundamental design decisions. These
decisions have influenced the services which the 1s provides, as well as
the way those services are implemented.

2.1 Workload

The 1s is intended for applications where most transactions are
small (read and write a total of 2 to 15 pages), and fast (after reading

2570 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

a page, a client doesn’t wait 30 minutes before writing it). The 18 can

handle long-running read-only transactions, provided that they are

run during periods of low update activity.
However, the 1s is not suitable for all environments. In particular,

e If there is a lot of read/write interference between transactions, the
1s will perform poorly. In this case, the client can use an external
lock manager to control such interference (see Section 3.2).

® The 1s has a fixed limit on the total number of pages that can be
written during the lifetime of the longest-running transaction. This
limit is typically 10 to 20 percent of the size of the database. Thus,
the 1 cannot handle single transactions which update a large fraction
of the database. Furthermore, the 1s cannot handle long-running
transactions if, during their lifetime, other transactions update a
large fraction of the database.

2.2 Why a content-addressable device?

Several research projects on database machines have built or pro-
posed content-addressable memory devices.''"'® A typical device is a
fixed-head disk with n tracks, with a search filter on the output of each
track. Equivalently, a set of n ccp (charge coupled device) arrays or
magnetic bubble loops can be used. The n filters search in parallel,
and a multiplexor merges their output streams. Thus, the device can
search the entire disk in one revolution. Complexity of the search
expressions varies, but most allow at least the OR of AND’s of several
simple predicates of the form:

{field-name) (operator) { constant-value)
Then given a simple query such as:
NAME = “Smith” & DEPTNO = “1234”

the database machine loads the query into the filters, and returns the
output stream to the client. One advantage of such systems is that
indexes are unnecessary.

Unfortunately, those systems do not scale up nicely to large data-
bases.'” " For large databases, moving-head disks are still the most
cost-effective devices, and are expected to remain so for many years.
The obvious extension is to put a filter on each head, so that a cylinder
can be searched in one revolution. Typically a cylinder is 10 to 20
tracks (100K bytes to 400K bytes). Then to search the database, the
database machine loads the query into the filters, and searches each
cylinder. However, that’s too slow for a large database. It takes about
24 ms to search each cylinder (17 ms per revolution, 7 ms to step to
the next cylinder). For a database of 75 cylinders, each query will take
1.8 seconds. Since the disk is totally dedicated to the query, such a

INTELLIGENT STORE 2571

system can handle at most 33 queries per minute. This isn’t acceptable
for many applications. A simple indexing scheme on a conventional
disk can do much better.

The solution is to use a cylinder-level index.*'* Consider the NAME
and DEPTNO query above. For example, the NAME index might tell us
that records with NAME “Smith” appear in cylinders 4, 13, and 42.
The DEPTNO index might say that records for department “1234”
appear in cylinders 3, 6, 13, 27, and 31. Cylinder 13 is the only one on
both lists, so it is the only cylinder we need to search.

Cylinder-level indexes have several advantages over conventional
record-level indexes. In particular, they take less space, and they
needn’t be updated as often. For example, consider a value such as
“Smith” which appears in many records. A record-level index would
need the address of each such record. A cylinder-level index only needs
the distinct cylinders that contain those records. As another example,
suppose we add a new “Smith” record. With a record index, we would
always have to add an index entry for the new record. But a cylinder
index doesn’t need to be updated, as long as we add the new record to
a cylinder that already has a “Smith.”

One further advantage is that a parallel-search disk does allow you
to search the entire database occasionally. For example, consider a
database with NAME and STREET-ADDRESS fields. Queries on NAME
are very common, so0 NAME must be indexed. But queries on STREET-
ADDRESS are rare, perhaps one per day. Rather than indexing the
STREET-ADDRESS field, it might be better to search everything for
the occasional STREET-ADDRESS query. That query might take a
few minutes, but the total overhead for maintaining another index
would be at least a few minutes per day. The pBMS should be flexible
enough that a STREET-ADDRESS index can be added later, if such
queries become common.

2.3 Why pages?

Most clients don’t care about pages. They really want stable storage
for variable-size objects. Such objects include:

({) Small to medium size data structures (4 to 400 bytes each);
(ii) Records in a database (50 to 500 bytes);

(iti) Files (10 to 100,000 bytes).

So why isn’t the 1s an object manager, instead of a page manager?
The problem is that large storage devices (e.g., disks) are block-
oriented. That is, storage is really a collection of blocks, on the order
of 1000 bytes each. Assessing 10 bytes in a block is no faster than
accessing the entire block. Something must pack small objects into
these blocks, and vice versa for large objects. For fast retrieval, related
objects should be packed into the same block. To save space, objects

2572 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

should be packed efficiently. Such packing is highly dependent on the
nature of the objects and their reference patterns, and has been left to
the client.

2.4 Disk failure modes

Disks are not perfect storage devices: blocks can get corrupted,
destroying the data in them. For example, updating a block is inher-
ently dangerous. Since writing is a bit-serial process, if any error occurs
while writing (system crash, power flicker, glitch in the computer’s
memory, etc.), both the old and the new version of the block may be
lost. Let’s call this synchronous corruption. The other basic failure
mode is asynchronous corruption: a block or set of blocks sponta-
neously gets corrupted. A head crash is the classic example.

There are many well-known ways to recover from these kinds of
failures.*** All are based on duplication, in one way or another, and
all involve trade-offs between cost, overhead during normal operation,
and speed of recovery from a failure. For example, intention-lists can
be used to recover from synchronous failures. They duplicate only
what is being changed. Another solution is to duplicate each disk, and
write to both. This is expensive, but it allows fast recovery from both
synchronous and asynchronous failures. A cheaper method is to per-
iodically copy all disks to some other media, such as tape. If a failure
occurs, the disks would be restored from the latest copy. Changes since
the copy can be kept in a log file, and reapplied. An even cheaper
solution is to ignore the problem altogether (at least it seems cheaper
at first).

The following assumptions have influenced the design of the 1s:

(i) Synchronous failures are much more likely than asynchronous
failures (at least when writing large blocks).

(if) No client wants to ignore synchronous failures.

(itf) All clients want fast recovery from synchronous failures.

Thus, the 1s provides only one mechanism for recovering from
synchronous failures: basically a super-shadowing technique. This
mechanism is a central design choice because it allows the consistency
model described in Section III to be implemented with very little extra
overhead.

A further assumption is that asynchronous failures are sufficiently
rare, and the class of potential clients is sufficiently broad, that most
clients do not want fully duplicated disks. To protect against asyn-
chronous failures, the 1S uses periodic copies, and an optional log file.

lll. THE CONSISTENCY MODEL
3.1 Definition

The 1s guarantees each transaction a consistent image of the entire

INTELLIGENT STORE 2573

database of pages, as of when the transaction started. That is, if
transaction T starts at time ¢, T sees the results of all transactions that
commit before time ¢, but does not see the results of any transactions
which commit after time ¢. Thus T sees a consistent, but possibly out-
of-date image. Of course, T sees its own updates. The effect is as if,
when T starts, the 1s made a separate copy of the database for
transaction 7. However, that is not how it is implemented (see Section
V).

The 1s does not have conventional read or write locks. The 1s allows
any transaction to read or write any page at any time, without waiting.
Instead of conventional locks, each transaction declares certain pages
to be important. Normally these are all the pages that the transaction
reads or writes. To be precise, the important pages are those that the
transaction would lock for reading or writing in a conventional sys-
tem.*?

When the client asks the 1S to commit transaction 7T, the 1s first
verifies that, for each important page, the version given to transaction
T is still current. If so, the 1s commits T If not, the 1s aborts T, and
tells the client “tough luck: try again.” More formally, the 1s allows
transaction T to commit if and only if, for all transactions 7; which
committed during the lifetime of T,

Inw.=é,

where I is the important-set for T, and W; is the write-set for T:. In
effect, the 1s tries to serialize transactions in the order in which they
commit. The 1s aborts any transaction that does not fit this schedule.

Figure 2 gives an example. Transaction A creates page P, and B
updates it. Transactions C, D, and E also update page P. Because C
starts before B commits, C sees the version of P written by transaction
A. D and E start after B commits, so they see what B wrote. If C
considers page P to be important, C cannot commit. If D and E both
consider P important, one of them will commit, and the other will
abort.

As another example, consider a long transaction that reads all
account balances at a bank, and writes their sum: “at 3PM, the total
balance was ...”. The page (or pages) into which the transaction
writes the total is important. But the other pages that the transaction
reads aren’t important. Since the IS guarantees a consistent image, the
total balance will be correct, even if some accounts are updated while
the transaction is active.

Subsequent sections give a rationale for this model, an analysis of
the interference probability, and some alternatives. Note that if you
replace “page” by “object” (or “record”), this consistency model, and
the analysis, apply just as well to a general object manager.

2574 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

Transaction

Time A B C D E
start
read P
write P
commit
start
read P
write P start
commit
start start
read P read P read P
write P write P write P
abort
commit
' abort

Fig. 2—An example of the consistency model.

3.2 Why this model?

This model has two advantages:

() It can’t deadlock.

(it) A long-running transaction can’t hold up other transactions.
The latter means that the 1s can afford long time-out limits on
transactions. With a conventional locking scheme, a transaction can
delay others by holding a lock for a long time. With the 1s, such a
transaction can hurt itself, because it’s less likely to succeed when it
finally commits, but it can’t hurt any other transaction.

Of course, this model assumes that there is little interference be-
tween transactions. We feel that this is natural for many database
applications (see the analysis in the next section). Nevertheless, there
are applications with high interference, and they will need conventional
wait-until-available locking. The 1s could provide such locking. How-
ever, a better solution is an external Lock Manager, outside the 1s, and
logically above it. Before going to the 1s, a transaction would get
outside locks to cover its important pages. An external lock manager
has the following advantages:

(i) The optimal locking granularity depends on the application.
The 1s would have to lock pages; an external lock manager can be
tailored to the application.

(ii) The external lock manager can be approximate, rather than
exact. The lock manager doesn’t control consistency; it just decreases
interference between transactions as seen by the 1s. Thus a transaction
only needs to acquire outside locks to cover most of its pages.

21,22

INTELLIGENT STORE 2575

3.3 Analysis

This section investigates the probability that a given transaction T
will not be able to commit. This probability is given as a function of
various parameters of 7, such as the number of important pages and
the running time. First, here are a few assumptions and definitions:

(i) Let I be the set of important pages for transaction 7.
(ii) Let ¢ be the lifetime of T, in seconds (start-request to commit-
request).

(iii) Assume that update transactions commit and depart from the
1s according to a Poisson distribution, averaging A transactions per
second. The quantity A does not include read-only transactions.

(iv) Assume that I is independent of the write-sets of the transac-
tions that commit during the life of 7, and assume that those write-
sets are independent of each other.

(v) Let p be the probability that any one transaction interferes with
T
p = Prob(I N W# ¢),

where W is the write-set of an arbitrarily selected update transaction.

In general, the parameters p and ¢ both increase as I increases. The
parameter p also depends on the average number of pages written by
transactions, and on the distribution of page references. For example,
hot-spots in the database might increase p.

The average number of transactions that commit during 7’s lifetime
is At. Then the probability that exactly % transactions commit is:

k

(Akt!) oM

Because the committing transactions are independent of I, if exactly
k transactions commit, the probability that none of those & transac-
tions interfere with T is:

Prob(X:) = (1 - p)~
Now for the probability that 7" will fail:
Prob(T aborts) = 1 — Prob(T commits)

Prob(C;) =

=1- E Prob(Cy)Prob(X;)

k=0

o k
=1-73% (A£) e™(1 - p)*
w0 k!

s e —p)

=0 k!

- —At_At(1-p)
=1—-e V"' P,

=1

2576 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

0.3

0.25

0.2

0.15

PROBABILITY OF ABORT

0.1

-

—

’—-
- -
_ =" =00010

0.06

50 100
At IN TRANSACTIONS

Fig. 3—Probability of abort vs. A¢ for various p.

which finally gives
Prob(T aborts) = 1 — e ™7,

Figure 3 graphs this probability versus A¢, for various values of p.
Recall that At is the average number of transactions that commit
during T’s lifetime. Let’s say that a failure probability under 0.05 is
acceptable. Then if p = 0.01, a transaction should be short enough that
no more than five other transactions commit during its lifetime. If
p = 0.001, a transaction can safely allow 50 other transactions to
commit during its lifetime.

Unfortunately, the parameter p is not very intuitive. For the special
case of uniform references, p can be expressed in terms of more
meaningful parameters. Let’s assume that:

(i) A write-set W contains m distinct pages that have been uni-
formly and independently selected from a universe of N pages.

(if) An important-set I contains n distinct pages, selected independ-
ently of each other and of the pages in W. However, the pages in I
themselves do not have to be selected uniformly.

Given these assumptions, the appendix proves that:

"IN - (m+ i)

= Prob({ N W =1-
P rob(#) I:]n N

Table I gives p for various values of m and n.

INTELLIGENT STORE 2577

Table |I—p vs. m and n for selected database sizes

Database Size (Pages)

m n 10,000 50,000 100,000 500,000 1,000,000
5 5 002500 .000500 000250 000050 000025
5 10 004991 .001000 000500 .000100 000050
5 20 009962 001998 001000 000200 .000100
5 50 024756 004990 002498 000500 .000250
5 100 049020 .009960 004990 001000 000500
5 200 096098 019841 009960 001998 001000

10 5 004991 .001000 .000500 000100 .000050

10 10 009960 .001998 .001000 000200 000100

10 20 019830 .003993 .001998 000400 000200

10 50 048911 .009956 005000 .001000 000500

10 100 095659 .019822 009956 .001998 001000

10 200 183002 .039291 019821 003992 001998

0.3 ’ —
N = 10,000 I’N = 50,000 /~ = 100,000
/
/ /
0.25| ! /

PROBABILITY OF ABORT

30 40

50

60
NUMBER OF IMPORTANT PAGES

70

Fig. 4—Probability of abort vs. size of important-set.

Figure 4 graphs the probability of a transaction failing versus the
number of important pages, n. Curves are given for several different
database sizes, ranging from 10,000 pages to 1,000,000 pages. For all
databases, the size of the write-set, m, was assumed to be uniformly
distributed between 1 and 9 pages, and A was assumed to be five
transactions per second, for a page-update rate of 25 pages per second.
The remaining parameter is 7’s lifetime, ¢, which was arbitrarily set to
0.4n second.

2578 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 19882

Transaction

Time A B
start
read P1
start
read P1,P2
write P1,P2
commit
read P2

Fig. 5—Transaction A with inconsistent image.

As can be seen, for a database with 1,000,000 pages, only very large
transactions (over 70 important pages) run a risk. For a 100,000-page
database, a transaction with more than 25 important pages is risky.
For a small database with 10,000 pages, only small transactions (less
than 8 important pages) are safe. Of course, this page-update rate
(1500 pages/minute) is very high for a 10,000 page database.

3.4 Alternative versions of the model
3.4.1 The Kung and Robinson model

When a transaction reads a page, the 1s returns the most recently
committed version, instead of the version committed when the trans-
action started. Each transaction declares important pages, as before,
When a transaction attempts to commit, the 15 verifies that for each
important page, the version read by the transaction is still the current
version. This is essentially the model described by Kung and Robin-
son.' Because transactions get more recent versions, interference is
less likely. This model can be implemented with only a slight change
to the 1s.

However, this model does not guarantee that a transaction sees a
consistent image. For example, suppose that transaction A reads page
PI, pauses, and then reads page P2 (see Fig. 5). During the pause,
transaction B starts, updates PI and P2, and commits. Then A sees
the old version of PI and the new version of P2. Fortunately, this does
not affect the consistency of the database. If transaction 7' gets an
inconsistent image, another transaction must have interfered with it,
and hence T will be aborted. That is, an inconsistent image implies
interference, but not vice versa.

Thus, Kung and Robinson’s model precludes transactions that need
a consistent image, even if it’s not current. One example is the balance-
summing transaction described in Section 3.1. With the original 1s
model, this transaction has only one important page: the one in which
it writes the sum. The transaction will almost always succeed. But

INTELLIGENT STORE 2579

with the Kung and Robinson model, the pages for all accounts would
be important. The transaction would rarely succeed.

We are considering supporting both models in the 1s. When starting
a transaction, the client would specify the model for that transaction.
That is, the client would say whether it needs (i) an absolutely
consistent image, or (ii) a more current, but possibly inconsistent
image.

3.4.2 Early warning

Another suggestion is to tell the client when a transaction becomes
a “lame-duck.” For example, suppose transaction T reads page P,
which has been updated by another transaction that committed after
T started. The 1s could respond with the page plus a warning such as
“by the way, you can’t possibly commit.” However, there are several
problems with this scheme:

(i) In general, detecting conflict takes time.

(ii) Handling an early abort at an arbitrary place can complicate a
client program.

(iii) This attacks the wrong problem.
The last point is the most significant. An early warning only helps if
the failure probability is already high. A better solution is to decrease
that probability, perhaps by using an application-specific lock man-
ager.

3.4.3 Reread dirtied pages

When a transaction can’t commit, the 18 could tell the transaction
which pages had been dirtied by other transactions. The transaction
could then reread those pages, make whatever changes are necessary,
and try again (this requires the transaction to use Kung and Robinson’s
model). The Distributed File System described by Sturgis et al allows
this.” They give an example of how a client can be informed automat-
ically of changes made by other clients.

This feature is easy to implement. However, I can’t think of any
other practical example for which it’s useful. For a simple transaction
that reads only a few pages, there’s not much difference between
rereading a page and restarting the transaction. For a long and complex
transaction, rereading would save work. But for such transactions, it
would be very difficult to determine how to correct for changes in
arbitrary pages. The ability to do that would violate most principles of
good program design: information hiding, least privilege, etc.

Again, this feature attacks the wrong problem. Instead, it is prefer-
able to decrease the interference between transactions (draining the
swamp solves the alligator problem).

2580 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

4, INTERFACE TO THE CLIENT
4.1 Client tasks, transactions, and requests

The 1s provides service to any number of client tasks. A request is
a command that a client task gives to the 1s. Examples are start-
transaction and read-page. For each request, the client task sends one
message to the 1s. This message describes the request, and identifies
a reply path back to the client task. When the 1s has completed that
request, the 1S sends one or more response messages down that path.

A transaction is a series of requests, beginning with start-transaction,
and ending with commit or abort. Each request is on behalf of some
active transaction; the message specifies the transaction.

The 15 does not have the notion of a controlling task (or a permanent
reply path) for a transaction. Any number of cooperating client tasks
may work on the same transaction, and they can issue requests
concurrently. Requests for the same transaction may have different
reply paths. Furthermore, a client task may have several transactions
active concurrently.

4.2 Pages and logical volumes

The pages are partitioned into a set of “Logical Volumes” (1.v’s).
Each page is in one (and only one) Lv. The 1s offers a small number of
LV's (perhaps 10 to 50). When the 15 is configured, the system admin-
istrator specifies various parameters for each Lv: page size, maximum
number of pages, number of disk blocks reserved for this Lv, etc. These
parameters may differ between Lv’s.

This grouping into LV’s is really for the client’s convenience. For
example, it may be useful to have indexes and data records in different
LV’s, with different page sizes. The client controls the number of LV’s,
and which page goes into which Lv. If the client prefers, all pages can
be in one large Lv. A transaction can read or write pages from any
number of Lv's, without penalty.

The 1s assigns a permanent page number to each page. The combi-
nation of an Lv number and a page number within that Lv uniquely
specifies a page. Page numbers are allocatable resources: the client
specifies the Lv, and the 1s responds with a new page number. The
client can then read and write this page. A page retains its page
number over updates. As with page-writes, every page-allocate or
page-free request must be for some active transaction, and they don’t
become permanent until that transaction commits.

Think of page numbers as a virtual address space which the 1s
provides on top of the physical address space of disk blocks. Page
numbers are not physical disk block addresses, and locality of page
number does not imply physical locality.

The client can embed page numbers in other pages. For example,

INTELLIGENT STORE 2581

Page Header
Record 1
Record 2
Record k
Unused Space

Fig. 6—Page format.

consider a database manager which uses a B-tree for the primary
index.? It might use three Lv’s: one for the actual data records, another
for the B-tree, and one more for secondary indexes. Pages in the B-
tree LV would contain page numbers. Leaf pages would contain page
numbers in the data Lv, as would pages in the secondary index Lv.
Non-leaf pages in the B-tree LV would have page numbers for other
pages in that Lv.

4.3 Page format

The content-addressable version of the 1s uses a page format based
on that of the underlying search disk. As in Fig. 6, a page consists of a
header, a variable number of records, and some unused space. The
page header has the page number, LV number, cell number (see Section
4.4), number of records, last update time, etc. The client can put as
many (or as few) records as desired in a page, up to the maximum size
of the page.

A record consists of a header, followed by a variable number of self-
defining attribute-value pairs, as in Fig. 7. The record header has the
page number, and (perhaps) some other data. The record body is a set
of triples (attribute-number,length,value). Values are inherently vari-
able length, as are records. Not all attributes need be present in every
record. In particular, triples with null values may be omitted. The
attribute numbers are 16-bit integers; 8-bit identifiers are not sufficient.
The rest of this paper will use attribute names instead of numbers.
Assume the client provides a simple name-to-number map. The 1s
reserves a few attribute numbers for its own use.

While the 1s allows retrieval based on the contents of records, update
is by page. To update a record, the client reads the page containing
that record, and then rewrites the entire page. The client can add,
delete, grow, or shrink records at any time. However, if the client
wants to grow a record and the page does not have enough unused
space, the client must find a new page (or whatever) for the record.

For now, the conventional-disk version of the 1s does not impose
this page format. Instead, it just receives a fixed-size header (primarily

2582 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

Record Header
attr 1 | len 1 value 1
attr 2 | len 2 value 2

attrm |lenm | valuem

Fig. 7—Record format.

for sanity checking), and treats the rest of the page as an uninterpreted
array of bytes.

4.4 Celis

When an Lv is created, the IS reserves a contiguous set of disk blocks
for it. These blocks are partitioned into a set of disjoint cells. The
system administrator specifies the number of cells, and the number of
blocks per cell. Typically, cells are on the scale of a disk cylinder (10
to 20 tracks). Different Lv’s can have different cell sizes, and different
numbers of cells. Each cell is identified by a combination of Lv number
and cell number within that Lv.

There are two reasons for the cell concept:

(i) Cells offer physical locality. That is, the client can access a set
of pages faster if the pages are all in the same cell (assuming no other
accesses intervene). This applies to both the content-addressable and
conventional-disk versions of the 1s.

(i) For the content-addressable 1s, cells are the minimal unit of
content-addressability. The Is can search all pages in cell C in some
short unit time (typically on the order of one revolution of a disk).
Searching 10 cells takes 10 unit times.

Each page is in one (and only one) cell. The client controls this
mapping:

() When allocating a new page, the client must specify a cell. If
that cell is full, the 1s refuses. The client can then try another cell, or
ask the 1s to put it “anywhere.”

(zf) To read a page, the client needs only the page number. The cell
number is not embedded in the page number; the 1s keeps a separate
map of page-to-cell numbers.

(i11) The 1s never moves pages by itself. Once allocated in a cell, the
1s will keep the page in that cell, regardless of how often the page is
written or how full the cell becomes.

(iv) The client can explicitly rearrange pages. As an off-line opera-
-tion, the client can pick up all existing pages, and spread them out
among the cells in a different pattern. The page numbers do not
change.

INTELLIGENT STORE 2583

Thus each page has a page number and a cell number. The cell
number is transient: it’s good during a transaction, but tomorrow it
may be different. The page number is permanent, and is retained even
if the client moves the page to a different cell.

There are two ways a database manager client can use cells. The
first method takes advantage of the locality offered by cells, and tries
to keep related pages in the same cell to improve performance. For
example, suppose that the client uses one Lv for indexes, and another
for data records. The index Lv has page numbers for the data Lv. The
index does not have cell numbers; it’s valid no matter how pages are
spread over cells. When allocating a new page, a strategy module in
the client picks a cell with related pages. If the 1s says that that cell is
full, the client puts the page anywhere. After “too many” pages have
been put “anywhere,” the client reorganizes the data Lv. Because data
pages retain their page numbers, the client can reorganize the data Lv
without changing the index Lv. Section 4.5 gives a more detailed
example.

The other technique only works with the content-addressable ver-
sion of the 1s. The client defines formal clusters, maps those clusters
to cells, and uses the content-addressble features to search clusters.
For example, suppose that the NAME attribute is the primary key. The
client might put all names that start with A or Bin cell 1, C or D in
cell 2, etc. The advantage is that the client doesn’t need an index for
the primary key. To find Baker, the client searches cell 1 for NAME
= “Baker”. The problem comes when cell 1 is full, and the client needs
to add a record for Bell. Then the client must immediately find another
cell for A-B records (an overflow cell, perhaps). Eventually, the client
would reorganize, perhaps this time putting A records in cell 1, B
records in cell 2, etc.

4.5 Example: A B-tree application

Suppose that a database manager (DBM) has a large collection of
records, and uses a B-tree index for the primary key.* The DBM uses
two LV’s: one for the B-tree pointers, and another for the data records.
Each page in the pointer LV contains just one record, with one
attribute: a large array of keys and page numbers (pointers). A page in
the data LV contains a variable number of records. Leaf pages in the
pointer LV point to pages in the data Lv, while non-leaf pages point to
other pages in the pointer Lv.

The pointer LV is much smaller than the data Lv, perhaps only a
few cells. The pDBM doesn’t need to worry about which cell to allocate
a new pointer page from. In fact, the pointer Lv might have only one
cell.

Let’s suppose that the DBM often does sequential processing on the

2584 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

records, and would like records to be in key order in the data Lv. In
other words, the records in cell 1 should precede those in cell 2, which
should precede those in cell 3, and so forth. Suppose that the data Lv
is partially filled, and pages are in the desired order. To maintain this
ordering, the DBM does the following when inserting a new record:

(i) Using the pointer Lv, the pDBM finds the page in the data Lv
that contains the records with the closest primary key values.

(i) If the new record will fit in that data page, the DBM updates it,
and is done.

(ii1) If not, the pBM allocates a new data page, and splits the records
in the old page. The pBM first tries to allocate the new data page from
the same cell as the old page. If that cell is full, the DBM uses any cell.

(iv) The DBM inserts a pointer to the new data page into the leaf
page of the pointer Lv. If it won’t fit, the DBM splits pointer pages,
according to the B-tree algorithm.

Thus, the data Lv stays in order for a while, but as cells become full,
it becomes scrambled. At some point, the DBM decides to reorganize
the data Lv. The DBM can use the B-tree to retrieve all pages in key
order. The 1S recreates the Lv from this stream, starting a new cell
every n pages. After the reorganization, the data Lv is in the desired
order, and the DBM starts over. The DBM does not have to change the
pointer LV.

When reorganizing, the DBM must decide how many pages to put in
each cell. This may depend on the maturity of the database. For
example, suppose that eventually the database will have 1,000,000
records, but it starts from zero and is loaded at the rate of 50,000
records per week. If reorganizations are done weekly, for the first few
weeks the pDBM might only load cells half full when reorganizing
(assuming the records arrive in random key order). But after most of
the records have been loaded, the bBM would pack more records per
cell.

Note that the DBM doesn’t worry about cells. The DBM just asks the
18 to put new pages in the same cell as existing pages. The 1s keeps
track of how full cells are; the DBM doesn’t.

V. CONTENT-ADDRESSABLE IMPLEMENTATION

This section gives the highlights of how the content-addressable
version of the 1s is implemented.

Pages do not share physical disk blocks. The rest of this section
assumes a variable-format disk whose block size has been set to the
maximum page size. Given a fixed-format disk, the 1s stores pages in
adjacent blocks, and reads or writes them as a unit.

For each Lv, the 1s has a “page map,” which is large array of cell
numbers indexed by page numbers. The page map also controls page

INTELLIGENT STORE 2585

number allocation. The map is only updated when a page number is
allocated or freed; it is not updated every time an existing page is
rewritten. The 1s keeps the map on a conventional disk (or whatever),
with a cache in main memory. The information in the map is duplicated
in the header of each page. Thus, if part of the map is corrupted, the
1S can recreate it by searching all cells in the Lv.

This 15 also has a simple map from cell numbers to physical cylinder
addresses. This doesn’t change while the 1s is active and it is small
enough to fit in main memory.

The 1s puts the page number in a searchable field in each block.
Thus, to read page P, the 1s first gets P’s cell number from the page
map, seeks to the corresponding cylinder, and then orders the disk to
retrieve the block whose PAGE field has the value P.

Note that the page map is a cell-level index for pages. The 1s does
not have an index from page numbers to specific disk blocks.

When given a write-page request for page P, the 1s writes the new
version in a free block in P’s cell. Actually, the 18 just schedules the
disk write operation, and then tells the client task that the request is
complete. The actual writing can be overlapped with the client’s think-
time for the next request. Note that the 1s writes the new version
before the transaction commits, without removing the old version.
Therefore at any one time there may be several different versions of
page P.)

Before explaining how the Is eventually removes those old versions,
we need to introduce some terminology. A transaction T becomes a
“grandfather” when all transactions that were active when T commit-
ted have themselves committed (or aborted). In Fig. 2, transaction A
becomes a grandfather as soon as it commits, and transaction B
becomes a grandfather when C aborts. Thus, transaction T becomes a
grandfather when no other transaction needs the old versions of the
pages that T updated. After T becomes a grandfather, the 1s “retires”
it, by freeing all disk blocks that hold the old versions of pages written
by T. Transactions are retired in the order in which they committed.
Retirement is a background process, which the 15 can do at its leisure.

Suppose that a transaction that started at time ¢ asks the 1s to read
page P. The 1s first asks the disk to retrieve all versions of page P. Of
those versions, the 1s software selects the most recent one of those
written by transactions that committed before time &. Thus, given an
arbitrary version of P, the 1s needs to know the commit-time of the
transaction that wrote it. Because the 1s writes new versions before
commit, the IS can’t just put the commit-time in the page header.
Instead we have to be a bit more clever.

The 1s assigns a permanent Transaction Serial Number (TsN) to
each update transaction. The 1s assigns a TSN to transaction T when

2586 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

T writes its first page. The 18 puts 7”s TSN in a field in every page that
T writes. These numbers are never reused. At 10,000,000 transactions
per day, 48-bit serial numbers will last for 77,000 years, which should
be sufficient for Bell System use.

So now the problem is to map TSN’s to commit-times. The 1s keeps
a list of the TsN and commit-time for all commited but unretired
transactions. This is called the commit-list. Committed transactions
are added at one end, and grandfathers are removed from the other as
they are retired. Thus, the commit-list has just those transactions that
have committed during the lifetime of the oldest uncommitted trans-
action. This should be at most a few hundred transactions.

Given a TsN, the Is first looks for it in the commit-list. If found, the
1s uses the corresponding commit-time. If not, that transaction must
be retired. We don’t need to know the exact commit-time for a retired
transaction; its is sufficient to know that (f) it committed before the
oldest transaction in the commit-list, and (if) it committed before any
active transaction started. Furthermore, the retirement process en-
sures that for any given page P, there is only one version of P written
by a retired transaction.

So much for reading and writing pages; what about atomic commits
and crash recovery? First, note that the 1s never updates a data block
in place. The 1s either writes a new version into a free block, before a
transaction commits, or else frees an old block after its data is no
longer needed. A corrupt block is always free, and no vital data will be
lost when a block gets corrupted if the 1s crashes while writing it.
Thus, the 1s dosen’t need conventional undo-redo logs.”

The 1s keeps two stable lists of TsN’s. The first is the commit-list,
described above. The other is the active-list, which has the TsN’s of all
active, uncommitted update transactions. These lists must be safe
from the effects of crashes. For each list, the 1s keeps two copies on
disk, and carefully updates both copies.”

When transaction T writes its first page, the 18 must ensure that 7"’s
TSN has been safely added to the active-list before any data blocks are
written for 7. Similarly, before removing T from the commit-list, the
retirement demon must ensure that all the old blocks have been
successfully marked as free (i.e., all disk writes have completed).

To commit transaction T, the 1s first waits for any outstanding disk
writes for T to complete, and then safely moves T’s TSN from the
active-list to the commit-list. Adding the TSN to the commit-list is
what really commits a transaction. Note that there is no burst of 1/0
at commit. The disk writes are overlapped with the client’s think-time,
so they are usually complete when the client issues the commit request.

To abort a transaction, the 18 just frees all disk blocks it wrote, and
then removes its TSN from the active-list.

INTELLIGENT STORE 2587

To recover from a crash, the Is first reads the active-list and commit-
list from disk. The 1s then aborts all transactions in the active-list, and
retires all transactions on the commit-list. These operations can be
overlapped with normal processing.

That, in a nutshell, is how the 1s works. Note several advantages:

® There is no burst of 1/0 at commit.

® Disk blocks holding pages are never updated in place.

® Each version of a page is written twice in its lifetime: once
when it’s initially written, and once to mark it as free, when
it’s retired. Both of these writes can be overlapped with other
operations.

For this scheme to work efficiently, the 1s needs a pool of free blocks
in each cell. The size of the pool depends on how many pages each
transaction updates, and on the running-time of transactions. To help
maintain a free pool, when an Lv is created, the system administrator
specifies a limit on the number of distinct pages that can be allocated
in each cell. For example, if cells have 1000 disk blocks, the adminis-
trator may limit each cell to 950 distinct pages.

If a cell does run out of free blocks, the 1s automatically uses a
shared overflow area. This is a transient condition, and it’s invisible to
the client. Eventually, the 1s can always move the overflow blocks
back to their desired cells. However, excessive use of the overflow area
will degrade performance.

The administrator specifies the size of the overflow area when
configuring the 1s. This size, plus the amount of free space in cells,
limits the total number of pages that can be written during the life of
the longest-running transaction (see Section 2.1). If this limit is ex-
ceeded, the 1s can always abort the oldest transaction. This makes
some transaction a grandfather, and retiring it should free some disk
blocks.

VI. CONVENTIONAL DISK IMPLEMENTATION
6.1 Overview

The conventional-disk version of the 1s also uses a shadowing
scheme. A simple page index tells which disk block has the current
version of each page. These disk blocks are not updated in place.
Instead, when transaction T writes a page, the 1s writes the new
version to a free disk block, and saves the page and block numbers in
a list for transaction T. When 7T commits, the 1s uses that list to
carefully update the page index. For each page which T updates, the
1s saves the block number with the old (replaced) version in another
list, for possible use by any transactions which started before T
committed. These old blocks will not be reused until the last such
transaction has terminated.

2588 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

6.2 Disks and disk drivers

For now, the conventional disks are fixed-sector disks, with 512-byte
blocks. A disk driver task provided by the network kernel does all disk
1/0. To read or write a block, the 1s sends a message to the disk driver,
specifying the command, the disk address, the main memory address,
and the number of blocks to read or write. When done, the disk driver
sends a reply message to the 1s. The 1S can have multiple read/write
requests active simultaneously. Note the division of responsibility: the
1s handles caching, and the disk driver handles scheduling.

6.3 Page maps and page frames

Each Lv has two disk structures: a page map and a set of page
frames. The page frames occupy a set of contiguous disk blocks. The
frames are arbitrarily partitioned into physical cells, each with the
same number of frames. A page frame is addressed by an encoding of
its physical cell number and frame number within that cell. The size
of a page frame, and hence the size of a page, is limited to a multiple
of 512 bytes.* A page frame is a contiguous set of disk blocks, which
the 1s reads or writes as a unit.

The page map is a single-level index of pages, with one 32-bit entry
per page number. A free page has a null entry; an allocated page has
an encoding of the page’s logical cell number, and a physical cell/frame
number. This is the frame with the current version of the page. The 18
reads and writes the page map in 512-byte blocks (at least for now),
using a main-memory cache. This cache is separate from that used for
page frames.

At any one time, the page map defines the current, consistent state
of the database. The 1s updates the map very carefully, and only when
committing a transaction (see below).

For each Lv, the system administrator specifies the maximum num-
ber of pages, the page size, number of cells, and number of page frames
per cell. The administrator also specifies where the page map and page
frames are on disk. They can be on separate disks. For example, the
administrator might put the page map on a faster disk, or even on a
fixed-head disk. The space for the page map must be contiguous. For
now, the set of page frames must also be contiguous and on one disk,
but this could be changed.

6.4 Page frame allocation

Allocation of page frames is controlled by a bit-map. This bit-map

* Actually, the page size is slightly less than a multiple of 512, because the 1s steals
a header from each page frame. The current header is 12 bytes, and contains a time
stamp, the logical cell/page number, and the physical cell/frame number. The header is
just for sanity checking; it's not needed for correct operation or for crash recovery.

INTELLIGENT STORE 2589

reflects the shadow state as well as the current consistent state. The
“consistent state” contains all frames in the current page map. The
“shadow state” includes the new frames written by uncommitted
transactions, and the old frames replaced by committed transactions.

This bit-map is not safe over crashes. Currently it’s kept only in
main-memory. The 15 could swap the bit-map, but that doesn’t seem
worthwhile. For example, consider an 1s with 10+*6 frames. If frames
are 2K bytes, that’s 2 gigabytes of disk space. The corresponding bit-
map only takes 128K bytes. Since main-memory costs are dropping
relative to disk costs, and since fast access to the bit-map is important
for performance, swapping the bit-map doesn’t seem cost-effective.

The bit-map is recreated at boot-time. The 1s first clears the bit-
map, and then reads the entire page map. For each page frame in the
map, the 15 sets its allocation bit. Just for sanity, the 1s also verifies
that the bit was not set (this should never happen, but it’s a cheap test
for duplicate entries, so why not?). Since the page map is contiguous,
the 18 can read it very efficiently; I estimate that the 1s could read a
page map with 10++6 entries in less than one minute. However, the
1/0 time is dominated by the cPuU time to set the bits. For a full 10++6
page database, the current version of the scan code takes about 8.5
minutes on a 3B-20. It's not great, but it’s not too bad. Most of the
time is spent in a few, small C functions. If desired, those functions
could be written in assembler, or even in microcode.

Currently, the 1s does this scan at boot-time, and locks out all
requests until it’s complete. This simplifies the module which allocates
page frames. However, if the initial scan delay isn’t acceptable, that
module could be modified for parallel scanning; it would automatically
delay any allocation request (i.e., a page write) until that Lv’s page
map had been scanned. Thus the 1s could allow read requests imme-
diately.

6.5 Lists

For each active transaction, the 1s keeps a list of its important pages
(the “important-list”), and a list of the pages it wrote (the “write-list”).
These lists are controlled by a generalized list manager module within
the 1s. The list manager provides append and scan access, and auto-
matically frees lists for terminated transactions. The list manager tries
to keep these lists in main memory, transparently swapping out the
least recently used lists as necessary. The important points are (i)
these lists are not safe over crashes, and (ii) the 1s can handle very
large lists.

6.6 Writes, commits, and recovery
The 1s does the following to write page P for transaction T"

2590 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

1. Allocates a new page frame F.

2. Gets a buffer for F, and copies the client’s data into it.

3. Adds the pair (P, F) to T’s write-list.

4. Sends the reply message to the client (“It’s done, boss!”).

5. Does the actual disk write. Note that this overlaps the client’s
subsequent processing.

The 1s does the following when committing transaction T:

1. Waits for all page frame writes for T to complete.

2. Verifies that no transaction that committed after T started wrote
one of T’s important pages (more on this later). If this tests fails, the
1s aborts T by freeing all page frames in T’s write-list.

3. Scans T'’s write-list, and for each pair (P, F'):

a. Reads the page map block for page P into the cache, if it isn’t
there already.

b. Sets Fx to the old frame number in P’s page map entry.

¢. Updates P’s page map entry in the cache, but does not update
the disk copy.

d. Adds the pair (P, Fx) to a “prior-value” list being created for
T.

4. Writes the new versions of all updated page map blocks to a
reserved set of disk blocks, known as the “Intention-List”.?

5. Updates the actual page map blocks.

6. Clears the Intention-List.

7. Adds T’s prior-value list to the set of prior-value lists for all
committed but unretired transactions (see below).

At boot-time, the 1s just reads the Intention-List. If it indicates that
a commit was in progress, the 1S updates the indicated page map
blocks. Note the following points:

(i) The Intention-List ensures that either all the T’s pages will be
updated or else none will.

(it) If a failure occurs when writing a page map block, the entire
block might be destroyed. This is why the Intention-List has full
blocks, not just 7"s write-list.

(iii) The Intention-List has a fixed maximum size (say 20 page map
blocks). This is fine for most transactions, but some transactions will
need to update more page map blocks. Therefore if the 1s fills the
Intention-List before exhausting 7T”s write-list, the 1s first saves T's
write-list in a reserved place on disk. The 1s then writes the Intention-
List, updates the page map blocks, and resets the main-memory copy
of the Intention-List. The 1s then continues scanning 7T"s write-list,
forming more Intention-Lists as needed. When done, the Is resets the
disk copy of the write-list. During recovery, the Is first reads the
Intention-List, updates the indicated page map blocks (if any), and
resets the Intention-List. Then if there is a saved write-list, the 18

INTELLIGENT STORE 2591

reads it and updates the page maps accordingly, writing updated page
map blocks to the Intention-List as before. When done, the 1s resets
the saved write-list. Note that another crash during recovery won’t
hurt anything.

(iv) For now, the Intention-List lives on a conventional disk, at a
location specified by the administrator. Ideally, the Intention-List
would live in a very fast nonvolatile memory— perhaps a RAM with
battery backup.

(v) The page frames with the old values aren’t freed immediately;
they won’t be until all transactions that started before T' committed
have terminated (see below).

(vi) Steps 1 and part of 2 can be done in parallel, but the rest must
be done for one transaction at a time.

6.7 Grandfathers, retirement, and prior-value lists

A transaction T becomes a “grandfather” when all transactions that
were active when T committed have themselves committed (or
aborted). In Fig. 2, transaction A becomes a grandfather as soon as it
commits, and transaction B becomes a grandfather when C aborts.
Thus, transaction T becomes a grandfather when no other transaction
needs the old versions of the pages which T updated. The 1s keeps the
prior-value lists for all committed transactions which have not yet
become grandfathers.

When T becomes a grandfather, the 1s “retires” it, by freeing all
page frames on 7T's prior-value list, and then discarding 7"s list. Note
that retirement is a background process, which the 1s can do at its
leisure.

6.8 Read requests

To read page P for transaction T, the 1s first determines which page
frame F has the correct version of P. The 1s uses the following
algorithm:

1. Searches T’s write-list for P.

2. Otherwise, searches the prior-value lists (see above) for all trans-
actions that have committed after T started. If more than one has an
entry for P, uses the one from the earliest transaction.

3. Otherwise, uses the page map entry for P.

The 1s then reads frame F into a buffer and returns it to the client.
The frame buffers are cached, of course.

For now, list searching is done sequentially. Thus, the search time
depends on the number of pages written by T, and on the number of
transactions that have committed during 7”s lifetime. Large transac-
tions may have a high overhead, but small, fast transactions have little

overhead.

2592 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

The 1s uses the following technique to avoid searching the write-list
unnecessarily. Let A(P) be a hashing function from page numbers to
the integers 1:N. For each transaction T, the 1s keeps an N-bit bit-
map. The bit-map is zeroed when T starts, and discarded when T
terminates. When 7T writes page P, the 1s sets bit A(P); when T reads
P, the 1s searches T’s write-list iff bit A(P) is set.

To avoid searching the prior-value lists unnecessarily, the 1s keeps
a set of N counters. Counter A(P) is the number of entries (in all prior-
value lists) whose page number hashes into 2(P). Thus, the 1s searches
for page P iff the counter h(P) is non-zero. When committing a
transaction, the Is increments the counters for all pages on its list;
when retiring a transaction, the 1s decrements those counters. Counters
are small (currently 4 bits). A counter is “frozen” when it hits the
maximum value, and further increments or decrements have no effect.
When too many counters become frozen, the 1s resets all counters, and
recreates them by scanning all prior-value lists.

The write-lists and prior-value lists are managed by modules that
provide add/lookup access. These modules hide the bit-map and
counter tests. Other techniques could be added without changing the
rest of the Is.

6.9 Checking for interference

Before committing transaction T, the 1s first verifies that no other
transaction which committed after T started has written one of T’s
important pages. The 1s does this by intersecting 7"s important-page
list with the prior-value lists of all transactions which committed after
T started. The 1s currently uses the following algorithm:

1. If no transactions have committed since T started, we're done; T'
can be committed.

2. For each page P in T’s important-page list, adds P to a work
array iff the prior-value hash counter A(P) is non-zero (see above).

3. If the work array is empty, we're done; T' can be committed.
Otherwise, sorts the work array by page number.

4. For each page P in the prior-value list of any transaction that
committed after T started, tests if P is in the work array (uses binary
search). Stops if any P is in the work array; T cannot be committed.

VIl. ACKNOWLEDGMENTS

The Intelligent Store is the result of several discussions between
myself and many others: initially, Bill Burnette, Dan Fishman, and
John Linderman, and later Jean Benisch, Rudd Canaday, Alan Feuer,
Joe Haggerty, Dave Nowitz, and Charles Wetherell. At this point, it’s
impossible to remember who first suggested what, but I do remember
that Rudd suggested the concept of the 1s as something common to a

INTELLIGENT STORE 2593

file manager and a database manager, and John and Bill Burnette
suggested parts of the consistency model.

REFERENCES

1. W. A. Burnette, R. H. Canaday, and D. H. Fishman, unpublished work, March 22,
1982.

2. K. P. Eswarin et al., “The Notions of Consistency and Predicate Locks in a Database
System,” Commun. ACM, 19, No. 11 (November 1976), pp. 624-33.

3. 4. N. Gray, “Notes on Data Base Operating Systems,” in Operating Systems: An
Advanced Course, R. Bayer et al. (ed), New York: Springer-Verlag, 1978, pp. 393-
481.

. H. T. Kung and J. T. Robinson, “On Optimistic Methods for Concurrency Control,”
ACM Trans. Database Systems, 6:2 (June 1981), pp. 213-26.

. J. Banerjee, D. K. Hsiao, and R. J. Baum, “Concepts and Capabilities of a Database
Computer,” ACM Trans. Database Systems, 3:4 (December 1978), pp. 347-84,

. J. Banerjee, D. K. Hsiao, and K. Kannan, “DBC—A Database Computer for Very
Large Databases,” IEEE Trans. Computers, C28:6 (June 1979), pp. 414-29.

. K. Kannan, “The Design of a Mass Memory for a Database Computer,” Proc. Fifth
Annual Symp. on Computer Architecture, April 1978, pp. 44-51.

. V. A. J. Maller, “The Content Addressable File Store—CAFS,” ICL Technical J,
November 1979, pp. 265-79.

9. F. Baskett, J. H. Howard, and J. T. Montague, “Task Communication in DEMOS,”
Proc. Sixth Symp. on Operating Systems Principles, November 1977, pp. 23-31.

10. M. H. Soloman and R. A. Finkel, “The Roscoe Distributed Operating System,”
Proc. Seventh Symp. on Operating Systems Principles, December 1979, pp. 108-

o ~1 & W A

14.

11. D. J. DeWitt, “DIRECT—A Multiprocessor Organization for Supporting Relational
Database Management Systems,” IEEE Trans. Computers, C28:6 (June 1979),
pp. 395-406.

12. S. A. Schuster, H. B. Nguyen, and E. A. Ozkarahan, “RAP.2—An Associative
Processor for Databases and Its Applications,” IEEE Trans. Computers, C28:6
(June 1979), pp. 446-58.

13. D. E. Shaw, “A Relational Database Machine Architecture,” ACM Fifth Annual
Workshop on Computer Architecture for Non-Numeric Processing,” March 1980,
pp. 84-95.

14. D. C. P. Smith and J. M. Smith, “Relational Database Machines,” IEEE Computer,
12:3 (March 1979), pp. 28-38.

15. S. Y. W. Su, “Cellular Logic Devices: Concepts and Applications,” IEEE Computer,
12:3 (March 1979), pp. 11-25.

16. S. Y. W. Su et al,, “Architectural Features and Implementation Techniques of the
Multicell CASSM,” IEEE Trans. Computers, C28:6 (June 1979), pp. 430-45.

17. D. J. DeWitt and P. B. Hawthorn, “A Performance Evaluation of Database Machine
Architectures,” Seventh Int. Conf. On Very Large Databases, September 1981,
pp. 199-214.

18. G. G. Langdon, “A Note on the Associative Processors for Data Management,”
ACM Trans. Database Systems, 3:2 (June 1978), pp. 148-58.

19. D. S. Kerr, “Data Base Machines for Large Content-Addressable Blocks and
Structural Information Processors,” IEEE Computer, 12:3 (March 1979), pp. 64—

79,

20. J. 8. M. Verhofstad, “Recovery Techniques For Database Systems,” ACM Comput-
ing Surveys, 10:2 (June 1978), pp. 167-95.

21. D. R. Ries and M. Stonebraker, “Effects of Locking Granularity in a Database
2M3gnagement System,” ACM Trans. Database Systems, 2:3 (September 1977), pp.

—-46.

22. D. R. Ries and M. Stonebraker, “Locking Granularity Revisited,” ACM Trans.
Database Systems, 4:2 (June 1979), pp. 210-27.

23. H. Sturgis, J. Mitchell, and J. Israel, “Issues in the Design and Use of a Distributed
File System,” ACM Operating Systems Rev., 14:3 (July 1980), pp. 55-69.

24. D. Comme;;:]"The Ubiquitous B-Tree,” ACM Computing Surveys, 11:2 (June 1979),
pp. 121-37.

25. B. W. Lampson and H. E. Sturgis, “Crash Recovery in a Distributed Data Storage
System,” Xerox-PARC Technical Report, April 27, 1979.

2594 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

APPENDIX

Let X be a set with m distinct members, x;. Assume that the x; have
been uniformly and independently -selected from a universe of N
elements. Let Y be a set with n distinct members, y;, which have been
selected from the same universe, independently of each other and of
the x;. We want to show that:

any;@=Ti0_ n)=H§:£Eii

i=0 N—-1i i N-—1i
The probability that X does not intersect Y is defined as:
PXNY=¢)=Pn&EXANy € XN --- Ay X).

We will use induction on the number of terms in the right-hand side.
To simplify notation, let’s define A; as:

Av=96 XNy XA - Ayt X.

Then the initial step is:

Py § X) = PA) =1- P €X) =1- .

This follows from the fact that X has m uniformly and independently
selected elements. For the induction step, we first assume that:

k-1
P4 = 11 (1 -5 z)

=0

and then show that relation holds for Ax::. Using the definition of
conditional probability, we get:

P(Apn1) = P(yrn & X|Ak)P(Ak)-

The A, condition tells us that none of the first £ elements are in X.
That is, the m elements of X have really been selected from a universe
of N — k elements. Therefore, the conditional probability that y: isn’t
in X is:

Py € X|A) =1 —

m
N—-Fk’
Substituting back and using the induction assumption gives:
m k-1 m k m
PApa)=(1- 1-— = 1- .
(i) (N—k) it (N—i) LI(N—i)

INTELLIGENT STORE 2595

This proves the induction step. We can simplify things by observing
that:

m mN—(m+i)
N-i N-i
This gives as the final result:

1-—

2596 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1982

