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In this paper we present a mathematical algorithm for constructing
a smoothing cubic spline with periodic end conditions and a prede-
termined ‘closeness of fit’ to a given set of points in the plane. In
addition to providing a mathematical tool for smoothing raw data in
which the underlying function is known to be periodic, this algorithm
has special significance in computer graphics, because the use of
smoothing functions with periodic end conditions is essential for
producing visually acceptable, smooth, closed curves. Sample plots
are included to tllustrate the power and flexibility of this algorithm.

. INTRODUCTION

Although “natural” splines are used extensively and are quite ap-
propriate for smoothing many types of data, they often produce less
than satisfactory results when used to smooth data points that belong
to a periodic function. The inappropriateness of using “natural” splines
to approximate periodic data is especially evident in graphics appli-
cations. In particular, when the data points represent a closed curve,
smoothing (parametrically) with “natural” splines will lead to unac-
ceptable results because the “natural” end conditions will cause the
curve either to close up with a noticeable discontinuity, or to not close
up at all (see Fig. 1).

Existing methods for constructing smoothing splines with a prede-
termined closeness of fit all lead to splines with “natural” end condi-
tions."? A method developed by Spath® produces a smoothing spline
with periodic end conditions, but the closeness of fit cannot be deter-
mined in advance. In this paper we will describe a method for con-
structing a smoothing cubic spline that has periodic end conditions
and that also satisfies a predetermined closeness of fit to a given set of
data points.

This algorithm has potentially wide applicability, especially in the
realm of interactive graphics. It makes possible the computer genera-
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Fig. 1 —Comparison of periodic versus natural spline smoothing. (a) Periodic cubic
spline smoothing with uniform weights. (b) Natural cubic spline smoothing with small
weights at end points. (c) Natural cubic spline smoothing with uniform weights.

tion of free-form, smooth, closed curves by merely specifying the
approximate locations of as few as three distinct points. The shape of
the curve can be controlled easily by moving one or more points, or by
adjusting the weighting factors associated with some or all of the
points.

An efficient program based on this new algorithm has been written
and tested. Sample plots illustrating this method are included.

Il. TERMINOLOGY

Let Py = (xx, y»), k = 1, n, be n points in the plane. A “cubic spline”
on [x1, x,] with knots at x;, - -+, x,, is a function f that coincides with
a third-order polynomial f, on each sub-interval [xs, xz+1], B =1, n —
1, and such that fis continuous and has continuous first and second
derivatives over the entire interval [xi, x.].

In other words, f is a cubic spline on [xi, x,] if, for each k =1, n —
1 there exist real numbers a., b, ci, di (the “spline coefficients” of f)
such that for every x in [xx, Xp+1],
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f(x) = fulx) = @ + bilx — xx) + cxlx — x)* + dilx — )’ (D)

Furthermore, the continuity of £, f, and f” on [x, x.] implies that at
each interior knot xx, k=2, n — 1,

fr—1(xr) = falae), (2)
froi(xn) = frlxr), (3)
fiaxe) = fi(xn). (4)

The cubic spline f is said to be “periodic” if it satisfies the following
additional conditions (known as “periodic end conditions”):

flxn) = f(x1), (5)
f(xn) = f'(x1), (6)
f"(xa) = f"(x1). (7)

A “natural” cubic spline differs from a “periodic” cubic spline in that
it satisfies the so-called “natural end conditions”: f” (x1) = " (x.) = 0.

Ill. FORMAL STATEMENT OF THE PROBLEM

Let P, = (x1, &), K = 1, n, be n points in the plane, with x; < x2 <

. < x,.. Let wy, # = 1, n, be positive real numbers (“weighting
factors”) associated with P, & = 1, n, respectively. (Assume y, = y1,
w, = w,.) Given an arbitrary constant, M > 0, the problem is to
determine the set of 4(n — 1) coefficients of the periodic cubic spline
fon [x;, x,] with knots at x,, -+, x,, such that

(i) f has minimal “total curvature” G(f) = [ f” (x)*dx, and

(ii) f satisfies the following weighted, distance-squared constraint,
or “closeness of fit,” with respect to the given points:

H(f) =3 [L""L;—”’] <M.

k=

Note that the weighting factors give inverse importance to the
points. Note also that M controls the degree of smoothness, so that
increasing the value of M for a fixed set of weighting factors will lead
to a smoother, or flatter, spline. Conversely, choosing a sufficiently
small value of M will lead to a spline that closely approximates an
interpolating spline. In general, an appropriate choice for the value of
M will depend on the values chosen for the weighting factors. If, for
example, the weighting factors are chosen so that w; is the standard
deviation at x,, then a suitable choice for M would be some value
between the confidence limits, n — V2n and n + V2n.
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IV. GENERAL APPROACH TO THE SOLUTION

To minimize G( f) subject to the constraint H(f) = M, we introduce
an auxiliary variable z and a non-negative Lagrange multiplier p and
minimize

F(f) = G(f) + p[H(f) + 2° — M].

This is the approach used by Reinsch in Ref. 2 to solve the analogous
problem for “natural” cubic splines. However, Reinsch minimizes F
over the class of all continuous functions with continuous first and
second derivatives on [x;, x,], which leads to a “natural” cubic spline
as the solution. We will restrict the class of admissible functions in the
minimization of F to periodic cubic spline splines on [x, x,] with knots
at x, - -+, Xn, obtaining a direct solution to our problem.

V. LINEAR SYSTEM RESULTING FROM CONTINUITY AND PERIODICITY
CONDITIONS
Let f be an arbitrary periodic cubic spline on [xi, x,], with spline
coefficients ax, b, ¢z, di, k = 1, n — 1. Then, for x in [xx, Xp+1], f(x) is
given by (1) above, and f’(x) and f”(x) are given below:

f'(x) = fi(x) = br + 2ca(x — x2) + 3di(x — x4)°, (8)
f"(x) = fi'(x) = 2cr + 6diu(x — x1). (9)

Expressing f, f’, and f” explicitly in eqgs. (1), (8), and (9), respectively,
allows us to derive linear relationships among the spline coefficients.
From the continuity of f” at the interior knots of (3) and the periodicity
of f' on [x1, x,] in (6), it follows that:

2¢phy = bpsr — by — 3drhi, for k=1,n-1, (10)

where h;, = xp+1 — xx for Rk =1, n — 1, and b, denotes b,.

From the continuity of f at the interior knots of (2) and the period-
icity of fon [x1, x,] in (5), the first-order coefficients may be expressed
in terms of the constant, second-order, and third-order coefficients:

by = (@p+1 — ar)/hr — crhy — diphi, for k=1, n-1, (11)

where a, denotes a,.

From the continuity of f” at the interior knots of (4) and the
periodicity of f” on [x1, x.] in (7), the third-order coefficients may be
expressed as a function of the second-order coefficients:

dr = (Cp+1 — c1) /3, for k=1, n-1, (12)

where ¢, denotes c;.

Using (11) and (12) to eliminate the b.’s and d,’s from (10) leads to
a system of linear equations in the a;’s and ¢’s, given in matrix
notation as follows:
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Se = 3Qa, (13)

where S and Q are symmetric, cyclic- tnd.lagonal matrices of order n
— 1, and e, a are the column vectors (¢, - -+, €a- )T (@, -+, @n1)7,
respectively.

The non-zero entries of S and Q are expressed in terms of the
distances between successive knots:

S(k, k) = 2(he—1 + hs) for k=1, n-1
Sk k+1)=Sk+1,k=h for k=1, n-2
S(l,n—1)=S(n—1,1) = ha

Q(k, k) = —1/hy-1 —1/h  for k=1, n—-1
QlE+1)=Qk+ 1,k =1/h: for k=1, n—-2
QLnr-1)=Q(r—11) =1/hn,

where h, denotes h,_;. By Gershgorin’s Theorem® it can be shown that
S is positive definite (and therefore non-singular), while Q is positive
semi-definite and singular with rank n — 2.

VI. LINEAR SYSTEM RESULTING FROM MINIMIZING F WITH RESPECT
TO THE CONSTANT COEFFICIENTS

Note that (13) is a system of n — 1 linear equations in 2(n — 1)
unknowns: the constant coefficients and the second-order coefficients.
We shall derive a second system of n — 1 linear equations in these
unknowns. We proceed by first showing that H and G can be expressed
as functions of the constant coefficients only.

From the spline representation of f in (1), it follows immediately

that
f(xn) Zofak— Yn ’
n- g [ 5 ()
is a function of @y, - - - , @.. And since the periodicity of f implies
an, = flx,) = flx) = a1,
H is a function of the constant spline coefficients a;, - - -, @n-1.

From the explicit representation of f” in (9), the “total curvature”
G can be expressed as
Xh+1
j " (x)’dx = E 7 (x)°dx

Xk

n Lh+1
=X J' [2¢r + 6di(x — x)°dx.
k=1 ),
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Evaluating the integrals over each sub-interval directly and eliminating
the di’s with (12) lead to the following:
n—1

4
G= % 3 hi(c + crCrer + Che1).
k=1

Rewriting in matrix notation and applying (13), we have:
G = (%)c"Sc = (%)(357'Qa)S(3S'Qa) = 6a"QS'Qa.

Thus, G also can be expressed in terms of the constant spline coeffi-
cients. Note that from this representation of G,

G
—=12Q:S7'Qa
da

for £ =1, n — 1, where @ is the kth row of Q.

Since G and H are functions of @, - -+, @a,—1, then F'is a function of
the independent variables a,, ---, @.-1, p, and z. In order for F to be
minimized, the partial derivative of F with respect to each of its
independent variables must vanish. Thus, for each £ = 1, n — 1,
differentiating F' with respect to a; yields:

aoF _ G oH (ak —yk) —0

—=—+p—=12Q:S"'Qa + 2
da, dax p aa Q Q P w

Rewriting this set of n — 1 linear equations in matrix notation and
using (13) to replace S™'Qa with ¢/3 lead to:

4Qc + 2pWl(a—y) = 0, (14)
where y is the column vector (i, - - -, y.—1)7. Combining (13) and (14),
we have the following linear system in c:

(PS + 6QW’Q)c = 3pQy. (15)

The matrix A, = ( pS + 6QW?*Q) is symmetric, five-banded with three
non-zero entries in the upper right and lower left corners. It can be
shown that, for all positive values of p, A, is positive definite. Thus,
for each p > 0, (15) has a unique solution in c.

Note that for each non-zero value of p, a = y — (2/p)W?Qec from
(14). Note also that from (12) d is uniquely determined by ¢, and from
(11) b is uniquely determined by a, ¢, and d. Thus, to each positive
value of p corresponds a unique periodic cubic spline on [x;, x,], whose
coefficients are given in the vectors a, b, ¢, d.

VIl. CONSEQUENCES OF MINIMIZING F WITH RESPECT TO p AND z

Minimizing F = G + p(H + z*> — M) with respect to the Lagrange
multiplier p leads to:
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F_ H+z"-M=0,
dp
which merely states that the distance constraint on H (expressed as
an equality in terms of the auxiliary variable z) must be satisfied when
the minimal value of F is attained.
On the other hand, minimizing F with respect to z yields:

aF

Y 2pz =0,
which implies that at least one of the two variables, p or z, must be
equal to 0 when the minimal value of F' is attained.

Note that if p = 0 when F is minimized, then F = G. Since G =
(2/3)c”Se and S is positive definite, then G is minimized when ¢ = 0.
This in turn implies d = 0, so that the second- and third-order
coefficients vanish, resulting in a piecewise linear minimizing spline.
The properties of being piecewise linear and having a continuous first
derivative together imply that the minimizing spline is a straight line.
Furthermore, periodicity of the spline implies that the straight line is
in fact horizontal.

On the other hand, if p > 0 when F' is minimized, then z = 0, so that
H = M. Since a = y — (2/p)W*Qc from (14), and ¢ = 3pA,;'Qy from
(15), H can be expressed as a function of p. Thus, if minimization of F
occurs for a positive value of p, it remains to determine the value of p
for which H(p) = M.

Vill. PROPERTIES OF H AS A FUNCTION OF p

The following facts can be established: for all positive values of p,
H(p) is a continuous, convex function of p with negative slope. Fur-
thermore, as p approaches zero from the right, H(p) becomes arbi-
trarily large.

IX. ALGORITHM FOR DETERMINING SPLINE COEFFICIENTS

We can now state the following algorithm for determining the
minimizing spline. Compute the equation of the horizontal straight
line with the least-squares fit to the given data points:

w-(32)/(3:2)

Determine if this line satisfies the distance constraint on H( f). If it
does, we are done. If it does not satisfy the distance constraint, start
with some positive value of p and search for the value of p for which
H(p) = M, using a combination of Newton’s method when moving to
the right and a binary search when moving to the left (or any applicable
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search). Insert this value of p in (15), solve the linear system for ¢, and
compute the related values of a, b, and d using (14), (11), and (12).
The periodic cubic spline associated with this value of p will be our
solution.

X. PRACTICAL CONSIDERATIONS IN SOLVING THE LINEAR SYSTEM

Since the matrix A, is positive definite for each p > 0, it can be
decomposed into the product of a lower triangular matrix R and its
transpose, using the square-root (Cholesky’s) method.” The linear
system A,c = 3pQy can then be solved efficiently in two steps, by
applying forward substitution to the lower triangular system Rv =
3pQy, followed by backward substitution to the upper triangular
system R7c = v.

Furthermore, since A, is symmetric and five-banded with three non-
zero entries in two corners, its decomposition R will consist of three
non-zero bands (the main diagonal and the two diagonals below it)
and two non-zero rows along the bottom, so that R can be stored in
fewer than 5n locations. (The entries of A, need not be stored; they
may be computed as needed.)

The sparseness of the matrix R and its structure described above
lead not only to its compact storage, but also to the linear time solution
of the upper and lower triangular systems, and hence to the linear time
solution of the system A,c = 3pQy, for each non-zero value of p.

It should be pointed out that, unless the number of data points to be
smoothed is rather limited (approximately 30 or fewer), the straight-
forward application of Cholesky’s method to decompose A, will en-
counter underflow problems. This is due to the fact that, as the
dimension of A, increases, entries with exponentially decreasing mag-
nitudes will appear in its decomposition R. This difficulty can be
circumvented by truncating sufficiently small values to zero, while still
retaining single-precision accuracy in the solution of the triangular
systems. (Truncation has the additional advantage of significantly
reducing the number of arithmetic operations required in computing
the entries of R when the number of data points is large.)

The program implementing this algorithm has been tested on an
IBM-370 computer using single-precision arithmetic, and has success-
fully smoothed up to 250 points before encountering detectable round-
off errors. On the average, the Newton and binary search converged
after six to eight iterations, independent of the number of data points.

XIl. SAMPLE PLOTS

The data points in Figs. 1 and 2 were generated by adding random
noise to an ellipse. The dotted curves represent cubic spline interpo-
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Fig. 2—Periodic cubic spline smoothing for a varying number of data points with
uniform weights.

lation of the data (using periodic splines), while the solid curves
represent cubic spline smoothing of the same data. In each case a
parameter was introduced so that the curve could be represented as
two separate single-valued functions of the parameter. Then smoothing
was performed twice, once with the x values as a function of the
parameter and then again with the y values as a function of the
parameter. The smoothed x and smoothed y values were then plotted
against the parameter to produce the closed curve. Figure 2 illustrates
the algorithm with a varying number of data points, from only three
distinct points to 250 points. In each case, uniform weights were used.
A “tight” fit was chosen in the example with three points to show how
the method can be used to simulate periodic interpolation of the

points.
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