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A process-oriented operating system, the Duplex Multiple Environ-
ment Real Time (DMERT) operating system, was designed for the
3B20D Processor and offers both real-time and time-shared opera-
tion, with emphasis on high availability. The design objectives and
architecture of the DMERT operating system and an explanation of
how the system performance is characterized are presented. A com-
panion article describes in depth the DMERT operating system

design.

. INTRODUCTION

The direct predecessor of the 3B20D, the 3A Processor, included a
real-time monitor known as the Extended Operating System (EOS).!
Experience with EOS demonstrated that applications could develop
their software with less effort and that synergy resulted between the
hardware and software developers. Hence, the hardware is optimized
to support the software and the software, in turn, uses the hardware in
the most effective manner. The success of EOS led to the decision to
support 3B20D applications with a more extensive operating system
than EOS. The operating system that resulted is known as the Duplex
Multiple Environment Real Time (DMERT) operating system.

The basic architecture of DMERT is based on an earlier system
named MERT,” which was derived from the UNIX* operating sys-
tem.® Both the I/NIX and the MERT operating systems were origi-

* Trademark of Bell Laboratories.
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nally developed to execute on commercial equipment; today UNIX
operating systems are used widely for time-sharing on a variety of
computers. The “D” in “DMERT” reflects one of the characteristics
that distinguishes it from the previous two operating systems, namely
that DMERT is designed to execute on a duplex 3B20 Processor.
Thus, the DMERT architecture draws upon concepts from EOS,
MERT, and UNIX operating systems.

The applications using the 3B20D Processor have been described in
detail in a previous article. Notice that while different, they have
several common characteristics. First, a major component of the
application is software. Second, the major mission of this software is
real-time oriented with response times as short as several milliseconds.
Third, each application has a need for continuous operation 24 hours
a day, 7 days a week and hence stringent processor availability require-
ments. Fourth and finally, each application is to be operated over a
long period of time, which requires extensive software for monitoring
and reporting on system status as well as changing and upgrading the
system while it is in operation.

This paper describes the development objectives of DMERT, which
were chosen to satisfy the above application characteristics. The
operating system architecture used to achieve these objectives is next
described. Finally, this article describes the performance characteri-
zation of DMERT. The design details of DMERT are presented in
depth in the next article® in this Journal.

Il. DMERT DESIGN OBJECTIVES
2.1 Support multiple real-time applications

It is necessary for the DMERT operating system to support many
applications, each with different real-time demands. Some applications
include data bases that need many disk jobs serviced quickly. Others
control telecommunication equipment requiring rapid response to an
event such as an interrupt and dedicated processing capacity for an
interval thereafter. To satisfy these diverse needs, a design objective
was established to provide modularity in the operating system to allow
a high degree of application tailoring.

2.2 Improve application development productivity

The real-time applications of the 3B20D Processor often have major
software components that are not time critical. The “rule of thumb”
stating that 80 percent of the time is spent on 20 percent of the
software generally applies to these applications. Hence, a design ob-
jective of DMERT was to support a feature-rich operating system
environment for the non-time-critical software while retaining real-
time responsiveness for the rest.
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To increase productivity of the developers, an objective of efficiently
supporting a programming language at a level substantially higher
than assembly language was established. (See the previous article® for
further details.)

To allow technology upgrading of the 3B20D Processor without
impacting the application software, an objective of shielding applica-
tion programmers from hardware implementation details, such as
memory protection’ and I/0O devices,*® was established.

2.3 Error tolerant design

To meet the reliability objectives of the 3B20D Processor, it is
necessary to support software packages for error checking and recov-
ery. Some of these are described in subsequent articles.">"” To reduce
the complexity of both the operational and recovery components of
the system, a design objective was established to separate recovery
software from the core of the system.

An objective of incorporating extensive internal consistency and
integrity checks within all software components was established to
ensure that critical software modules protected themselves from errors
in other parts of the system.

Ill. DMERT ARCHITECTURE
3.1 Processes

One of the basic design goals for DMERT was to build modular and
independent processes, each having localized data known only to itself.
Hence, the notion of a process is fundamental to the DMERT archi-
tecture, which is essentially composed of a kernel and a collection of
cooperating, concurrent processes. The following sections define what
a process is, how processes communicate with each other, and how
they are used by DMERT applications.

3.2 Definition of a process

A process is a collection of related, logical segments (programs and
data) that can be brought into memory to form an executable entity.
A segment is the basic memory entity in DMERT. A segment is
composed of 1 to 64 pages, each 512 32-bit words in length. Segments
can grow dynamically in increments of a page. A process consists of at
least three segments: code or text, a stack used for temporary data,
and a special type of data segment called a process control block (pcb).
The pcb segment contains unique information that identifies the
process to the operating system. This information includes the process
number, type of process, priority, and address space qualifiers that
define the virtual address space for a process. Each process has its own
virtual address space of up to 128 segments. These virtual addresses
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are mapped to physical addresses by 3B20D hardware under the
control of the DMERT operating system.

A process can be dynamically created to perform a set of functions
and then to gracefully terminate itself when its task is finished.
Processes that continuously perform work remain “alive” at all times;
however, they may sleep or be inactive until an interrupt fires. These
features allow main memory to hold only the processes necessary, at
a given point in time, to support the application.

3.3 Process types

DMERT has four basic types of processes: kernel, kernel process,
supervisor, and user. DMERT may be viewed as a hierarchy of virtual
machines, where successive levels put additional restrictions on access
rights and further remove the programmer from the details of the
physical machine. However, the higher levels may take advantage of
services provided by the lower levels. In general, the higher the level,
the more services available to the application programmer; the lower
the level, the more real-time-efficient the program execution. This
level structuring of virtual machines permits DMERT to manage real-
time applications, while at the same time providing the flexibility of a
time-sharing system for background tasks. This approach avoids con-
tention for system resources with the high-priority tasks and simplifies
the implementation effort for lower priority tasks.

3.3.1 Kernel

The DMERT kernel provides the most primitive virtual machine.
The kernel handles hardware interrupts, timer interrupts, and oper-
ating system traps. In all cases, the kernel saves the state of the
interrupted process, provides whatever service is requested, and then
restores the state of the interrupted process. The kernel services are
fairly primitive but they execute efficiently.

Also part of the DMERT kernel are special processes that provide
scheduling, memory management, and other services. For example,
the memory manager and the scheduler are two of the special processes
in DMERT. The memory manager loads processes into main memory,
selects segments to be swapped out to disk when additional main
memory is required, and provides routines that may be called by the
kernel. The scheduler controls the execution of time-shared processes,
that is, supervisor and supervisor-user processes. Special processes
behave as kernel processes, except that they do not have their own
virtual address space, but rather reside in the kernel’s address space.
These special processes communicate with the kernel through function
calls instead of operating system traps, and they have access to global
system data.

294 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



3.3.2 Kernel processes

Kernel processes comprise the next virtual machine layer in
DMERT. They are completely interrupt-driven and are designed to
provide time-critical processing in a real-time environment. Kernel
processes have their own virtual address space. However, they share
the kernel’s stack and the kernel’s message buffer segment. Swapping
is not necessary with kernel processes because their segments are
locked in memory to ensure rapid response to events such as interrupts.
The various peripheral device drivers and the file manager, which
implements a hierarchical file system, are examples of kernel processes.

At process build time, kernel processes are set up to share the
operating system’s stack and message buffers. This design was chosen
for quick access to arguments of operating system traps and fast
message communications between processes. Since kernel processes
use the kernel’s stack, they must run until they complete their task
and then return control to the kernel.

3.3.3 Supervisor and user processes

Supervisor processes form the third layer of virtual machine. These
processes can use all the services provided by the kernel and kernel
processes. Supervisor processes provide time-sharing services that can
be considered background tasks. They share the real time of the
processor with each other according to priorities administered by the
scheduler, which is a special process. In general, supervisor segments
are not locked in memory, but can be swapped out. Thus, supervisor
processes take much longer to dispatch than either special or kernel
processes.

Supervisor processes can be designed to run “stand-alone” or they
may be used to implement a fourth virtual machine layer called user
processes. The DMERT process manager is a supervisor process that
does not support a user level. However, the UNIX supervisor provides
a user environment identical to that seen by a UNIX program. This is
done through code at the supervisor level that calls upon the services
of lower virtual machine layers. DMERT can simultaneously support
multiple supervisors, each supporting its own user processes. It should
be noted that while DMERT treats a supervisor/user combination as
a single process with a dual address space, both levels exist concep-
tually. Also, supervisor-level code executes more efficiently than user-
level code because a supervisor has direct access to the lower level
primitives, while the user interface to these primitives is coordinated
by the user’s supervisor.

3.3.4 Interprocess communication

DMERT provides a rich set of interprocess communication and
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synchronization mechanisms including messages, events, interprocess
traps, and shared memory. These interprocess communication primi-
tives are fundamental to the DMERT structure. Most of the system
services are requested by an exchange of events and messages between
a requesting process and either a system process or the kernel.

3.3.4.1 Messages. Processes are in general separate and distinct
entities. Two processes working together on a task must be able to
exchange information. To satisfy this need messages may be sent from
any level process to any other level process. These messages can be up
to several hundred bytes long. The sender need only know the target
process number and a pre-agreed format of the message. An optional
acknowledgment capability is provided so the sender can synchronize

. actions with the receiver.

3.3.4.2 Events. Communications between processes may occur us-
ing an event mechanism. An event is a single bit that is set by DMERT
or a process and can be interrogated by the receiving process. Pres-
ently, 32 bits are available of which the DMERT operating system
reserves 16 bits for its use. Thus, two or more processes can commu-
nicate internal states using events.

3.3.4.3 Interprocess traps. A mechanism exists in DMERT to allow
a lower-level process to support a higher-level process. A user-level
process may trap to a supporting supervisor and a supervisor may trap
to a kernel process. Trapping implies a transfer of control from one
process to another with the passing of input parameters to the target
process. The lower-level process returns status and control back to the
trapping process after it has completed the required support work.

3.3.4.4 Shared memory. Processes are built with a view of their own
virtual address space and in general cannot access any other process’s
process’s address space. This affords protection; however, sharing large
amounts of data is difficult. Cooperating processes that must exchange
information at rates higher than those supported by messages or
events can share segments. A shared segment is a part of the virtual
address space of several processes simultaneously. The application
must control access to the shared data.

3.4 Multiple environment support of applications

DMERT simultaneously supports both a real-time and a time-
sharing philosophy. Kernel and kernel processes operate in a real-time
environment and have first call on the available real time of the 3B20D
Processor. The remaining time is shared among supervisor and user
processes. ,

Most telecommunication applications build their own virtual ma-
chine or “operating system” as a kernel process that can respond to

296 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983



the time-critical stimuli characteristic of telecommunications. This
kernel-process approach also allows fine tuning of the telecommuni-
cations operating system, independent of the DMERT operating sys-
tem. In at least one case, the application specific virtual machine is a
kernel process that runs in emulation mode. Being a microcoded
machine, the 3B20D Processor can efficiently execute another ma-
chine’s instruction set. By using the emulation mode, existing debugged
application code, including operating systems, can be carried forward
to the 3B20D Processor and DMERT with little additional software
development effort.

Some applications spread their functions over the existing DMERT
virtual machines. For example, the time-critical functions related to
disk and data link usage are implemented as kernel processes, and the
administrative and postprocessing functions are implemented as su-
pervisor and user processes. An application of this type is normally
used as a data base management system and/or a data communications
system. Generally, an application fine tunes its system by moving
processes to different execution levels within the virtual machines.

IV. PERFORMANCE

The 3B20D/DMERT system is capable of providing computing
services in a stand-alone mode; however, usually it is utilized by
surrounding it with application hardware, firmware, and software. The
application hardware may include additional units identical to those
already a part of the processor complex (e.g., additional memory, disk,
data links), or it may include hardware unique to the application
system (e.g., bus controllers, or time- and space-division switches).
The application software frequently includes drivers, schedulers, and
fault-recovery facilities, as well as the more usual “application pro-
grams.” As a result of this diversity of software interfaces to DMERT,
the performance modeling and measuring of the application system
requires an extensive performance characterization of DMERT, rather
than the more traditional benchmark approach used in general-pur-
pose, computer-performance evaluation. The following sections de-
scribe the approach taken and the type of performance data made
available to DMERT applications.

4.1 Performance characterization

Since the application software may interface DMERT at all levels
of the virtual machine (hardware, firmware, and the software levels of
kernel, kernel process, supervisor, and user process), the performance
characterization of the system must include data for all of these levels.
In addition, the application can make use of a variety of DMERT
system resources such as memory, peripheral devices, message buffers,
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etc, and hence these resources must be accounted for in the perform-
ance characterization as well.

The 3B20D performance characterization addresses four areas: the
operating system, input/output, DMERT services, and DMERT over-
head. Each of these areas will be discussed in more detail, and the sum
of these areas covers all significant aspects of DMERT performance,
as well as providing some models for the application developers to use
in the analysis of the application system performance.

4.1.1 Operating system characterization

The goal of the performance characterization of the operating system
was to identify the cost in resources for every service available at every
level. The predominant service interface in DMERT is the Operating
System Trap (OST), and hence every significant OST in DMERT was
characterized with respect to its central processing unit (CPU)-time at
the various modes and execution levels available in DMERT.

The kernel, supervisor, and user OSTs cover a broad range of
DMERT services:

(§) Timing: clock reading and setting, single and repetitive time-
outs, and process sleeping requests.

(it) Memory management: locking and unlocking of memory seg-
ments, growing and shrinking of memory segments, and swapping of
memory segments.

(iti) Scheduling and interrupting: protecting against interrupts
(critical region), priority changing, and fielding of interrupts.

(iv) Interprocess communication: interprocess message sending
and receiving, and sending and fielding of interprocess events.

(v) Process switching and other functions: switching from one
process to another, changing the execution level of a kernel process,
creating another process, faulting another process, routing and rerout-
ing of standard inputs and outputs.

4.1.2 Input/output system

The input/output (I/0) system of DMERT is characterized from an
internal point of view; that is, each of the kinds of I/O services are
characterized with respect to their primary resource consumption. The
various I/0 services are all measured with respect to the CPU-time
consumed for each transaction and the maximum throughput rate
based upon the elapsed time for each transaction.

A basic set of operations can be performed on most I/0 devices:
open, close, read, and write. Seeking is a disk-only service, and rewind-
ing is a tape-only service. Except for data links, read and write
operations can be invoked in several ways, depending on the physical
organization of the data on the device. Most file operations can be
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invoked directly or through the file manager. The devices supported
by DMERT include disks, tapes, terminals, and data links. Finally, the
disk I/O services can be invoked in several modes: normal (synchro-
nous, buffered I/0), asynchronous (which allows the invoking process
to continue running while the I/0 request is being serviced), physical
(no buffering constraints, or services) and synchronous writes (which
guarantee an immediate write to the disk, rather than the potential
delayed write possible in the normal mode).

Most of these I/O services are available to kernel, supervisor, and
user processes via separate OSTs. Each OST is characterized with
respect to CPU-time and maximum device throughput for each of the
applicable cases.

4.1.3 DMERT applications services

Application software may utilize high-level services from DMERT
as well as the more primitive OST-invoked services. The Craft Inter-
face' is an example of this general category covered by the term
DMERT services. The Craft Interface system provides an extensive
and sophisticated set of terminal-oriented facilities that are used by
both DMERT and the application software. Additional examples of
DMERT services are the diagnostic and audit facilities that are a part
of DMERT, but also may be invoked by application software.

Of these DMERT services, the Craft Interface has been character-
ized for performance owing to its importance to early DMERT appli-
cations. The performance characterization chosen was to measure the
CPU-time usage of the three most important application services: the
Program Documentation Standard (PDS) Shell, the Control and Dis-
play Administrator, and the Output Spooler. Each of these services
was measured with a range of appropriate job sizes.

4.1.4 DMERT overhead

The final category in the performance characterization of DMERT
is the system overhead. While system overhead is not invoked explic-
itly as a service, it provides the essential services of the operating
system. There are several types of system overhead:

(i) Functional: provides for the capability of a multi-environment,
real-time operating system by handling the timing-based facilities for
interrupt servicing, scheduling, craft terminal polling, and data link
polling.

(it) Sanity: provides for sanity and overload monitoring by reset-
ting hardware sanity timers, monitoring DMERT and application
sanity timers, and checking for process lock-out conditions.

(iti) Preventive maintenance: provides for routine preventive main-
tenance exercising and running routine software audits.
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(iv) Fault maintenance: provides for fault detection, location and
recovery, including removing faulty units from service, and testing and
restoring replacement units. This overhead is incurred only when a
fault occurs.

(v) Services: provides for other non-electable services not covered

by the previously described types, such as Craft Interface services and
Plant Measurements services invoked in providing the processor sys-
tem.
The DMERT operating system overhead is characterized in terms of
CPU time and is expressed as a percentage. The first two types of
overhead (functional and sanity) constitute the “continuous” overhead
seen by the application, and cannot be controlled or throttled by the
application. This component of the overhead is less than 5 percent for
DMERT. The preventive maintenance overhead can be controlled in
two ways: routine software audits can be throttled so that their peak
resource usage is limited to a desired value, and the routine diagnostic
exercising can be scheduled during times of light load. The fault
maintenance overhead is measured as a single-fault, worst-case sce-
nario for the fault detection, isolation, and recovery, as well as the
testing and restoral, of the repaired unit. The total resource usage is
averaged over the specified two-hour repair interval. The services
overhead includes the normal administrative activities necessary to
maintain and administer the processor complex. The total system
overhead for functional, sanity, preventive, and fault maintenance and
services is less than 15 percent for DMERT.

4.2 Performance measurement techniques

The key resource in the 3B20D/DMERT system, and in the appli-
cations systems built upon it, is CPU time. It is shared among many
processes, both DMERT and application, in four execution modes, at
16 execution levels and 256 priority levels. The sharing is interrupt
driven, with preemption from processes at higher priorities and at
higher execution levels. While it is relatively simple to measure CPU
time in an overall sense, it is a very complex job to measure the CPU
time used by a particular process, function, or service. To solve this
problem, the DMERT kernel was instrumented. Finally, hardware
monitors were used to measure the performance of the processor
complex, and also to verify the correctness and accuracy of the software
performance measurement instrumentation.

4.2.1 Kernel instrumentation

The DMERT kernel was extended to provide detailed accounting of
the CPU time usage (by execution mode and level) for the system as
a whole, and also for each process. To keep the overhead low enough
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to allow the instrumentation to be a permanent part of DMERT, a
statistical sampling approach was used. Each 10 milliseconds the
kernel records the process currently executing, together with the
execution mode and level, assigning the previous 10 milliseconds to
that process. Over a reasonable period of time (seconds or more) these
statistical sampling results will converge arbitrarily close to the actual
CPU time usage.

V. SUMMARY

An overview has been given for the objectives of DMERT based on
its goal of providing a high-reliability, real-time processor system for
telecommunications applications. This overview has indicated some of
the development objectives of DMERT and has given the approach
for the performance characterization of the whole system. Also in-
cluded is a description of the various kinds of operating system
overhead, including measured values for DMERT, and a description
of the performance measurement instrumentation within the DMERT
kernel.
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