Copyright © 1983 American Telephone and Telegraph Company
THE BELL SysTeEmM TECHNICAL JOURNAL
Vol. 62, No. 1, January 1983
Printed in U.S.A.

The 3B20D Processor & DMERT Operating System:

Field Administration Subsystems

By R. H. YACOBELLIS, J. H. MILLER, B. G. NIEDFELDT, and
S. S. WEBER

(Manuscript received March 10, 1982)

This article describes the field administration facilities of the
Duplex Multiple Environment Real Time (DMERT) operating sys-
tem, as provided on the 3B20D Processor. These facilities are: Recent
Change/ Verify, the subsystem that allows manipulation of office-
dependent configuration information; Field Update, the software
change mechanism; and System Update, the component used to
install a new generic program in an office. The article also includes
information on how these capabilities fit into the overall scheme of
field support in an in-service office environment.

I. INTRODUCTION

An integral part of high-reliability applications of the Duplex Mul-
tiple Environment Real Time (DMERT) operating system is the
administration of system hardware information and of software. This
includes both the initial delivery of the system as well as subsequent
upgrades. In DMERT there are three commonly used capabilities to
apply, track, and administer such changes. These are Recent Change/
Verify, Field Update, and System Update. They are listed in this order
according to decreasing frequency of field use and increasing impact
(typically) on the overall system. Each of these capabilities is designed
to permit display of some aspect of the current status of the system, to
change that status in a simplified and highly reliable way, and to either
reverse such changes or make them permanently a part of the system.
This article discusses each in turn, and provides examples of their use.
Each capability may form the base for an application-dependent
version of its function. These functions are discussed briefly in the rest
of this introduction.

323

The 3B20D Recent Change/Verify (RC/V) system provides the
ability to change and manipulate various aspects of office-dependent
information. This capability is focused on the system hardware and
software configuration and is based on the Low-Level Access (LLA)
Data Base System, whose operation is normally hidden from field-
site administrators. RC/V is used manually or automatically to verify
and change the hardware and software components known to the
system, and the ways in which they are interconnected.

Field Update is used to correct problems in the operation or func-
tionality of the system. Field Update is the official fix mechanism for
DMERT. Rapidly installed emergency fixes, as well as more routine
trouble corrections, may be installed into the software or other files in
DMERT via Field Update.

Finally, System Update, also known as Generic Update, changes a
major portion of the entire DMERT or application generic program.
In doing so, System Update may write over old generic information or
provide a completely restructured generic program image. Typically,
a new generic release will involve a new structure for RC/V information
as well, so RC/V may be involved with such an update. The following
sections provide more details on these fundamental administrative
capabilities of DMERT.

Il. RECENT CHANGE /VERIFY—LOW-LEVEL ACCESS DATA BASE

SYSTEMS

The 3B20D/DMERT System has provided a data base management
capability as part of the DMERT operating system. Built upon a Low
Level Access (LLA) data base system are the Equipment Configuration
Data Base (ECD), System Generation Data Base (SG), and the 3B
Recent Change/Verify (RC/V) and Data Base Evolution Systems.
This section describes these systems and their relationship to the field
administration environment. -

2.1 Low-Level Access Data Base System

The Low-Level Access Data Base System organizes and manipulates
data in a C-language environment. The name low level implies that
the system places minimal restrictions on its users: decisions about
data organization and retrieval are left to the application. LLA trades
user convenience for greater flexibility in data base design and per-
formance tuning.

LLA gives the user latitude in defining both data units and data
models and provides a powerful set of primitives to access the data.
System characteristics include:

(i) Data definition via a hierarchy of abstract types

324 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

(ii) Specification of data mapping from the data base to the user’s
buffers

(iii) Ability to select various access methods, i.e., logical organization
of subsets of data

(iv) Data access through a library of functions

(v) Isolation of operating system dependencies in a small number
of program modules.

Figure 1 gives a simplified schematic of the operation of an LLA
application.

2.1.1 Data definition

The Data Definition Language (DDL) is used to define the “shapes”
of records, the LLA data type for retrieval and storage. It also allows
user-defined “views” of the data base via data mapping, and the
specification of data models by associating records with access meth-
ods. The recognizer for the DDL, the Data Definition Language
Processor (DDLP), has many C-compatible features, such as common
syntax for preprocessor lines, comments, identifiers, constants, and
type definitions. The DDLP generates C code to implement data
mapping and C definitions, and a data dictionary to describe data

types.

2.1.2 Data manipulation
The Data Manipulation Language (DML) is a library of functions
that perform actions on instances of the data types defined by the
DDL. The DML provides the following facilities:
(i) Creation and deletion of instances of data types

DDL
PROGESSOR
C . USER
COMPILER C SOURCE
RECORD AND
DATA SET CREATION MAFPPING
DICTIONARY CODE
DATA BASE RETRIEVAL (| user PROGRAM
| [__pMmL LIBRARY

DDL — DATA DEFINITION LANGUAGE
DML — DATA MANIPULATION LANGUAGE

Fig. 1—Low-level access application.

FIELD SUBSYSTEMS 325

(ii) Retrieval and update of existing instances of data types

(iii) Gathering of information about existing data instances.

These categories exist for instances of data bases, sets, and records.
Generally, the lifetime of an instance of a data type starts with creation,
proceeds through several retrievals and updates, and ends with dele-
tion.

LLA is not used directly by a field administrator. Instead, the
creators of various LLA data bases, be they 3B20D/DMERT system
programmers or 3B20D application designers, provide appropriate
higher-level access to their particular LLA data base application.

2.2 3B20D Data Base Recent Change and Data Base Evolution Systems
2.2.1 3B20D data bases

The 3B20D/DMERT operating system has two major LLA data-
bases. The Equipment Configuration Data Base (ECD) describes the
processor and peripheral hardware configuration, while the System
Generation (SG) Data Base describes the system parameters, boot
processes, and disk image and ECD administration information. The
concept of a data base was adopted to eliminate redundant device
information, provide a unified approach to handling and accessing that
information, and provide easy methods for generating and changing it.

Records in the ECD data base represent the hardware devices in
the 3B20D Processor system, such as the Control Unit (CU) and
Input/Output Processor (IOP), and are logically linked in a manner
analogous to the physical linkages (see Fig. 2). In addition, records are
provided to organize physical devices as logical devices and to maintain
error counts for each physical device. To provide rapid access, the
ECD is always kept in main memory.

The information in the ECD and SG data bases is used by several
classes of users. The DMERT operating system, itself, forms one set
of using processes and includes the device drivers, processor and
peripheral diagnostics, and processor and peripheral fault-recovery
programs. The second class of users of these data bases is the human
user, whether that person be a Bell Laboratories’ application designer
adding new peripherals to the ECD or an operating company craft
preparing to add more memory to an on-line 3B20D in the field. Two
types of access have been provided for these two classes of users: The
DMERT operating system processes access the ECD through a collec-
tion of LLA primitives that provide rapid access to those specific items
required, for example, by the device drivers. Human users utilize the —
Recent Change/Verify system, which provides a forms-oriented input,
via a cathode ray tube (CRT) terminal. The user may create, change,
delete, or merely review the forms. Error and consistency checking is
provided at the time of initial entry and before storage into the data

base.

326 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

CCIO BUS

cuo 2| 3.6 7.9 10 151
o1 UNUSED INVALID r
I ! possiBLE
———————— || ADDITIONAL
| DmA's
| —
CHI cmzl cmal CHMI
I
Q
8
INTERNAL DEVICE = 0
DEV = 2
CHAN = 11
T 1
pevofcH11 111 2|1 3l i
o
o - I I I POSSIBLE
|
2 2 | 1| | ADDITIONAL DFC’s
e o | 1 | | ANDIOPs
Lod L_lJ
T
T 1
8 = } o | INTERNAL
Sl ol ____ 3] DEVICE = “SLOT"
E™ ﬁl E l"'_ E DEV = 2
= Ly CHAN = 11
1o TE ONTRO
o | INTERNAL _ C LLER
b g S 3 oy ! Tl || DevicE T PoRT
E o] < 2 [e B E = DEV = 2
= = “ oo - CHAN = 11
L1 L_dJ L
POSSIBLE
ADDITIONAL
TTYC's AND TTY's
CCIO — CENTRAL CONTROL 1/0 BUS IOP — INPUT/QUTPUT PROCESSOR
CH — CHANNEL MTTY — MAINTENANCE TERMINAL
CSU — CACHE STORE UNIT MTTYC — MAINTENANCE TERMINAL CONTROLLER
CU — CONTROL UNIT ROP — RECEIVE ONLY PRINTER
DEV — DEVICE SCC — SWITCHING CONTROL CENTER
DFC — DISK FILE CONTROLLER SCH — SERIAL CHANNEL
DMA — DIRECT MEMORY ACCESS TTY — TERMINAL
DSCH — DUAL SERIAL CHANNEL TTYC — TERMINAL CONTROLLER
EAl — EMERGENCY ACTION INTERFACE UC — UTILITY CIRCUIT

Fig. 2—Prototype 3B20D configuration.

2.2.2 3B20D Recent Change/Verify

The Recent Change/Verify system is built upon the LLA data base
management system and utilizes the LLA primitives for accessing and
managing its two DMERT data bases. There are three basic compo-
nents of 3B20D RC/V (see Fig. 3). The first is the front-end form
processing system. This component is known as the On-line Data
Integrity (ODIN*) subsystem. ODIN allows the various forms to be
specified through a series of CRT screen mask definitions and for each

* ODIN is a product of Western Electric Company.

FIELD SUBSYSTEMS 327

RC/V-3B

i_ - T T/
| |
'@ FORM PROCESSING
= SUBSYSTEM
- | ODIN |
e ¢ _1
¢ 1
| FTAM]
| ‘_, 1_1 FORM TRANSLATION
| | SUBSYSTEM
| CONVERT FORM-
| CODE DEPCEISI[E)EENT 1
L I 1_1] -————
s 1 |
| |
DATA LLA CRl-lE:NOgES |
DICTIONARY | | inTEGRITY |
| CHECKS |
I_J '_l } |
o | |
|
|
r— 71T - — — 4 |
| TRANSACTION
TRANSACTION BLOCK- |
| BLOCK 1/0 INTEGRITY |
| FUNCTIONS SUBSYSTEM |
_l

ECD — EQUIPMENT CONFIGURATION DATA RC/V — RECENT CHANGE/VERIFY
FTAM — FORMS TRANSLATION SDP — SOFTWARE DEMAND PAGING

LLA — LOW-LEVEL ACCESS SG — SYSTEM GENERATION DATA BASE
ODIN — ON-LINE DATA INTEGRITY

Fig. 3—Components of Recent Change/Verify.

of these definitions to contain certain syntactic information to be
checked upon entry. For the ECD/SG data bases there are 36 different
form types, each of which has an associated mask definition. Most
forms are either ECD or SG forms, but there are a few that are
directives for the RC/V or Evolution systems. For each form type
some error checking is provided. The second fundamental component

328 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

of RC/V is the Form Translation and Mapping subsystem. This takes
the output of ODIN and transforms it into LLA record definitions and
access functions. Then the LLA functions are used to actually manip-
ulate the data in the ECD and SG data bases. The third component is
the transaction block-integrity check subsystem. This provides a mech-
anism for checking consistency between forms. RC/V has implemented
the concept of a “transaction.” Two special forms delimit a transaction.
Upon processing a transaction-end form, RC/V invokes the integrity
checks as well as linking the new information into the data base.

As we stated earlier, the ECD that describes the running 3B20D is
always in main memory; however, there is also a copy on the disk. In
order for a change to be made permanent it must be applied to the
disk as well as the memory version. To maintain the integrity of the
ECD, changes are soaked on the memory version (test state) before
they are applied to the disk version (active). A special form has been
provided to perform this final step of activating changes to the disk
copy of the data base. Upon processing of this form, RC/V copies the
main memory copy of the ECD to the disk. To facilitate error checking
and correction, a journal file of all transactions is kept on-line and can
be printed on the Receive-Only Printer (ROP) at the request of the
office craft. Also, an error log file is maintained and a periodic audit of
the ECD structures is performed.

2.2.3 Data Base Evolution System

Because the release of a new 3B20D/DMERT generic is anticipated
to be associated with changes to the ECD or SG forms or the LLA
primitives, a system for transforming these data bases has been pro-
vided. The Data Base Evolution system (DBEVOL) allows this trans-
formation to occur in a regular and uniform manner without special
programs needing to be written. DBEVOL allows old data to be
restructured, new data fields to be added to existing forms, and old
data to be deleted or changed. DBEVOL also provides semantic hook
functions that allow applications to tailor some specific information
before completing the data base evolution.

DBEVOL has two types of steps. The first set is characterized as
pre-processing. Here a translation data base (also an LLA data base)
is built on a host support processor. The inputs are the old and new
form specifications (as used by RC/V) and a specification of the
changes in Form Translation Language. These inputs are supplied
with the new DMERT generic program. If semantic hook functions
are required by the application they are also an input to the final
translation data base. A translation data base matching the required
changes in the standard DMERT ECD is also released with new
DMERT generics.

FIELD SUBSYSTEMS 329

EVOL

FORM FORM DATA '
RETRIEVAL TRANSLATION AND ADDITION Fps
DECOMPILATION FTAM'
LLA/SDP TB/18
DB — DATA BASE
ECD — EQUIPMENT CONFIGURATION
DATA LLA"/SDP’
EVOL — EVOLUTION
ECD/SG FPS — FORM PROCESSING SYSTEM
DATA BASE FTAM — FORMS TRANSLATION AND
MAPPING

IS — INTEGRITY SUBSYSTEM
LLA — LOW-LEVEL ACCESS
SDP — SOFTWARE DEMAND PAGING ECD/SG

SG — SYSTEM GENERATION DATA BASE'

T8 — TRANSACTION BLOCK

Fig. 4—Evolution of 3B20D/DMERT Data Base Management System.

The second set of actions are run-time steps that produce a new,
evolved ECD/SG data base pair (see Fig. 4). The first step is a dump
of the old ECD using the “old” existing generic RC/V. This is produced
using one of the special forms provided by the RC/V system. Then
this snapshot of the old data base is translated into a snapshot of the
new data base. The “new” RC/V is then used to load the new data
bases into the proper LLA format for the 3B20D.

DBEVOL runs on both the support processor and the 3B20D giving
the using applications considerable flexibility in choosing a strategy
for performing data base evolution. The evolved data base is actually
put in place on the running 3B20D during the generic update scenario
described below.

lIl. FIELD UPDATE

Field Update, which is typically called “overwriting” in traditional
Electronic Switching Systems (ESSs), is the problem correction mech-
anism for DMERT. While overwriting usually applies specifically to
program bugs, Field Update may be used to correct any file on the
3B20D disk. Such files may contain human-readable text or binary

330 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

tables, for example. (In DMERT, files are structured like a UNIX™*
operating system file system.”) Field Update must perform this updat-
ing without disturbing call processing or other critical system functions.
Since operating systems do not normally support this style of updating,
some difficult technological problems had to be overcome in designing
and implementing Field Update. Some of these problems and their
solutions are described below, followed by a more general discussion
of the overall structure and use of Field Update.

3.1 Problems and solutions

Like most modern operating systems, DMERT supports the concept
of a process, which is a collection of tightly coupled executable pro-
grams. Programs are in turn broken down into units that perform
specific activities, called functions. Processes can communicate with
each other, generally at “arms-length,” and are normally protected
from each other by DMERT software and the 3B20D hardware and
microcode. Since Field Update runs as a cooperating set of processes
within DMERT, some highly specialized operating system interfaces
were required to break through this protection. Furthermore, the real-
time critical processes in DMERT or its applications must run contin-
uously [they are termed “non-killable” (NK)], so that they are always
available to process events quickly. The running process images of
such processes must be accessible and changeable in main memory,
again via special operating system functions.

Since a process is a collection of functions, the C-language’ function
was chosen as the unit of update. The implementation of field update
specified that there be a single reference point for each changed
function, so as not to require changes everywhere such a function was
involved. To solve this, the concept of a Transfer Vector (T'V) used in
ESSs was implemented within a process image. Figure 5 is an example
of a simplified process image showing this. In Fig. 5, the TV area
contains a list of the addresses of the process’s functions. When a
change is made to function f, the new version f’ is written into a special
“patch” area provided with the process, and the particular address in
the TV area is switched to point to f’ (see Fig. 6). This solution also
allows the fix to be backed out by changing the address in the TV
back to its original value. When the fix has been tested and is ready to
apply permanently, the space occupied by f can be made available for
future fixes (Fig. 7). While this concept is simple, introducing TVs to
DMERT had operating system implications down to the microcode
level. With T'Vs, the impact of introducing a new or changed function

* Trademark of Bell Laboratories.

FIELD SUBSYSTEMS 331

ADDRESS({f)

ADDRESS(g)

ADDRESS(h)

TRANSFER VECTOR

C FUNCTIONS

Fig. 5—Simplified DMERT process image.

ADDRESS(f")

f
f ADDRESS(g)
ADDRESS(h)

PATCH AREA g

TRANSFER VECTOR

C FUNCTIONS

Fig. 6—Function f replaced by function f’.

332 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

ADDRESS(f')
AVAILABLE
SPACE
¥ ADDRESS(g)
ADDRESS(h)
PATCH AREA 9
.
.
h
TRANSFER VECTOR
.
.
.
C FUNCTIONS

Fig. 7—Reclaiming the space occupied by function f.

has been restricted to a small, well-defined area of the process, making
this activity inherently more reliable.

Traditional operating systems do not have the ability to change a
critical function or process while the system is running. Since DMERT
is derived from such an operating system, many challenges were
encountered in providing the field update capability. Some specific
areas included:

(i) The ability to change a file both instantaneously and in a
temporary way. This is used in updating both non-killable processes
and more routine processes that can be terminated and restarted;

(i) Retention of sufficient symbolic information to properly update
the 3B20D disk-resident versions of processes (“pfiles”);

(iii) The ability to update C functions even though the old versions
of the functions had been suspended while field update was running;

(iv) The ability to change data contents or the structure of data
used by a continually running process;

(v) The ability to coordinate changes to functions within a process.

3.2 The use of field update

Field Update is an end-to-end concept within DMERT; that is, it is
involved with the development, distribution, installation, and tracking
of changes. When a process is first introduced into DMERT, or when
its subsystem architecture changes, the process developer must com-

FIELD SUBSYSTEMS 333

municate its characteristics to personnel who administer the DMERT
source programs. The developer also must create a script of commands
to be executed at a field site, which will be used to install, back out of,
or make permanent a fix to the process. Generally, this will be simple
to do because there are categories of existing process scripts, and new
processes will fit into an existing category (or a simple modification to
one will suffice). Once these steps are taken, the developer can depend
upon the DMERT administrative system® and specific Field Update
change development commands to remember these details. This ap-
proach standardizes the development of fixes so that each is handled
the same way, as opposed to being a unique activity. The primary
advantage comes when an emergency fix must be created quickly
without the extra burden of collecting procedural information.

When a developer has created a fix and tested it, the standard
change development mechanisms produce a package called a Broad-
cast Warning Message (BWM), which is used to transmit and install
the fix (see Fig. 8). System Test personnel use this package to test the

HDR SCANS MSGS UPDATE
FILE FILE FILE FILES
(UFs)

ACTUAL
CHANGE
INFORMATION

INFORMATION ABOUT
FILES IN THE BWM,
INCLUDING FILE
CHECK SUMS

SCRIPT OF
FIELD-EXECUTABLE
INSTALLATION
COMMANDS

BWM — BROADCAST WARNING MESSAGE
HDR — HEADER
MSGS — MESSAGES
SCANS — SOFTWARE CHANGE AND
INFORMATION NOTIFICATION SYSTEM
ABOUT THE CHANGE

T
FILES DESTINED FOR THE 3B20D DISK

Fig. 8—Structure of a broadcast warning message.

334 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

field updatability of the fix as well as its impact on the system in the
same way it will be installed at a field site (see the article on “System
Integration and Test” in this issue of the Journal). When testing is
completed, the fix can be packaged together with other fixes via
automated tools into an official BWM for delivery to application
project personnel, who will intermix it with application-specific BWMs
and send it on. During this packaging, the particular order of instal-
lation of specific fixes is indicated both within and across BWMs.

A BWM consists of a set of files in a UNIX operating system
directory, and can be transmitted via magnetic tape to a site. The Bell
System is standardizing on the Software Change and Notification
System (SCANS-II) as the official change distribution network, and
the files in a DMERT BWM are also compatible with SCANS-II.
DMERT also provides file reception software for use with SCANS-II.
Typically, personnel at a Switching Control Center (SCC) will inter-
rogate SCANS-II, recognize that a change is pending for one of their
associated field sites, and initiate transmission of the change to the
field site.

Once a change reaches a field site, it is stored in a staging area on
disk until it is manually installed. The developer-produced script of
commands is sent as part of the BWM (see Fig. 8), and is used by
office personnel to install the change. With a short sequence of
DMERT Field Update commands, the fixes can be:

(i) Installed

(ii) Tested

(iii) Backed out or made permanently a part of the system.

While a fix is being installed, an internal system error will result in
automatically backing it out; once it is soaking in a temporary state, it
may be backed out manually, or automatically if the system undergoes
a major recovery action.

Each field site maintains an on-line log of all Field Update activity
since the last System Update (see Section IV). This may be used to
verify the current state of the office as far as installed BWMs are
concerned, and is used each time a new change is installed to guarantee
proper sequencing of changes. Other Field Update-related utility pro-
grams in DMERT can be used to print out a C function-to-process
address map, and to verify that the main memory (executing) copy of
a process matches its image on the 3B20D disk (see Section 3.1).

By the facilities mentioned above, Field Update allows fix creation
in a style compatible with normal program development, prepackaging
of developer-approved installation scripts, fix coordination both within
and across BWMs, automated delivery and installation mechanisms,
and detailed change tracking. These capabilities make Field Update a
truly end-to-end DMERT change mechanism.

FIELD SUBSYSTEMS 335

3.3 Field update example

Let us presume for this example that a problem has been found in
the DMERT disk driver program, whose pfile is called dkdrv.o in
directory /bootfiles. The developer has constructed a fix and tested it,
and further system impact testing has verified it. The fix is given a
DMERT official BWM name of BWMB82-0028 (the first two digits are
the year, and the last four a sequence number), and is passed to
personnel in an application of DMERT, who approve it and send it
out as application BWM, BWMS82-0037. Once the fix has arrived at a
field site, it is installed via the commands shown in Fig. 9. The
descriptions below explain the commands:

(i) Request a printout of change information that field update has
logged against process dkdrv.o.

(ii) Prepare the site to receive the BWM. After SCANS-II receives
a command to send the BWM (not shown), it is transmitted automat-
ically to the site with data error detection and positive reporting.

(iii) Install the fix into the system.

(iv) Test the fix (coupled, perhaps, with manual actions).

(v) Make the change permanent and remove the BWM files from
the system. In this particular case the DMERT boot image is rebuilt
as part of making the fix permanent, because the changed process is
one of the system boot processes.

{(vi) Once again display the change status of dkdrv.o.

(vii) Print a map of C functions and their addresses for drdrv.o.

(viii) Reclaim the space occupied by old versions of C functions in
dkdrv.o.

The installation command mentioned above causes an entire set of
commands to be executed, those in the “install” section of the script
originally provided by the developer. An example of that script is
shown in Fig. 10, which shows the Messages (MSGS) file for BWM 82-
0037.

() UPD:DISPLAY; FN ‘‘/bootfiles/dkdrv.o’’!

(ii) IN:REMOTE:START!
VFY:BWM: 82-0037!

(iii) UPD:BWMNO 82-0037!
UPD:EXEC 82-0037: CMD APPLY!

(ivy UPD:EXEC 82-0037; CMD SOAK!

(vy UPD:EXEC 82-0037; CMD OFFICIAL!
CLR:BWM:ALL!

(vi) UPD:DISPLAY; FN ‘‘/bootfiles/dkdrv.0™’!
(vii) UPD:TRC; FN “‘/bootfiles/dkdrv.o’" : ALL!
(viiij UPD:AUD!

Fig. 9—Commands to Receive and Incorporate BWM 82-0037.

336 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

APPLY.
MRs: d8200002; DMERT BWM82-0028
UPD:UPNM BWMB82-0037;FN‘'/bootfiles/dkdrv.o’":UF"'/etc/bwm/82-0037/one.m""!
SOAK.
The fix(es) should soak for at least 1 days 00 hours 00 minutes.
It will be apparent that the fix(es) have been applied:
When no disk restore failures occur,
commands to soak the fix appear here.
BKOUT.
If the fix results in the need to reboot the system, the fix will
have been backed out automatically. If the fix does not result
in a reboot but otherwise does not work correctly, it can be backed
out by entering the command [s]:
UPD:BKOUT;UPNM BWM82-0037!
OFFICIAL.
UPD:UPNM BWMB82-0n37;0FC!
This will update the bootfile APPDMRT.

Fig. 10—MSGS file for BWM 82-0037.

IV. SYSTEM UPDATE

DMERT System Update provides a safe, reliable mechanism for
field personnel to introduce new versions of DMERT and application
software into 3B20D/DMERT systems, while minimizing service dis-
ruption. System Update differs from Field Update in the magnitude of
the program and data changes being installed. Normally, a system
update will replace all the software in the system with the release of a
new generic program, which is a complete reissue of DMERT and/or
application software and/or data. For this reason, system updates
always include a memory reinitialization with a full bootstrap (reini-
tialization of all processes and data from disk). Only the contents of
protected application segments, special memory areas where applica-
tion systems may retain critical information, are retained across the
boot. Since a system update includes a reinitialization, only the version
of the software on the 3B20D disk is updated. The main memory
images of system processes will then be re-read from the disk during
the bootstrap. This section describes how this disk updating is done
within DMERT, and gives an overview of the overall System Update
process.

4.1 System Update concepts

The DMERT System Update Program (SUPR) provides a way to
replace the entire contents of the 3B20D disk with a new version of
those contents from a magnetic tape. SUPR deals with masses of data,
and changes the disk contents section by section rather than file by
file or logical data base updates. These sections are called partitions.
To do this, SUPR takes advantage of the fact that the 3B20D disks
are duplexed for reliability, writing the new system information onto

FIELD SUBSYSTEMS 337

only one of a pair of disks. This is the off-line disk method of system
updating. It derives its name from the fact that one of a pair of disks
must first be removed from active service (taken off-line) before writing
the new system onto it. With the off-line disk method the amount of
redundant disk information is kept to a minimum during the update,
and the disk structure may be completely changed. There is some
increase in system vulnerability during the time that the disks are not
running in duplex mode.

Certain aspects of the system update procedure have caused unique
requirements and changes within DMERT. The key to the off-line
disk method is protecting both generic programs from being overwrit-
ten during the update procedure. Since these generics reside on duplex
disk mates, an off-line disk must never be restored to service. (The
restore process includes a copy from the on-line to off-line disk.) The
attributes of the “off-line” device state in the ECD were expanded to
provide this capability. After a bootstrap on a new generic disk image,
the disk copy of the old generic must similarly be marked off-line, and
hence protected from restorals. This was accomplished by having each
generic's ECD record the disks containing the other generic as off-line.

It was also necessary to be able to access partitions on an off-line
disk, in order to read or write partitions on an off-line disk, to transfer
files from the old generic to the new generic, and to perform recent
changes on the new generic ECD (for example, in marking old generic
disks as off-line). This was done by having the disk driver program
access the Volume Table of Contents (VT'OC)—the directory of the
disk’s contents—on the off-line disk during the update process. This is
a special case, since the VTOC on an off-line disk may be different
from that of its mate disk, or may not even be sane. When updating
multiple disks, SUPR uses a special disk identifier added to the VTOC
to ensure that the disk image being written corresponds to the infor-
mation on that disk. As another safeguard, System Update uses
checksums (special numbers computed from the data in a file) on the
generic tape to check the new generic data for damage before writing
it to the disk.

4.2 System update scenario

SUPR provides a complete update scenario, including a means to
reverse the update and re-establish the original system. Because of the
major impact on the application during a system update, the complete
update procedure is broken down into several distinct steps, and allows
the craft to choose the best time to begin each successive step of the
update. The update may be canceled at any step of the procedure.
Application-dependent processing may be introduced at any step.

338 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Under favorable conditions only the forward steps of SUPR would
be used, resulting in a successful update. These steps are:

(i) Enter new generic—Read all the new generic data onto the off-
line system disk.

(ii) Proceed with new generic—Make final preparations prior to
booting the system from the new generic.

(iii)) Boot from new generic—Manually boot the system using the
new generic.

(iv) Commit to new generic—Complete propagation of the new
generic into the system after the soak period by removing all aspects
of the old generic.

If the new generic does not work as expected, the craft would not
commit to it, but would start a backout procedure to return to the
original system.

SUPR also provides a convenient mechanism to allow application-
dependent processing at each step of the update procedure. This is
accomplished by transferring control to an application process that
can perform whatever actions are appropriate. The types of actions
most likely to be done as part of the application processing would be
to transfer data (files, data bases, office-dependent information) from
the old generic to the new generic or to save call registers and billing
information in protected application segments prior to suspending call
processing and booting from the new generic.

V. SUMMARY

This article has dealt with the subsystems of DMERT that admin-
ister changes to system data. Recent Change/Verify is used to change
system configuration data and its underlying data base, Field Update
allows “bug fixes” and logical file changes, and System Update will
install an entirely new version of the operating system. These subsys-
tems were described and examples given of their use. In each case
DMERT provides change application, testing, and rejection or accept-
ance capabilities in a context very similar to that of typical operating
systems, but in a highly reliable way.

REFERENCES

1. M. E. Grzelakowski, J. H. Campbell, and M. R. Dubman, “The 3B20D Processor &
DMERT Operating System: DMERT Operating System,” B.S.T.J., this issue.

2. D. M. Richie and K. Thompson, “The UNIX Time-Sharing System,” B.S.T.J., 57,
No. 6, Part 2 (July-August 1978), pp. 1805-29.

3. B. W. Kerninghan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, N. J. : Prentice-Hall, 1978.

4. B. R. Rowland and R. J. Welsch, “The 3B20D Processor & DMERT Operating
System: Software Development System,” B.S.T.J., this issue.

FIELD SUBSYSTEMS 339

I S ———

