Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 1, January 1983
Printed in U.S. A.

The 3B20D Processor & DMERT Operating System:

3B20 Field Utilities

By G. P. ELDREDGE and J. G. CHEVALIER
(Manuscript received March 10, 1982)

The term “field utilities” describes a number of tools used by
telephone company craft and support staff as well as Western Electric
and Bell Laboratories field support personnel for trouble-clearing
and routine maintenance activities on the 3B20D/DMERT system.
This complementary set of tools provides debugging coverage for the
system regardless of load or system functionality. In addition, it deals
with the challenges and complexities posed by the concepts of parailel
processing, virtual addressing, and swapping. This article describes
the various field utilities and discusses their capabilities.

I. INTRODUCTION

The term “field utilities” includes a number of tools used by tele-
phone company, Western Electric, and Bell Laboratories support
personnel to perform trouble-clearing and routine maintenance activ-
ities. Currently, software debugging and investigation tools include the
Field Test Set (FTS), the Generic Access Package (GRASP), and
IBROWSE, an interactive tool used to “browse” through the contents
of main memory. In unusual cases, a Micro-Level Test Set (MLTS)
may be used in a troubleshooting mode. The Program Documentation
Standard (PDS) Field Maintenance Commands are a collection of
tools used to perform more routine operational maintenance on the
operating system. Each of these capabilities will be described in this
article.

Il. TROUBLESHOOTING AIDS

The nature of large, evolving software projects is such that, despite
multiple levels of testing by developers, integration teams, system test
groups, and field site acceptance teams, some software “bugs” escape

341

Table |I—Comparison of 3B20D/DMERT debugging tools

Attribute/Tool FTS GRASP IBROWSE MLTS
Interference None Small, self- Small, not Extreme
regulated regulated
Scope of capabil- Medium High Low Medium
ities
Debugging level Assembly Assembly Assembly, Microcode, as-
source sembly
Limitations Limited on No special No break- Difficult with
kernel processes points, no supervisor or
or kernel trace user proc-
esses, no
data break-
points
Language C-like PDS, MML ADB-Like Terse
Target users Bell Labs, Operating Bell Labs, Bell Labs, WE
WE Co., Bell WE
Labs, WE
Target software ~ None DMERT DMERT Microcode
needed
Support proces- UNIX Oper- None None None
sor software ating Sys-
needed tem (FTS)
Hardware FTS, DUC, UC or DUC Terminal MLTS, termi-
needed terminal (optional) nal
Theater of use Limping or Running, Running, Lab, dead field
loaded field nonover- nonover- site
site loaded field loaded field
site site, off-
line

detection and are included in field releases of software. In the real-
time systems used in switching, the bug may be so subtle that it may
surface only under equipment configurations, telephone user actions,
and/or traffic loads not easily reproduced in a system laboratory
environment. System debugging tools must be available in a field site
carrying live traffic to solve these problems when they arise.

The 3B20D/Duplex Multiple Environment Real Time (DMERT)
operating system employs advanced computer technologies that re-
quire equally sophisticated tools to isolate errors. Parallel, time-sliced
execution of processes, virtual addressing, and swapping all contribute
to the need for a variety and diversity of system debugging tools. Table
I is a comparative summary of these various troubleshooting tools
available to field sites.

2.1 Field test set
In rare cases, a system problem could occur that leaves the system

342 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Fig. 1—Field test set.

functionally inoperative. In other cases, the traffic level may be so high
that system overload mechanisms become active when unexpected
results in the system indicate a software error. In either case, on-line
utility systems, which assume basic functionality and nonoverload
conditions, are not appropriate to isolate the problem. The Field Test
Set (FTS) was designed specifically to meet this need in the field. It is
strictly a monitoring device and therefore does not affect processor
performance or rely on system operability. This non-interfering char-
acteristic is extremely important when maintenance personnel are
trying to isolate problems at a field site carrying a heavy traffic load.
The FTS is a small, portable unit (see Fig. 1) that is easily trans-
ported and connected to the 3B20D Processor through the Dual-
Access Utility Circuit (DUC). The DUC contains hardware matchers
and a 2048 entry trace memory and provides access to the processor
for the FTS and GRASP (see Section 2.2). The external FTS unit
connects to the DUC through an eight-foot cable. The FT'S intelligence
is contained in this external unit that includes a microprocessor with
memory management, one megabyte of random-access memory
(RAM), and a cassette transport. User access is provided through a
local or remote terminal with phone access provided by the FTS.

FIELD UTILITIES 343

The UNIX* operating system was chosen as the FTS operating
system. There are many advantages to using an operating system on
the FTS and in particular the UNIX system. The FTS resident
software was developed and tested as individual modules written in
the high-level C language. This substantially reduced the software
development time and effort. Also, the UNIX operating system com-
mands provide substantial portions of the functionality required for
the FTS software. Although the UNIX system requires disk storage
for its file system, a disk system was not considered rugged enough for
portability. Therefore, a “virtual disk” is supported as part of system
memory. The UNIX operating system is booted into the system from
cassette tape by resident erasable programmable read-only memory
(EPROM) software. The EPROM also contains the unit’s self-diag-
nostic software.

The FTS/DUC system supports a rich variety of trace and data-
matching options. The lowest level trace, a so-called transfer trace,
records program addresses of all transfers executed by a program or a
range within a program. An intermediate-level function trace records
program function call/return sequences. At a higher level, a record
may be kept each time a different process begins execution. Multiple
trace modes can be active simultaneously. Information is recorded into
the trace memory under control of a variety of sophisticated matcher
circuits. Masking capability is provided so that a matcher can look for
a particular value of a single bit or groups of bits as well as word
values. Matchers are included for address, address range, data, access
type (e.g., read, write, or read/write) and process ID matching. When
a matcher or a combination of matchers is triggered, a signal is
produced that causes a “snap” of information into the trace memory.
The matchers and matcher combinations allow very selective trace
memory recording. This reduces both the size of the trace memory
required and the amount of post-processing necessary to interpret the
trace data.

The trace memory is operated in either a pre-trace or a post-trace
mode. In the former case, the trace memory records information until
it receives a stop trigger. The trace data represent program flow
leading up to a particular event. In the post-trace mode, the trace
memory starts recording upon receiving a trigger and stops when the
trace memory is full. This provides a history of program flow after a
particular event.

The DMERT operating system software is predominately written
in the high-level C language. C enables the programmer to work with
function-level rather than machine-level operations. To support this,

* Trademark of Bell Laboratories.

344 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

the FTS includes matching and tracing capabilities for software func-
tions and process IDs. Function tracing records the program address
and the data parameters passed on the stack to a selectable function
or range of functions. Process ID matching and tracing becomes
necessary in a virtual memory machine since processes are dynamically
relocatable in physical memory. Processes are assigned unique ID
values when they are created. The active process ID value is presented
to the FTS process ID matchers and trace memory. These matchers,
combined with the virtual address matchers, permit matching and
tracing on virtual rather than physical addresses.

Since the FTS is an external system, it is the appropriate choice
when problems must be investigated in code that has tight timing
constraints or in a system that is heavily loaded. Its most attractive
features are its excellent trace facility and the fact that the FTS
operates in a mode that does not interfere with 3B20D operation.
Although it was not designed to access machine registers or write
memory, the FTS is a powerful tool in the hands of support personnel
to isolate difficult system problems.

2.2 Generic access package

The concept of an on-line software debugging mechanism in real-
time machines is not new.' Software problems may occur when the
system is functional and processing traffic in a non-overload environ-
ment. Such problems can be solved in the 3B20D by use of the Generic
Access Package (GRASP).

GRASP is an on-site tool for software debugging. Since it supports
an interface to the DUC, GRASP provides a set of trace and data-
access trap functions similar to those provided by the FTS. In addition,
it provides the capability to place multiple breakpoints in code, to
print the contents of memory and many machine registers, and (with
some restrictions) to write memory and registers regardless of whether
the DUC is available or operating correctly. GRASP has a self-regu-
lating mechanism designed to prevent itself from taking too much real
time and thereby interfering with traffic processing or driving the
system into overload.

Since GRASP is “just another process” running on the machine, the
design presents some unique challenges. GRASP needs to be able to
identify the target process, assure that it is in main memory, and be
able to gain access to its address space.

A logical process is specified by a logical tag (called a “utility ID”)
that is compiled into the process. All incarnations of a logical process
will have the same tag since they all originate from the same object
file on the disk. The tag is stored in system tables when the process is
brought up and is available throughout the life of the process.

FIELD UTILITIES 345

Upon a request from GRASP, the operating system searches the
tables, prepares a list of real process tags (called “process IDs”) for
processes whose utility IDs match GRASP’s request, and sends the
list to GRASP. Translation between the utility ID, which is known to
the craftperson, and the process ID, which is known to the operating
system, is thus accomplished.

GRASP relies on cooperation with the target process to be informed
when the target process is in main memory. All processes that GRASP
may need to monitor must have two function calls compiled into the
code, which form the run-time communication mechanism with
GRASTP. One is placed in the process’s initial entry routine; the other
is placed to execute “on demand” by GRASP.

After a process has been selected, it is forced into main memory
through cooperation with the process. GRASP sends an agreed-upon
event to the process; its only response to that event is to call the
associated library function. That function identifies the process and
notifies GRASP that it is in main memory.

Access to the target address space is then accomplished by using
address translation hardware called Address Translation Buffers
(ATBs). The Program Status Word (PSW) for each process is con-
structed to be able to handle two address spaces at one time. The
identity of the address translation buffers being used by a particular
process are included in that process’s PSW. Instructions are provided
in the instruction set to indicate which of the two address spaces to
use. In addition, a special breakpoint instruction has been provided.
When the breakpoint is executed by the target process, GRASP’s PSW
is modified so that GRASP is given access to the address space in
which the breakpoint fired. This presupposes that GRASP and the
target process are using different address translation buffers; that
assumption is enforced by the operating system.

GRASP is especially useful when multiple breakpoints are needed
(GRASP can handle up to 20), when breakpoints must be planted in
several processes simultaneously, where register information is needed,
or when investigation must be done remotely from a central mainte-
nance facility.

2.3 IBROWSE

Neither the Field Test Set nor GRASP provides a mechanism to
examine the kernel address space. IBROWSE, an interactive tool used
only by Bell Laboratories and Western Electric support personnel, can
be used to peruse the address space of any DMERT process in main
memory; it fills the need to be able to view the operating system tables
and message buffers in the kernel address space. IBROWSE also can
be used on an off-line support processor to analyze tape dumps of main
memory taken at field sites.

346 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

IBROWSE can display the contents of virtual or physical memory
in a user-specified format. The user can direct that the raw machine
data be represented as any combination of null-terminated strings,
characters, or one-byte, two-byte (short), or four-byte (long) data types
in octal, decimal, or hexadecimal format. This flexibility to specify the
translation of raw data is immensely helpful when viewing DMERT
data structures. IBROWSE supports the concepts of current address,
next address, and current format, which are useful in displaying
consecutive memory locations. It can view any process in memory,
from kernel through kernel processes, supervisors, and user processes.
It has the ability to search forward or backward for a specified data
pattern, in either virtual or physical addressing modes. IBROWSE
also supports a user-defined macro facility and I/0 redirection.

The main strengths of IBROWSE are its ability to view the address
space of any process in main memory and its capability to analyze data
from an off-line Control Unit (CU). Since use of IBROWSE requires
relatively detailed knowledge of DMERT, its users are intended to be
specialized Bell Laboratories or Western Electric support personnel;
for that reason, no attempt has been made to make IBROWSE part of
the official DMERT release. Each time the support teams need it,
they load it into the target machine.

2.4 Micro-level test set

Should a problem result in a “dead” system or one that is continually
attempting automatic recovery actions and is unable to start the
operating system, the Micro-Level Test Set (MLTS) is used. The
MLTS is a low-level test system aimed primarily at hardware register
and microcode access. It consists of an interface circuit that plugs into
the 3B20D like any other board and an external control circuit. Since
the MLTS is equipped with an RS232 interface and a 212A data set,
it may be configured with a terminal on-site or may be operated from
a remote location.

The MLTS is the only field utility tool that provides read/write
access to all internal hardware and firmware registers and is the only
one that facilitates access to the processor’s microcode. The MLTS
provides microcode breakpoints, can read and write microstore and
main store locations, and can read and write machine registers that
are not accessible to other troubleshooting tools. Although its primary
use is in a laboratory environment, there are infrequent cases where
such capabilities are required to solve problems during field tests.

. OPERATIONAL UTILITIES

Since DMERT supports a hierarchical file system as well as the
concept of processes, some types of problems must be dealt with and

FIELD UTILITIES 347

resolved at the process or file-system level. For example, a process may
be running when it should not be or the file system may contain some
transient files that should have been cleared. The UNIX operating
system itself provides many utilities for process control and file system
maintenance; these same capabilities are needed in the Program Doc-
umentation Standard (PDS) syntax for Electronic Switching System
(ESS) applications.

PDS field maintenance commands can be described in three cate-
gories:

(i) File system manipulation and maintenance
(1) Process control

(i7i) Magnetic tape operations that are support-processor compat-
ible.

PDS commands are provided to allow the craft or support person to
determine what files exist on the disk and what their access permissions
are; the craft may alter the access permissions, add new files, or remove
existing files. A basic text editor is provided to facilitate creation or
modification of ASCII files. In addition, tools are provided to start a
process, stop a process, and to determine what processes are known to
the system.

Although these utilities do not fall into the class of “debugging”
tools, they nevertheless provide a window into the system at a high
level that is very useful to solve certain types of system problems.

IV. SUMMARY

Because of its architecture and technology, the 3B20D/DMERT
system presents a number of challenges to those who must isolate
problems in a running system in the field. Problems may be caused by
hardware failures, software deficiencies, microcode errors, or opera-
tional overloads and inconsistencies. A set of tools has been developed
to isolate problems that may occur in the field. Together, these utilities
provide a continuum of system trouble identification capabilities for
the 3B20D/DMERT system in the field.

V. ACKNOWLEDGMENTS

The authors acknowledge the contributions of Messrs. R. H. Holt,
J. P. Kehn, G. A. Moore, J. D. Peterson, and D. J. Thompson, and Ms.
C. A. Toman for their inputs, critiques, and reviews.

REFERENCES
1. G. F. Clement, P. S. Fuss, R. J, Griffith, R. C. Lee, and R. D. Royer, “1A Processor:

Control, Administrative, and Utility Software,” B.S.T.J., 56, No. 2 (February
1977), pp. 237-54.

348 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

