Copyright © 1983 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 1, January 1983
Printed in U.S.A.

The 3B20D Processor & DMERT Operating Systems:

Fault Detection and Recovery

By R. C. HANSEN, R. W. PETERSON, and N. O. WHITTINGTON
(Manuscript received March 18, 1982)

The 3B20D Processor is designed to be a high-availability system
for utilization in electronic switching systems. This high availability
translates into the development of numerous features and capabilities
for the 3B20D that distinguish it from other processors. The reliability
objectives for the processor are described and related to the subsys-
tems that have been developed to meet each objective. This article
discusses processor and peripheral fault recovery, system integrity,
and other software subsystems that provide the high availability and
maintainability for the processor.

I. INTRODUCTION

The 3B20D Processor has extensive maintenance subsystems asso-
ciated with it and is designed to meet the high-availability standards
of Bell System electronic switching systems. This implies that the
processor must perform within an objective of not more than two
minutes downtime per service year when used in an electronic switch-
ing application. The many subsystems that have been developed to
provide the high-availability capability are described in this article. In
particular, software and hardware fault recovery are discussed along
with the microcode assists for the recovery.

Much evolution has taken place in recovery architectures for elec-
tronic switching systems.'” Earlier processor systems used extensive
hardware-matching algorithms that resulted in intricate software re-
covery.™ More recent hardware technologies have enabled the cost-
effective design of processor systems with unique fault-detection ca-
pabilities."®® These capabilities have led to much simpler recovery
software. This article describes the detection mechanisms for the
3B20D and the software maintenance architecture.

349

Il. SYSTEM RELIABILITY REQUIREMENTS

The reliability objective for the 3B20D Processor system, as with
other similar systems, is to keep the overall system unavailability—
i.e., the time that the system cannot be utilized by operational (call
processing) functions—below 2.0 minutes per year.” In keeping with
the ESS processor tradition, the total system downtime is allocated to
four general categories: hardware, software, recovery, and procedural.

The processor has 0.4 minute per year allocated to malfunctions in
the system hardware. Like other highly reliable systems, the 3B20D is
equipped with redundant hardware units. Thus, failures must occur in
both redundant units before the system is unable to establish a working
configuration. In the case of simultaneous failures in both units, until
one is repaired and system integrity is reestablished, the system is
considered unavailable. This portion of the overall system downtime
is a function of the failure rates of the various components (FIT rate),
the system architecture, and the mean time to repair (MTTR). The
hardware reliability model for the 3B20D Processor within a given
application is dependent on the hardware configuration used and the
maintenance technique used (this determines the repair time).

The processor has 0.3 minute per year allocated to malfunctions in
the processor operational software. This is a classification of software
faults that can render the system features inoperative. This allocation
includes cases such as software faults that require a bootstrap to
recover the system. As in the case of other high-availability systems,
the 3B20D/DMERT system has a design objective of having no
software failures the system cannot recover from. To help recover the
system against software failures, DMERT has three levels of defenses
that attempt to recover the system from such faults: hardware protec-
tion, system integrity monitor, and audits. The 3B20D Processor has
several levels of hardware protection that detect the sanity of the
system software. The system integrity monitor in the DMERT system
has an elaborate scheme of software and hardware sanity timers as
well as overload detectors that protect the system against software
“resource hogs.” DMERT audits include all of the explicit audits in
the system as well as the defensive checks built into the common
processor software. The intent of the audits is to help defend important
processes against data mutilation.

The processor has 0.7 minute per year allocated to limitations in
fault-recovery programs. These failures are classified by the inability
of fault-recovery software to achieve a working configuration of the
system due to some hardware failure condition even if a working state
of the hardware is possible. These cases are characterized by the
necessity for manual intervention to reestablish system integrity or by
an automatic initialization to regain system integrity.

350 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

The 3B20D has a comprehensive fault-recovery scheme that at-
tempts to recover the system from all foreseeable single hardware fault
conditions. In several cases, recovery mechanisms are generated for
multiple fault situations (e.g., memory failures) when that is considered
to be a probable situation.

Finally, the processor has 0.6 minute per year allocated to procedural
errors. This category covers cases where a craft person uses an im-
proper maintenance procedure or follows a poorly designed procedure
that results in a machine outage. The 3B20D is designed with a
defensive craft interface using the PDS (Program Documentation
Standards) and MML (Man Machine Language) languages.® The craft
interface also includes emergency action and display-page capabilities
that attempt to simplify the complexities of maintaining the 3B20D.

The system reliability requirements also include the various aspects
of maintaining the 3B20D. These maintainability aspects include
diagnostics, transient error analysis, emergency recovery procedures,
routine maintenance procedures, growth and retrofit capabilities, sys-
tem and process update capabilities, and field utilities. Diagnostics are
provided to detect and assist the repair of classical hardware failures
in the system. The diagnostic requirements include sufficient run-time
performance so that a rapid repair can be carried out. Diagnostics
provide greater than 90 percent fault detection.

The ability to repair circuitry exhibiting transient failures is provided
through fault-recovery error reports. For example, data about transient
memory faults is printed out to the craft and includes address and
pack location where the error was detected. If that circuit pack
continues to have a history of transient errors, the craft has sufficient
information to effect a repair. Error analysis capabilities are provided
on the 3B20D through the use of fault-recovery messages and error
logs.

Emergency recovery procedures are provided to reconfigure the
system when automatic recovery does not succeed. These capabilities
allow the craft to repair the 3B20D in case of catastrophic failures.
These procedures include use of the emergency action page, processor
recovery message analysis, and dead-start diagnostics. Routine main-
tenance procedures are provided to keep the 3B20D in peak operating
condition. Growth and retrofit procedures allow hardware additions
and removals without affecting the system service. Finally, various
utilities are provided with the DMERT system to locate system
problems in field installations.

IIl. GENERAL RELIABILITY AND MAINTENANCE ARCHITECTURE

In this section, we provide an overview of the 3B20D fault-recovery
architecture that is described in further detail in later sections. Figure

FAULT DETECTION AND RECOVERY 351

1 illustrates the hardware architecture of the 3B20D. As is indicated
in the figure, the processor system has very loose coupling between
any of the mate subsystems. The memory to memory update coupling
is provided to keep both active and standby memories identical. This
allows the switching of processors without losing the integrity of the
software running on the system.

The other coupling between the processors is through the mainte-
nance channel. The maintenance channel provides two capabilities
important to the integrity of the processor. First, it provides a control
and communication bus for the purpose of diagnosing the off-line
processor from the on-line processor. Second, it provides low-level
maintenance control for fault-recovery programs so that a switch in
processor activity can be carried out with no operational interference.
In addition, other maintenance controls can be exerted over the
channel to start an initialization sequence on the other processor or to
stop execution on the other processor. One other coupling, the Dual
Duplex Serial Bus Selector (DDSBS), allows either processor to talk
to any peripheral controller. Thus, no matching techniques are utilized
between major subsystems or peripherals in the 3B20D for the pur-
poses of fault detection in the hardware. This means that unique fault-
detection techniques are essential in each subsystem of the 3B20D.

MEMORY UPDATE
MEMODRY MAINTENANGE MEMWORY
38 CONTROL CHANNEL 38 CONTROL
UNIT 0 UNIT 1
EMERGENCY A % EMERGENCY
ACTION —— ~~ ACTION
INTERFACE INTERFACE
DMA DMA
CONTROLLER CONTROLLER
0 1
DISK 1/0 PROCESSOR
CONTROLLER 1 1
DISK
CONTROLLER 1/0 PHOC?ESSOH
0
MAINTENANCE MAINTENANCE
TERMINAL 0 TERMINAL 1
OTHER 1/0 | OTHER 1/0
DEVICES — | DEVICES
MHD MHD

Fig. 1—The 3B20D system architecture.

352 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

To provide these detection algorithms, extensive use of local match-
ing circuits, parity techniques on all buses, Hamming detection with
single-bit error correction on the main store, cyclic redundancy codes
on the disks, and numerous sanity timers throughout the control unit
and peripherals are used as the primary fault-detection techniques. In
addition, routine diagnostics are used to detect failures in the fault-
detection hardware itself. Other routine sanity checks are used to
ensure that peripheral subsystems are healthy. Finally, system-integ-
rity checks catch certain subtle problems that are not caught by unique
detectors.

3.1 Fault-recovery architecture

When any of the unique detectors determine an error condition, an
error interrupt (or error report in the case of certain peripherals) is
registered in the processor. The most severe of these will result in
automatic hardware sequences that switch the activity of the proces-
sors (hard switch). Less severe errors result in microinterrupts that
enter microcode and software charged with recovery of the system.

The microcode and recovery software provides a layered approach
to the recovery architecture. Figure 2 illustrates this architecture with
microcode providing low-level access to the hardware while the recov-
ery software provides the high-level control mechanisms and decision
making. This technique has resulted in several hardware design mod-
ifications requiring minimal change to the recovery software.

Figure 3 illustrates the principal architecture and features provided
by the recovery software. The bootstrap and initialization routines
provide a fundamental set of microcode and software algorithms to
control the processor initialization and recovery. These actions are
stimulated by a Maintenance Restart Function (MRF), which repre-

FAULT
RECOVERY
CONFIGURATION DETECTION HIGH-LEVEL
INITIALIZATION CONTROL LOGIC CONTROL
T SOFTWARE
MICROCODE
MICRO- MICRO- l
MICROBOOT ACCESS SEQUENCER hg‘gaﬁ:&é
N
FUNCTIONS CONTROL ACCESS

Fig. 2—Maintenance software structure.

FAULT DETECTION AND RECOVERY 353

BOOTSTRAP AND INITIALIZATION

Microboot
Little Boot

PINIT
Big Boot
FAULT RECOVERY SYSTEM INTEGRITY MONITOR
Error Interrupt Handler Audits
Configuration Control Sanity Timers
Soft Switch Overloads

Restore/Remove

CONFIGURATION MANAGEMENT

Fig. 3—Maintenance architecture.

sents the highest priority microinterrupt in the system. An MRF
sequence can be stimulated from either hardware- or software-recovery
sources.

The fault-recovery and system-integrity packages control fault de-
tection and recovery for hardware and software, respectively. The
Error Interrupt Handler (EIH) is the principal hardware fault-recovery
controller. It receives all hardware interrupts and controls the recovery
sequences that follow. The configuration-management program (CON-
FIG) determines if this particular error is exceeding predetermined
frequency thresholds. If a threshold is exceeded, CONFIG requests a
change in the configuration of the processor to a healthy state. Thus,
CONFIG serves as an error-rate analysis package'® in the 3B20D
maintenance architecture for both hardware and software errors.

3.2 Software integrity architecture

Software fault recovery is very similar in architecture to hardware
fault recovery. Each major unit of software is expected to have asso-
ciated with it error-detection mechanisms (defensive checks and au-
dits), error thresholds (provided by the system-integrity monitor and
CONFIG), and error-recovery mechanisms (failure returns, data cor-
recting, audits, and initialization techniques). In addition, both SIM
(System Integrity Monitor) and EIH oversee the proper execution of
the process. SIM ensures that a process does not put itself into an
infinite execution loop or excessively consume some system resource
(e.g., message buffers). EIH, through the use of hardware and micro-
code detectors, ensures that processes do not try to access memory
outside of defined limits or execute instructions that are not permitted
to the process. Each process has initialization and recovery controls
(analogous to hardware) so that a recovery can be effected. Figure 4
illustrates the software-recovery architecture.

354 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

AUDITS SYSTEM-

DETECTION/ :" N '%ﬁfi‘c‘fﬂ"
CORRECTION N

(BASIC SANITY)

ENTRY INITIALIZATION <::
::> DEFENSIVE PROCESS N AND

CHECKS

RECOVERY

SPECIAL

RETURN

CODES ERROR
INTERRUPT
HANDLER
HARDWARE
MONITORS

EXIT

Fig. 4—Software fault-recovery architecture.

If recovery actions result in the removal of hardware units from the
system, diagnostics® are dispatched automatically to analyze the spe-
cific problem. Audits represent the software counterpart for diagnostics
with the exception that the routine interval is much shorter and
correction is possible in the case of audits. /

IV. FAULT RECOVERY

In this section, we describe the fault-recovery strategies associated
with the 3B20D Processor. In particular, we describe the fault recovery
and initialization strategy along with the microcode assists required to
carry out these functions. We also describe the manual control capa-
bilities provided by the processor and software. These control mecha-
nisms are termed emergency mode. Finally, we describe some of the
software audit and integrity techniques in the DMERT operating
system.

4.1 Fault recovery and system initialization

Fault-recovery strategies are based on the fault-tolerant architecture
of 3B20D. Major hardware units are fully duplicated. This duplication
provides a high probability that a combination of operational units can
be retained in the face of faults. The mate processors are only loosely
coupled; interprocessor connections are limited to the maintenance
channel and memory-update circuitry. This architecture forms the
foundation of the hardware-recovery strategy employed d in the 3B20D,
namely to 1solate an entire faulty processor as opposed to atternptmg

—————

DMERT is a modular operating system that provides a wide range \

FAULT DETECTION AND RECOVERY 355

of protection from various types of classical errors. Examples include
write-protected memory areas, memory ranges that can be used only
for text execution, and protected virtual address spaces. Thus much of
the recovery from these types of errors is built into DMERT directly.
Those overt recovery actions that are required are greatly simplified
by the underlying architecture. Hard faults and other conditions
requiring recovery actions are treated according to their severity. Fault
categories that will be described individually are hard faults, thresh-
olded faults, configuration faults, sanity time-outs, and software-re-
quested recovery actions.

The 3B20D has built in self-checking circuitry designed to detect
hard faults as soon as they occur. This circuitry simplifies recovery
since early fault detection limits the possible damage done by the
fault. Faults in this category indicate that the processor is no longer
capable of proper operation and results in an immediate stop of the
currently running processor and a switch to the standby processor.
Since the standby processor does not match the active processor
instruction by instruction, an initialization sequence is required to
start execution properly.

Some types of faults and errors are not severe enough to justify an
immediate stop and switch recovery action. Examples of errors of this
kind are hardware faults detected in the standby processor memory
and software errors such as write-protection violations. Another type
of error in this category is hardware faults that are handled by self-
correcting circuitry. Although most faults are detected by self checking,
some units, such as main memories, have fault rates that justify self-
correcting capabilities. Disks also are self correcting through the use
of cyclic redundancy codes. All errors in this class are reported to the
recovery system as error interrupts.

Recovery software classifies the interrupt by type, gathers and saves
all available information about the interrupt, and reports the error to
the system configuration-management package. If a particular soft-
ware process is suspect as the cause of the interrupt, such as in a
software-triggered event, the process that was running at the time of
the interrupt is faulted and entered at its fault entry after a stable
system configuration is guaranteed. The fault entry of a process
contains recovery and initialization sequences that are special to the
process involved.

All error interrupts are reported to configuration management.
Errors are logged against the failing unit and error rates are compared
to allowed error thresholds. If the affected threshold is exceeded,
further action is required and is based on several factors. If the faulty
unit is essential to the system and a mate unit is available, the faulty
unit will be removed from service and scheduled for diagnostic testing.

356 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

If there is no available mate unit, the faulty unit will be initialized and
returned to service since in the case of essential units it is better to
have a faulty unit than no unit. Nonessential units are removed and
scheduled for diagnostic testing whenever their error thresholds are
exceeded.

Each processor has a sanity timer that will result in an initialization
if it times out. The active processor maintains both its own and the
standby sanity timer so that if the active processor is completely dead,
an initialization of the standby processor will be triggered by a sanity
timer time-out.

The system provides an Operating System Trap (OST) for use by
software to request an initialization. This capability is used by critical
system processes when they encounter errors that preclude perform-
ance of a critical system function. Initializations occur when an error
or fault has been detected that cannot be recovered from without a
change in hardware and/or software status. A stop and switch to the
other processor may or may not be associated with any given initiali-
zation. All initializations include actions of varying severity depending
on what is required to deal with various faults and errors.

The first event in the initialization sequence is a hard-wired transfer
to a fixed location in the CU microstore where microcode makes a
decision as to whether to bring this processor on-line or to switch to
the other processor. If the current initialization is of level two or
higher, the appropriate processes and data bases are loaded from disk.
All available data about the initialization trigger is saved and a decision
is made to bring this processor on-line or stop for the off-line initiali-
zation.

The DMERT kernel initialization or bootstrap routine is then called
to restart system processes or to fault active processes as appropriate.
The initialization is now complete and the system has returned to
normal operation. If an initialization does not recover the system to an
operational state, another and more severe initialization will be trig-
gered automatically. Whether to escalate or not is controlled by the
initialization interval. Any initialization that occurs during a window
of time following the previous initialization will escalate to the next
higher level. The length of the initialization interval is a system
generation parameter that is established by the application. In addition
to the DMERT initialization levels, provision is made for an applica-
tion to specify between one and sixteen levels for each DMERT level.
For example, if the application specifies two levels for DMERT level
one, the normal execution of initialization levels would be (1,1), (1,2),
(2,1), ..., where the first number indicates the DMERT level and the
second number is the associated application level.

Data about various recovery actions taken by the system are sup-

FAULT DETECTION AND RECOVERY 357

plied to provide all possible information about what went wrong and
to provide data that can be used by maintenance personnel to assist
them in isolating difficult faults. Recovery data are provided in several
forms. Each error interrupt is accompanied by a printout containing
available information about the state of the processor when the inter-
rupt occurred. A more difficult problem is presented by initializations.
Since they are more severe than interrupts and in fact represent a
discontinuity in processing, gathering and preserving error data is
more difficult. Initializations, as well as interrupts, can occur at a rate
much too fast for data to be printed. The solution is to save all
pertinent data in a protected area of memory for printing after the
system has recovered.

Various kinds of error data are not generally printed as a part of the
standard system output but instead are saved in error files on the
system disks. Examples of this kind of data are device-driver errors
and failing-memory data. One of the more useful pieces of data output
by the system are Processor Recovery Messages (PRM). These are
low-level one-line messages that are printed in real time. The PRMs
thus represent progress marks through the recovery sequences and are
extremely useful in those cases where stability cannot be achieved or
postmortem data cannot be gathered.

4.2 Special microcode for recovery

A large fraction of the total amount of CU microcode is provided to
aid in recovery. The bulk of this recovery microcode is in PROM
because most functions are required in spite of the power history of
the CU or its boot devices. Functions that are required even if the CU
is not ready to execute its instruction set include microinterrupt
processing, maintenance channel assists so that one processor can
access the other processor and microcode to initialize hardware sub-
systems. Additional recovery microcode that resides in writable mi-
crostore (WMS), extends the processor’s instruction set to provide
convenient diagnostic and recovery software access instructions. When
diagnostic performance requirements do not justify a special instruc-
tion, a microstore scratch area is available that can be loaded with
arbitrary microsequences that can then be executed for special tests or
functions. Before software can run, the WMS must have been loaded
from disk. This happens initially as part of the processing of the MRF
microinterrupt.

4.2.1 MRF and microboot

When a maintenance restart interrupt occurs, a long sequence of
microsteps begins to establish system sanity. Both processors may be
in their MRF sequence at the same time and each one may try to

358 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

become the active processor. The MRF code first makes decisions on
whether to do an off-line initialization or an on-line initialization. If a
processor determines that it has just powered up, it clears main store
and does an off-line initialization unless forced on-line.

A number of tests are made on data in the system status register,
SSR, to select one of four possible actions: microboot, tapeboot,
processor initialization, or stop and switch. The simplest actions are to
begin execution of a processor initialization program called PINIT or
to stop and switch to the other processor. This is accomplished by
sending a switch command over the maintenance channel to the other
Processor.

Tapeboot is a complex sequence of microcode that is only done
when requested manually via the craft interface. Its function is to
create a new system disk from tape. Using the tape device and disk
device selected by the craft interface it initializes those I/0 units and
initializes the WMS from tape. A boot program, called load disk from
tape, is read from tape into main store, and memory-management
tables are created to allow it to run the hardware complex without the
operating system. This program then reads the tape to make a
DMERT disk image.

Microboot uses information on the DMERT disk to initialize the
writable microstore and read in the first software boot program called
little boot. To do this, it must first select the disk drive to use as a boot
device. If the craft interface has forced either the primary or secondary
boot device, it uses that device. Otherwise, microboot selects a disk
drive based on the state of hardware control bits. Alternate boots will
use alternate devices. Microcode is read from the disk and then copied
to WMS. Finally, little boot is read from the boot partition and given
control.

4.2.2 Microaccess assists

Although the MRF sequence is the most complex microcode recov-
ery assist, both diagnostics and recovery software have special micro-
code. There are six maintenance channel assists in PROM. They are:

Write Main Store

Read Main Store

Write Writable Microstore
Read Microstore

Write Utility Circuit

Read Utility Circuit

In addition there is microcode in WMS to support a set of instruc-
tions provided for the diagnostic and recovery software. Diagnostics

FAULT DETECTION AND RECOVERY 359

have instructions to manipulate the maintenance channel and aid in
I/0 diagnoses. They also share instructions with recovery. These
instructions include groups of instructions for:

On-Line Main Store Controller
Off-Line Main Store Controller
Maintenance Store Operations

Finally, both diagnostic and recovery software use privileged instruc-
tions (shared with the operating system) to read or write special
registers. They also can activate unit initialization sequences that are
used in the various parts of the MRF microcode.

4.3 Emergency modes

Emergency mode on the 3B20D refers to the facilities and proce-
dures provided to prevent the system from experiencing a total outage.
For example, emergency facilities are applied when the system is
unable to recover automatically. The most characteristic of these are:
duplex failure of the control unit, duplex failure of the system disks,
duplex failure of the essential I/0 devices, failure of fault recovery to
find a working configuration of hardware, software faults that will not
allow the system to operate properly, errors that destroy the integrity
of the disks, and software overwrites that introduce catastrophic errors
into the software.

Emergency mode capabilities are built into the system to address
these mechanisms that can fail the 3B20D as a system. The emergency
action interface (EAI) on the 3B20D provides for manual initialization
capabilities that can recover the system from several of the conditions
mentioned above. This interface allows the craft to select a processor
and disk configuration in a case where certain configurations may be
leading to the problem. The interface also allows the craft to recon-
figure the system to handle maintenance hardware failures. For ex-
ample, the craft can inhibit error sources and sanity timers through
EAI commands, thus allowing recovery from certain maintenance
failures even though both processors are affected. The EAI also
provides capabilities for craft initializations to deal with loss of sub-
system capabilities.

The 3B20D also provides the craft with other manual capabilities
through the port switch select, the disk power inverter select, and the
unit power switches. These can be used to reconfigure the system to
handle certain problems in the system. In rolling bootstrap conditions,
the 3B20D outputs diagnostic information through processor recovery
messages. This information provides a gross diagnostic capability in
the event of a complete system outage.

360 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

Tape load boot is an emergency procedure provided for the situation
where a system has destroyed its only valid copies on disk of the
generic software. Here the site would have a tape copy of the generic
and data base, and read the tapes into the disk via the EAI tape load
boot facility.

The final backup repair procedure is the dead start diagnostics.
Primarily used as an installation tool, the dead start diagnostics allow
for the repair of a completely sick processor by using a remote host
Processor.

The craft interface provides the mechanism through which the
status of the system can be determined, the configuration of the
system’s hardware or software can be changed, and special emergency
actions can be taken during catastrophic failures of system compo-
nent.® The emergency action interface (Fig. 5) allows the craft in the
field to access the system during times when a major portion of the
system is nonfunctional to the point where the normal capabilities of
the craft interface cannot be used. The limited capabilities of the
emergency action interface include forcing failing hardware off-line or
on-line, notification of the status of critical system resources, and
forcing a reinitialization of the system.

4.4 Software integrity

Section III described the architecture of the software integrity
system. In this section, we describe some of the specific audit and
overload measures that have been included in the DMERT system.

The DMERT audit package verifies the validity of critical data
structures. Most audits exist throughout the system within the proc-
esses that control the data to be audited. In some cases, several audits
are invoked consecutively to form a sequenced mode audit. Most
requests for running audits come from an audit control structure, i.e.,
the audit manager.

Audits in DMERT verify data, not functions. The basic types of
auditable data are system resources and stable data. Though most of
the auditable data in the operating system resides in the kernel,
additional data resides in other critical processes, such as the file
manager and device drivers. Smaller amounts of auditable data reside
in supervisor processes, such as in the UNIX* operating system and
the process manager.

Some audits, scheduled on a regular basis, are known as routine
audits; others, scheduled on request, are known as demand audits. A
partial list of the DMERT audits follows:

* Trademark of Bell Laboratories.

FAULT DETECTION AND RECOVERY 361

‘afed aowp1ejur uorjor Aoualiswrg—q Sy

1-3dY107 95 —WvHYd-1ddy [b LINIFL49 G1
0-3dV1017 SS ~—3Hav9-HNI [o dWNQ-WYd 82 I¥3-419 i
W3W + 1008 ¥S T INIFHY3-HNI [8¢
123+ 1008 €6 WH-14S-HNI [T o€ —dVHL-WHd 2292 INO4-H1D €l
1008 2§ —YHI-MQH-HNI (8 ve W EI “3WIL-HNISZ9Z LIY-INOA 2l
LINI 1S FEH 913N0D-NIW eSHAd SHEN “wsig-o3sezzz L-INO4 L1
1ddV 06 1004-dN¥2v8 [g “XSI0-14d 12 02 0-IN04 01
419 138 1-N2 0-N3 §19 138
~§93s
Y0 VO 6. 0090 00E8 0000 +2¥d L-WHd —1-yz LELBE INOJINNULLOY IS
90 90 6. LD00 LOLO 0040 003 0-WYd ~0-1¥3 0-n3
§ ALLW
T 30Vd NOILOV AINIDHIWI Y0-i26 Q3
NI Hd43d NI NI HNISAS 9144vHl
[T Wi L% HNIGI8 HMd/9018 HONIN HOPYIW TYDILIED HIW3 SAS
1£:0€:81 28/82/10 <ay 560z L4ING/8E 2 8V

362 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

(i) Message buffers—This audit finds and frees lost message buffers,
i.e., messages that have been on a process’s queue for extended periods
of time.

(ii) Scheduler—This audit checks for linkage errors in the sched-
uler’s ready and not-ready lists.

(iit) Memory manager—This audit recovers lost swap space and
corrects any overlap of swap space.

(iv) File manager—This audit checks all internal file manager struc-
tures: task blocks, buffers, mount table, etc. The audit corrects the
information and has the ability to back out an aborted task and free
its resources.

(v) File system—This audit is demanded by the file manager when-
ever a file system is mounted read/write. It checks and corrects the
file system’s super block free list, and free-block bit map. This audit
verifies the integrity of the mounted file systems concurrent with their
use.

V. MAINTAINABILITY

The maintainability of the 3B20D system is the second vital com-
ponent that guarantees the overall high reliability required of the
system. There are conditions where automatic recovery is unable to
restore the system to a fully functioning state. This is where maintain-
ability is critical to satisfying DMERT"s high-reliability requirements.
The basic premise of maintainability is to provide basic data-gathering
and data-analysis mechanisms as well as the ability to act on the
results of that analysis. These mechanisms must be able to collect and
analyze diagnostic and debugging information from various hardware
and software components within the system in order to isolate the
error. These mechanisms must then allow the craft to control and
modify the configuration of the system based on the diagnostic and
debugging information collected. Furthermore, these mechanisms
must yield their information as quickly as possible while disturbing
the rest of the system as little as possible.

Maintainability comprises such areas as diagnostics, transient-error
analysis, routine maintenance procedures, field utilities, and plant
measurements. Once the error has been isolated and analyzed, the
problem must then be corrected as quickly and benignly as possible.
This procedure is termed updatability, and it includes such aspects as
growth and retrofit for hardware, emergency fixes, function update,
and system update for software. Maintainability is quite naturally
partitioned into diagnostics (hardware) and the various field utilities
(software).!' However, central to the ability of the craft to maintain
and control the 3B20D hardware and software is the ability to interface
to the various maintenance facilities provided within the system. This

FAULT DETECTION AND RECOVERY 363

Ly

is one of the very important capabilities of the craft-interface system.
The craft interface provides the craft and others with the means to
request diagnostics, receive error-analysis reports, initiate emergency-
recovery procedures, gather plant-measurements data, and exercise
routine maintenance programs. In addition, the craft-interface system
allows configuration control by providing access to growth and retrofit
procedures, system- and function-update capabilities, emergency-fix
facilities, and the various field utilities. This section discusses the
capabilities of the subsystems, which provide basic maintainability of
the DMERT system. Diagnostics are discussed in Ref. 9.

One component of the maintainability required of DMERT-based
systems is the ability of these systems to accept hardware and software
changes in a way that does not interfere with their primary tasks. In
other words, a DMERT-based system must be able to accept changes
without disturbing call processing, networking, or other critical func-
tions. DMERT supports this through several aspects of updatability.
The first is growth; the ability to add or remove hardware and related
software components to the running system. Growth extends from
physically connecting new equipment—such as memory boards—
through informing the system of its existence, exercising it, logically
connecting it into the system’s configuration, and committing its use
in the system. Other subsystems—such as a hardware and software
fault recovery and diagnostics subsystem—then take over to ensure
that the new system component continues to be sane and usable.

The second aspect of updatability is retrofit: the ability to replace
hardware components in the system with similar components of a
different vintage or with different capabilities or interface character-
istics. Retrofit procedures may “de-grow” or remove old units and
then grow or add new ones. They also may add the new units first and
then perform a transition from the old units to the new. Thus, retrofit
of units may involve extensive periods of time where old and new units
coexist in the system. Retrofit may also involve substantial software
changes to interact with new units and to recognize the existence of
both old and new units.

The third component of updatability, field update,' deals exclusively
with software and data file changes in DMERT. Such changes are
done logically, on a file-by-file or functional level. Just as with growth
and retrofit, field update can install or replace system programs or
files, inform the system about them, logically connect them into the
system, exercise them in that state, and then commit to or back out of
them. Field update is intended primarily for installing fixes or small
features that do not perturb the system’s architecture.

The fourth updatability component, system update, allows program
and data changes of much greater magnitude, up to complete software

364 THE BELL SYSTEM TECHNICAL JOURNAL, JANUARY 1983

system replacement. A bootstrap is required to install the changes for
any system update. By using disk redundancy or backup copies of
sections of DMERT"’s disks, system update can prepare a new, partial,
or total version of the system on disk and then switch to it (and back,
if necessary). Where field update performs a logical change of files,
system update does a physical change of a set of partitions (file systems
and/or file partitions).

VI. SUMMARY

This article has described the basic architecture of the fault-recovery
and system-integrity subsystem for the 3B20D Processor. THese sub-
systems are tied into the maintainability aspects of thg processor. All
of the features provided are responses to the reliability objective of no
more than two minutes downtime in each year of service. The features
and architecture continue in the tradition of former high-availability
processors.

VIl. ACKNOWLEDGMENTS

The authors thank D. G. Gilbert, G. T. Surratt, B. G. Niedfeldt, and
D. J. Fitch for their assistance with various sections of this article.

REFERENCES

1. R. C. Hansen, “System Reliability Strategies,” Proc. Nat. Elec. Conf., 35 (1981), pp.
40-51.
2. P. D. Carestia and F. S. Hudson, “No. 4 ESS: Evolution of the Software Structure,”
B.S.T.J., 6, No. 6 (July 1981), pp. 1167-1201.
3. R. W. Downing, J. S. Nowak, and L. S. Tuomencksa, “No. 1 ESS Maintenance
Plan,” B.S.T.J., 43, No. 5 (September 1964), pp. 1961-2019.
4, P. W. Bowman et al., “1A Processor: Maintenance Software,” B.S.T.J., 56, No. 2
(February 1977), pp. 255-87.
5. T. F. Storey, “Design of a Microprogram Control for a Processor in an Electronic
Switching System,” B.S.T.J., 55, No. 2, (February 1976), pp. 183-232.
6. M. W. Rolund, J. T. Beckett, and D. A. Harms, “The 3B20D Processor & DMERT
Operating System: 3B20D Central Processing Unit,” B.S.T.J., this issue.
7. Jonas Butvila, “Reliability and Its Impact on System Design,” Proc. Nat. Elec.
Conf., 35 (1981), pp. 43-7.
8. M. E. Barton and D. A. Schmitt, “The 3B20D Processor & DMERT Operating
System: Craft Interface,” B,S.T.J., this issue.
9. J. L. Quinn and F. M. Goetz, *The 3B20D Processor & DMERT Operating System:
Diagnostic Tests and Control Software,” B.S.T.J., this issue.
10. M. M. Meyers, W. A. Routt, and K. W. Yoder, “No. 4 ESS Maintenance Software,”
B.S.T.J., 56, No. 7 (September 1977), pp. 1139-67.
11. G. P. Eldredge, and J. G. Chevalier, “The 3B20D Processor & DMERT Operating
System: Field Utilities,” B.S.T.J., this issue.
12. R. H. Yacobellis, J. H. Miller, and B. G. Niedfeldt, “The 3B20D Processor &
DMERT Operating System: Field Administration Subsystems,” B.S.T.J., this

1s5ue.

FAULT DETECTION AND RECOVERY 365

