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We describe a model for special-service circuit activity to assist in forecast-
ing, provisioning, and “churn” studies. We assume that customers order a
random number of circuits for an exponentially distributed period of time and
that the rate of new connect orders grows exponentially with time. These
assumptions yield simple formulae giving the means and variances of the
number of active circuits at a future time and the total number of connected
and disconnected circuits during a future period. Distributions of these vari-
ables can, in principle, also be computed. There are three important parameters
characterizing the model: growth rate, disconnect rate, and batchiness; we
describe their physical meaning and discuss methods to estimate them. This
document describes the analytical portion of an effort to develop a model
based on the physics of special-service circuit activity.

I. INTRODUCTION

The purpose of this paper is to describe a model for special-service
circuit activity to assist in forecasting, provisioning, and “churn”
studies, which can be summarized by a few parameters that have a
physical interpretation. The calibration and measurement of the fit of
this model to data in a New Jersey Bell database is being pursued
simultaneously and will be reported elsewhere.

The model treated here is derived from a priori consideration of the
physical behavior of customers. It is based on the assumption that the
number of active circuits, although growing, is in some sense in
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equilibrium as well; that is, certain characteristics of the system are
not changing. This is to be contrasted with a model proposed by Nucho
in which transient analysis is fundamental.' The primary difference
between these models is that the demand rate for new circuits is a
function of the number of active circuits in the Nucho model, whereas
it is considered to be an exogenous variable here. In the Nucho model,
the variance to mean ratio of the number of active circuits increases
indefinitely with time (since fluctuations tend to feed on themselves);
in the model considered here this ratio remains constant. Another
difference between the models is that the model described here allows
an order to be for more than one circuit.

Here, we assume that (1) the arrivals of special-service circuit orders
are given by a nonhomogeneous Poisson process with exponentially
growing intensity, (2) each order is for a random number of circuits (a
batch) with arbitrary distribution, and (3) the lifetime of an order is
an exponentially distributed random variable, during which time the
number of held circuits per order remains constant. Note that the last
assumption implies that an order lifetime and a circuit lifetime have
the same distribution.

We use three important parameters in special-services modeling,
each with its own physical interpretation. These parameters may be
described as growth rate, disconnect rate (per circuit), and batchiness.

The growth rate summarizes the rate at which the mean number of
active circuits increases with time. It may be expressed in terms of
proportion increase per unit of time; we denote it 8. Thus the mean
number of circuits at time ¢ is proportional to e”. We actually assume
that connect activity grows at rate 8, but it turns out that the number
of active circuits, the total connect rate, and the total disconnect rate
are all proportional to e” in this model. Of course, for small growth
rates or short periods of time, exponential growth is very close to
linear growth.

The disconnect rate, denoted u, is the ratio of the number of
disconnects per unit time (i.e., the total disconnect rate) to the number
of active circuits. The mean circuit lifetime is then 1/u. The distribu-
tions of circuit lifetimes have been shown to be well approximated by
negative exponential distributions;> thus the disconnect rate does not
vary with the age of a circuit.

The batchiness of the arrival process is related to the tendency of
special service circuits to be ordered in multiples greater than one. We
call the batchiness parameter » and define it to be the ratio of the
second moment to the first moment of the number of circuits in an
order.

The ultimate goal of this modeling process is to provide a tool that
can be used to predict special-services needs in the future. The model
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contained herein should be very useful in this regard. One should
remember that the underlying process is stochastic so that there is a
fundamental uncertainty even if one has exact specification of the
parameters of the model. The standard deviation of future require-
ments can be quite large compared to the mean for small circuit
groupings, and this presents a major problem for provisioning at the
most detailed level. This problem cannot be surmounted with a better
model and/or additional data collection. The present analysis allows
quantification of the fundamental uncertainty of forecasting, an in-
sight which is difficult to obtain purely by statistical methods. The
only possible method to further decrease relative uncertainty is to
aggregate demand, or to obtain advance knowledge of connect or
disconnect activity (sometimes called “deterministic events”).

The rest of the paper is organized as follows: Section II summarizes
the important results of the paper, giving formulae for the means and
variances of the number of active circuits in the future, the total
number of connects in a future interval, and the total number of
disconnects in a future interval; and giving statistical methods to
estimate the fundamental parameters of the model such as growth
rate, disconnect rate, and batchiness. The reader not interested in the
derivation of these results may stop at this point.

The predictions (summarized in Section II) of the model are derived
in Section IV. These derivations are primarily substitutions into
formulae given in Section III. Section IIT describes and analyzes a
much more general model than the one described in this introduction
(we refer to the latter simply as “the model”). We have chosen to
introduce this generalized model for two reasons. First, the analysis
required for the treatment of the generalized model is little different
in complexity from that required for treatment of the specific model.
Second, the general results of Section III allow rapid exploration of
the consequences of changes in assumptions of the model. For example,
one can explore the effects of linear growth of demand, or the super-
exponential growth in demand which follows introduction of a new
service. However, we do feel that the original assumptions are appro-
priate in most circumstances. Thus, the consequences of this model
are the only ones summarized in Section II, and it is this specific
model which is being verified with respect to the New Jersey Bell
Telephone Co. database. Thus, Section III is provided for reference in
case of non-typical special service applications.

Section V derives the statistical methods (summarized in Section
II) for estimation of the fundamental parameters of the model. Section
VI is a summary.

Appendix A gives background information on the compound Poisson
random variable, and Appendix B gives background information on
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the non-homogeneous Poisson process. These results are needed in
Sections III and IV.

Table I presents values of a function useful in estimating growth
(see Section II) and Table II lists the notation used in the paper.

Il. SUMMARY OF KEY RESULTS

This section provides a summary of the important results of the
paper derived in Sections IV and V.

2.1 Churn

Our model depends on three physical parameters: growth rate (8),
disconnect rate (), and batchiness (v). The meaning of these param-
eters is described in Section I. Another physical parameter is “churn,”
which has been defined in many different ways. For any reasonable
definition, the churn is determined by the growth and disconnect rates
of the model. We define the churn to be the minimum of the disconnect
rate per circuit and the connect rate per circuit, and denote it by .
With this definition, it can be shown [see (75)] that

v = min(u, p + B). (1)

The values of churn under other definitions are also readily available.
For example, if one defines churn to be the ratio of the average total
connect rate to the average rate of change of net active circuits, then
this value of churn is (1 — v)~%. Under still another definition, the
churn equals u/(x + B).

2.2 Mean and variance of total active circuits at a future time

Here we give the mean M(t) and the approximate variance V(t) of
the number of circuits in service at a given time ¢ in the future. The
mean and the variance depend on the present (at time ¢ = 0) number
k of circuits in service, the present instantaneous rate D, of circuit
demand due to new orders, and the three key parameters described
previously: 8, u, and ». We give these two relationships below:

M(t) = ke™ + #%5 (e — &™), (2)
and
Vi) = v [ke"“(l —e™) + D, (e —e™ )]. (3)
n+B

It is interesting that (2) and (3) together imply the relationship
V(t) = »(M(t) — ke™*), (4)
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which relates the variance of a forecast to the mean of the forecast,
the number of circuits currently active, k, and the parameters » and .

2.3 Mean and variance of the total number of connected or disconnected
circuits in the future
Similar results are available for the mean and variance of the total
number of connected circuits (variables subscripted with a C) and the
mean and variance of the total number of disconnected circuits (sub-
scripted with a D) in an interval of length ¢ beginning immediately:

Me(t) = % (e — 1), (5)
D,
Ve(t) = v 3 (e — 1) = vMc(t) (6)
= — p Mt _D"”_ At
Mp(t) = k(1 — e™) +5(i-! + ) e
D, _. D,
* u+B° B’ ™
and
S RSP VPN S 3
Vp(t)—v{ke (1-—e )+ﬁ(#+ﬁ)e +M+Be 3
= p(Mp(t) — ke 2*). (8)

In this case, the total numbers of connected and disconnected
circuits are dependent random variables.

We may also obtain the coefficient of correlation p between the
number of active circuits at different times

p[Y(t), Y(t + T)] = e_(ll"'ﬂlzh, (9)
where Y(t) is the number of active circuits at time ¢.

2.4 Estimation of the model parameters

To use results such as (2) through (9), we must be able to estimate
the parameters 8, D,, v, and u. These questions are addressed in
Section V; we provide a brief summary here. Suppose that the system
has been observed over the interval [—0, 0] and n connect orders are
observed at times t,, ..., t,. Form the statistic

S = i ti/n@ + 1, (10)

i=1
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and then the maximum likelihood estimator B for the growth rate g is

B = f (S), (11)

where f is the function given in (79). Values of ' are available in
Table I. Once 3 has been obtained from (11), the estimator D, for the
instantaneous present demand D, (assumed to be at the end of the
interval of observation [—0, 0]) is

A nB -

D, = N,

1—e® (12)

where N is an estimator for the average number of circuits per order
and is equal to the average number of circuits actually observed per
order. The estimator » for the batchiness v of the order size is

L Ky
k=

2 ki
k=1

—

(13)

=
Il

where i, is the observed number of existing orders of size k. The
estimator i for the parameter p can be obtained as the average
disconnect rate for observed circuits

b= (14)

'*IS

where m is the total number of disconnects observed, and 7 is the sum
of the observed connection times for all circuits; u can also be obtained
from estimators of the churn and growth rate through the use of (1).

Estimation of these parameters from data supplied by New Jersey
Bell Telephone Co. is being investigated. Estimates of the dlsconnect
rate i by service family are available in the Reed and Smith paper,’
in which it is shown that the lifetimes of special-service circuits are
well approximated by exponential functions with means dependent on
the service families.

1Il. A GENERALIZED MODEL

This section treats a model that is more general than that which we
propose for special-service activity in most cases. The analysis pre-
sented here will be applied to the specific model in Section IV.
3.1 Description of the generalized model

We examine an arbitrarily defined category of special-service cir-
cuits (for example, circuits of a particular service family in a given
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wire center) and divide the active circuits into independent groups.
Possibly, each group is the demand from a single user, since it is
reasonable that the activity of one user does not affect another. To
facilitate this method of thinking we shall refer to the groups as
“orders.” Each order becomes nonzero for the first time at some point
in time (referred to as the arrival or connect time of the order) and
then has some history of changing size in some arbitrary manner
before possibly becoming zero again indefinitely at some time (the
departure or disconnect time of the order). The length of the interval
between the arrival and departure of an order will be called the lifetime
of the order. Obviously, the number of active circuits at any time
equals the sum of the sizes of the existing orders at that time.

We assume that there is a large pool of customers (or potential
orders) so that the arrival of an order has little effect on the potential
arrival of others. Thus, the arrival of orders can be modeled by a
nonhomogeneous Poisson process, whose intensity at time ¢ is given
by some function A(¢). For background on this process see Ross® or
Karlin and Taylor.* Denote the probability that an arriving order at
time ¢ is initially of size m as g..(t), and let P}..(t, x) be the probability
that an order arriving at time ¢ of initial size m as becomes size n at
time x = ¢.

3.2 Distribution of the number of active circuits at a given time

Since the orders are noninterfering it can easily be seen (see Appen-
dix B) that the number of orders of size n at time x is Poisson
distributed with mean «,(x), where

an(x) = X J: M)gm(t)Pra(t, x)dt, (15)

and that the numbers of orders of different sizes at time x are
independent of each other. If Y(x) is the total number of active special-
services circuits in the category of interest at time x, then Y(x) has a
compound Poisson distribution (see Appendix A), and

EIYW] = 3 naus) (16)
and

var[Y(x)] = i‘, n®an(x). (17)

3.3 Distribution of future active circuits due to present orders

The transient behavior of this model is easily derived if one has
knowledge of the distribution of order sizes at a given time. We treat
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this case first and then consider the more difficult case where only the
total number of active circuits at a given time is known. In either case,
we will find the distribution of the number of active circuits at time y
resulting from the orders observed to be active at time x. The total
circuits active at time y is the sum of this with the number of circuits
at time y resulting from orders arriving between x and y.

Case 1: Order sizes known

Given an order is of size n at time x, the conditional density that it
arrived as an order of size m at time ¢ is pma(t, x), Wwhere

A(E)gm(2) Phn(t, x)
au(-t)

Pmn(l, X) = (18)
and if several orders of size n are present at x their arriving times and
sizes may be considered to be conditionally independent (see Appendix
B). Thus an order of size n at time x becomes an order of size [ at time
y = x with probability r.(x, y) where

ru(x, ¥) = az'(x) 21 f A(£)gm()Phalt, £)qmu(t, x, y)dt, (19)
m= —c0

and gmu(t, x, ¥) is the conditional probability that an order arriving as
size m at time ¢ which is of size n at time x becomes size [ at time y.
Note that g is not available solely from P*.

Equation (19) allows us to compute the distribution of the total
number of circuits at time y that were due to orders observed at time
x, since all orders behave independently. Evaluating these distributions
explicitly can be quite difficult. We can, however, easily evaluate the
moments. Let M,(x, y) be the mean order size at time y for an order
observed to be size n at time x, and let V,(x, y) bé the mean order size
at time y for an order observed to be size n at time x, and let Vi(x, y)
be the analogously defined variance. Then

M. (x, y) = tzl lru(x, ¥), (20)
Valx, y) = :21 Pru(x, y) — Mi(x, y). (21)

If i,(x) is the number of orders of size n observed at time x, and
M(x, y) and V(x, y) denote the mean and variance of the number of
circuits at time y due to orders observed at time x, then

M(x, y) = X in(x)Mn(x, y), (22)
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and

Vix, y) = T in(x) Va(x, ¥). (23)

Note that there is a potential problem if orders can become size zero

and then become nonzero later, since determination of i;, the number
of active orders of size 0, may be an impossible task.

Case 2: Order sizes unknown

We now examine the more difficult case where we observe the total
number of active circuits at time x (call this k), without observing the
distribution of the order sizes. The conditional probability that there
are J, orders of size 1, j, orders of size 2, etc., given that & total circuits
are observed at time x, written dx.(J1, jz, ...), is easily found to be

IT; [eax) /i)

Opx(J1y Joy ..) = —,
e B ) = S T a0 24
Sk =k
provided that j, + 2j, + ... = k. Let the conditional first and second

moment of the number of circuits at time y due to orders observed at
time x, given that a total of k circuits were observed at time x, be
M, (y) and M@, (y) respectively. Then

M, (y) = ¥ E(J)Mi(x, y), (25)

where oJ; is a random variable with the same distribution as the
conditional number of orders of size i at time x, so that the expectation
is the expectation with respect to the probability distribution given in
eq. (24). Also,

M(y) = X EW)Vix, y) + E( JiMi(x, )2, (26)

where the expectation is in the same sense as before. Needless to say,
these expectations with respect to the distribution in (24) are very
difficult to evaluate for substantial k.

Things simplify somewhat if

M:'(I, J’) = iﬂ(x! y)! (27)

that is, if the conditional means are proportional to the size of the
order. In this case, (25) and (26) give

Mk.x(y) = kﬂ(x: y): (28)
and
MZ(y) = ¥ E(Jdi)Vilx, y) + k20%(x, ), (29)
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so that
Vil y) = X E(J)Vi(x, y), (30)

where Vi.(y) denotes the conditional variance. Equation (30) can be
approximated by using the following approximation which is intui-
tively reasonable for k near ¥, iai(x),

a;(x)
¥ dai(x)’
In this case, (30) and (31) give the following useful approximation:

¥ ai(x) Vilx, y)
Y iax)
3.4 Distribution of future active circuits due to future orders

In section 3.3, we found the mean and the variance of the number
of circuits at time y from orders observed at time x. To obtain the
total number of circuits at time y, we need to add to this the (inde-
pendent) number of circuits due to orders arriving between time x and
time y. The number of orders of size n at time y that arrived between
times x and y is easily seen to be Poisson with mean a,(x, y), where

E(J)) =k (31)

Vk,z(y) =~ k (32)

Y

an(x, y) = X At)gm(t)Pra(t, y)dt, (33)

m=1 ¥x

and the number of orders of different sizes are independent of each
other (see Appendix B). Thus, the number of circuits at time y due to
arrivals occurring between x and y has a compound Poisson distribu-
tion (see Appendix A) with mean and variance denoted M*(x, y) and
V*(x, ¥), where

M*(x, y) = ¥ nan(x, y), (34)

and
V*(x, y) = % nlan(x, y). (35)

3.5 Mean and variance of future active circuits

To find expressions for the mean or variance of the total number of
active circuits at time y, we merely add together the appropriate means
or variances from the circuits active at time y due to orders observed
at time x and from the circuits active at time y due to arrivals between
x and y, since these are independent. For example, eqs. (28) and (34)

give
MT.(y) = k(x, y) + X, naa(x, ¥), (36)
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where M .(y) is the total mean number of circuits observed at time y

given k circuits are observed at time x [and assuming relationship

(27)]. Also, egs. (32) and (35) give the following approximation:

2 ailx) Vi(x, y)
2 lay(x)

where V7,(y) is the similarly defined variance.

Vidy) = k + ¥ naq(x, ¥), (37)

3.6 Churn

We have previously defined churn as the minimum of the disconnect
rate per circuit and the connect rate per circuit. Values of churn from
other definitions are also easily obtained. We will here derive the
churn, which happens to be a function of time in this case. To compute
churn we need to know the probability measure for the individual
order histories. Let Un,(t, x) be the expected number of connects
for an order of size m arriving at time ¢ in the interval [t, x] (thus
Un(t, t) = m). The expected total connect rate at time x, denoted
U(x), is then found to be:

UG = = (): f NGt Unt, x)dt), (38)
and similarly for the disconnects using the variable D,
d x
D(x) = — (Z I A(t)gm(t)Dn(t, x)dt), (39)

and thus we obtain the churn at time x, v(x):
v(x) = min{D(x)/E[Y(x)], U(x)/E[Y(x)]}, (40)
where E[Y(x)] is given by (16).

IV. THE MODEL FOR SPECIAL-SERVICE CIRCUIT ACTIVITY

Here, we assume that the demand rate grows exponentially and that
the behavior of orders is not dependent on the time of arrival. Specif-
ically, we assume,

A(t) = Ne”, (41)
Gmlt) = gm, (42)

and
Prn(t, x) = Ppalx — t). (43)

Later we will assume a specific form for P,,,.
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Assumptions (41) through (43) are equivalent to:

1. exponential growth in the rate of new orders at rate 8 (new orders
occur as a nonhomogeneous Poisson process),

2. the probability that a new order is for m circuits is gn, and

3. an order initially for m circuits requires a total of n circuits after
2 units of time with probability Pma(2). We will shortly further specify
P,.. to represent unchanging orders of exponential lifetime.

We now explore the consequences of (41) to (43) in the analysis
presented in Section III. Substituting into (15) we find that the number
of orders of size n at time x is Poisson distributed with mean an(x),
where

an(x) = aneﬁzv (44)

and
an = ha E dm f e—ﬂmen(y)dy- (45)

(The total number of circuits required at any time has a compound
Poisson distribution, see Appendix A.) Thus, the mean and variance
of the number of circuits at time x, Y(x), are growing exponentially at
the same rate, and the ratio remains fixed:

E[Y(x)] = e i‘, nay, (46)
n=1
var[Y(x)] = e™ i n*an, (47)
n=1
or
var[Y(x)] = vE[Y(x)], (48)
where
E nap,
=0 (49)
¥ na,
n=1

Further results are possible if the behavior for orders over time is
specified. We assume that the order size does not change over its
lifetime, which has a common distribution with c.d.f. F independent
of size. Later we will assume that F is an exponential distribution.
Although in practice the number of circuits per order does change
with time, it is conceivable that this movement is relatively unimpor-
tant; or even if important, that the general form of egs. (2) and (3)
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will hold, although the parameter ¢ may then have a different physical
meaning than we will associate here. In the model suggested here,
Poo(y) = F(¥); Pum(y) = 1 = F(y); Pra(y) =0, n # 0, n # m. In this
case we may compute a, more explicitly. Substituting into (45), we
obtain

— (% - Fw)]), (50)
where

F(ﬁ)=Jﬂ‘ e ™dF(y). (51)

When the lifetimes are exponentially distributed with mean 1/y, i.e.
F(x)=1-—e™,

an = gaholp + B)7 (52)

Also, the batchiness v is related to the order-size distribution;
substitution into (49) yields

¥ n’q,
V=0,
Y ngn

The assumption that the order size does not change throughout its
lifetime also allows more explicit representation of the mean and
variance of the future requirements for circuits. Our development here
parallels that of Section III. We first compute the probability that an
observed order will change size during the period of observation. Recall
that g (t, x, ¥) is the conditional probability that an order is of size [
at time y given that it was of size n at time x and arrived as size m at
time ¢t. We easily obtain:

(53)

_Fly-=1v
Qmmm(t; x’ y) - F(I _ t) 3 (54)
and
Grmmolt, X, ¥) = 1 = Gmmml(t, x, ¥),
where

F(x) =1 - F(x),

and @um(t, x, ¥) = 0,1 # 0, # m. The value of q is irrelevant for
n# m. k

We next find the probability that an order of size n at time x
becomes of size | at time y, which we denote rn(x, y). Substitution into
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(19) gives

ru(x, y) = 0, n # I n # 0; (55)
rnn(x’ y) = G(y - x)) (56)
where
e PF(z + t)dz
G(t) = —= ; (57)
f e F(z)dz
and

rao(%, y) =1 —G(y — x).
Note that in the exponential-lifetime case, where F(2) =e™,
G(y) =e™. (58)

We next find the mean and variance of the number of circuits in an
order at time y, which was observed to be of size n at time x, denoted
M,(x, y) and V,(x, y), respectively. Substitutions of (55) and (56) into
(20) and (21) give:

M.(x,y) = nG(y —x), and (59)
Valx, ¥) = n®G(y — x)[1 — G(y — x)]. (60)

Notice that the conditional means are proportional to the size of the
order, i.e., (59) implies (27).

We now focus on the mean and variance of the number of circuits
at time y due to orders which were observed at time x, given that k
circuits were observed at time x. These quantities are denoted M;.(y)
and V,.(y) respectively. Equation (28) gives

M;y) = kG(y — ). (61)
We also conclude that, given the approximation in (32),
~ O = Ty — )] 2
Vil ) = kG(y — 2)[1 — G(y — )] S g’ (62)
thus
Vie = ¥[1 = G(y — )] M), (63)

where use has been made of (53) and (61).
We next find the expected number of orders of size n at time y that
arrived during the interval (x, y) denoted ax(x, y). Use of (3.3) yields
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ax(x, y) = \e™qg, f e PF(2)dz, (64)

where use is made of the fact P%,(t, x) = Guma(t, t, x), which follows
from (54). When the lifetime distribution for orders is exponential,

(64) becomes
1 - —(B+u)(y—x)
e__) (65)

an(x, ¥) = \e™q, ( o

The mean and variance of all circuits at time y due to orders arriving
in the interval (x, y), M*(x, y) and V*(x, y), respectively, can be
obtained by substitution of (64) into (34) and (35) yielding

y—x
M*(x,y) = X\ ¥ ng.e® f e P F(z)dz, (66)

and
V¥(x, y) = vM*(x, y), (67)

while for exponential lifetimes,

M*(x,y) =3 +°u (e’ — e™), (68)
where
D, = Ae”™ ¥ ng,, (69)
and
t=y—x

Note that (61) and (68) [or (36)] give eq. (2), and (63) and (67) [or
(37)] give (3), since the total number of active circuits at time y is the
sum of the number of active circuits due to orders present at time x
and the number of active circuits due to order arrivals between times
x and y, and these random variables are independent. Equations (5)
through (9) can easily be derived by the methods described in the
paper, although we omit the details here.

Next, turning our attention to churn for the specific model of this
section, we find that the expected number of connects in the interval
[¢, x] for an order arriving at time t of size m, denoted U,(t, x), is
given by

Un(t, x) = m, (70)

and similarly,
D,(t, x) = mF(x — t), (1)
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where the variable D represents disconnects. The total connect rate,
total disconnect rate, and churn rate at time x, U(x), D(x), and v(x),
respectively, can be obtained from (38) through (40), yielding

U(x) = \e™ T mgm, (72)
D(x) = Me™ T mgnF(B), (73)
and
y(x) =y = BF(®)/(1 = F(B), B=0;
y(x) =y = B/(1 = F(B)), g <0. (74)
In the special case where lifetimes are exponentially distributed,
Y= u B =0
=upu+p8 B<O0 (75)

V. ESTIMATION OF THE PARAMETERS OF INTEREST

In this section, we describe the methodology that can be used to
estimate the three key parameters of the model; 3, the growth rate; u,
the disconnect rate; and », the batchiness.

5.1 Estimation of 8

Suppose that we wish to estimate g on the basis of observed arrivals
of orders, which by assumption occur according to a nonhomogeneous
Poisson process with intensity Ae”. Suppose that the system is
observed over the interval [—0, 0] and arrivals have been noted at
times ¢, ..., t. We show how to obtain the maximum-likelihood
estimator for 8. (For a discussion of maximum-likelihood estimation,
see any elementary book on statistics such as Mood & Graybill.)® The
log-likelihood function, In L(n, t, ..., t,), is easily seen to be

n 1 —e™®
lnL(n,tl,...,tn)=nln)\a+,6Et,--)\a( 3 ) (76)
i=1

Differentiating with respect to Ao and 8 we find the necessary
conditions for a maximum:

1—e"®

=, 77
n/i 3 (77)

n — 89
5 c;-ﬁ'ﬁe-ﬂﬂ+)\a(l—f)=o. (78)

=1 |6 )8
Using (77) to eliminate X, in (78), we obtain

= xer—e"+1 = f(x), (79)

x(e* — 1)
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where

_2t
S = - +1 (80)
and
x = (30. (81)

The function f defined in (79) can be seen to be strictly monotonic
with range between 0 and 1. Therefore, eq. (79) allows us to solve for
B0 as f71(S), where S is the statistic defined in (80) equal to the
proportion of the interval (after — @) at which the average time of
arrival occurs. Thus, the maximum-likelihood estimator for 3, written
B, is given by

s _ f1(8)

B=—0"" (82)

The function f has the properties:
f(—») =0,f(0)=1/2, f(®) =1, and f(x)+f(—x)=1.
Thus,

F7(0) = —o,
f1/2) = o,
F1(1) = o,

and
f1(1/2 = x) = =f7(1/2 + x).

The function f~! is tabulated in Table I.
For small x, f(x) may readily be expanded in the power series:

flx) =1/2 [1 + (1/6)x — 1L x3.. ]

360
so that
(/2 + y) = 12y + 28.8y°... . (83)
Similarly, a large f expansion yields
{1 =1/y) =y — y*e™. (84)

We may also determine the mean and variance of the statistic S
given the correct parameter 8 and the number of observed arrivals. It
is well known that the distribution of the arrival times for a nonho-
mogeneous Poisson process, conditioned on a given number of arrivals
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Table I—Values of the function f~" useful in
estimating the growth rate 8, and several
approximations for the function
[see eq. (79) and following]

Approxima- Approxima-

X 74X 12X:6  tion in (83) tion in (84)
0.50 0.0000 0.0000 0.0000
0.52 0.2402 0.2400 0.2402
0.54 0.4819 0.4800 0.4818
0.56 0.7263 0.7200 0.7262
0.58 0.9751 0.9600 0.9747
0.60 1.2299 1.2000 1.2288
0.62 1.4926 1.4400 1.4898
0.64 1.7654 1.6800 1.7590
0.66 2.0507 1.9200 2.0380
0.68 2.3517 2.3280
0.70 2.6721 2.6308
0.72 3.0168 2.9467
0.74 3.3920
0.76 3.8060
0.78 4.2703
0.80 4.8010 48316
0.82 5.4219 5.4362
0.84 6.1691 6.1746
0.86 7.1010 7.1025
0.88 8.3164 8.3166
0.90 9.9954 9.9955
0.92 12.4994 12.4994
0.94 16.6667 16.6667
0.96 25.0000 25.0000
0.98 50.0000 50.0000
1.00 0 00

in the interval, is the same as the order statistics from n i.i.d. random
variables with probability density proportional to the arrival rate.
Thus S has the distribution of the average of n i.i.d. random variables,
Y; on [0, 1] with density g(p), where

£ = 2
and
x = 0.
It is easily seen that
E(Y) = f(x) (85)
and
var(¥) = 5~ - (86)

Equation (86) is valid if x # 0; when x = 0, var(Y) = 1/12, the limit
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of (86) as x goes to 0. The expression for the variance is symmetric in
x and takes its maximum value at x = 0.

Thus, for a given value of the growth rate 8, and a (large) given
number of observations n, the observed statistic S is approximately
normally distributed with mean f(x) and variance less than or equal
to 1/12n. This observation can be readily translated into confidence
intervals through the use of elementary statistical theory. For example,
a 95-percent confidence interval for f(x) (assuming normality of the
statistic) is

1
S - 196 < f(x) <8+ 1.96 @ (87)

which translates to

-1 _ 1 -1 L
f (S 1.96 \/;) <po<f (S+1.96 \/;) (88)

If S is close to 0.5, then we can use f~'(x) = 12x — 6 [see (83)] to
obtain for the 95-percent confidence interval for 30
6.79

39—123-6"'—7; (89)

5.2 Estimation of v

There are several possible statistics for the measurement of the
batchiness ». We shall take as our starting point eq. (49) which defines
the batchiness in terms of the distribution of the order size at (any)
point in time. This is preferable and is more robust than using the
distribution of the order size on arrival, although the two happen to
equal when order sizes do not change with time. Thus, if » is to be
estimated based on observation of the system at a given point in time
at which i, orders of size n are observed, then a reasonable estimator
for v, which we write », is:

¥ n?%,
S ni, (90)
When the number of circuits does change during the lifetime of an
order, it is possible that the form of (3) still holds. In this case, it is
likely that the parameter » which multiplies each of the two terms in
(3) is different. Equation (90) is a reasonable estimator for the multi-
plier of the second term. The multiplier of the first term should be
estimated by other methods.

y =
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Table Il—Notation

D,
D(x)
Dnit, x)

in(x)
Ji

M(x, y)
M*(x,y)

Miy)

Mk.:(y)

ME(y)
M(x, )
Pralt)
Prat, %)

qm
am(t)
qnl-ll‘(tn X, .)')

rulx, ¥)

Ulx)
Un(t, x)

Viz, y)
V¥(x, ¥)
Vid(y)
Vil y)
Valx, y)
Y(x)

[
“n(x)
an(x, ¥)

8
v
ducl 1y Jay - -

B(x, y)
e

Ao

AlE)

I

v

Pmn(t, X)

)

Present (¢ = 0) circuit demand rate due to new orders.

Expected total disconnect rate at time x.

Expected number of disconnects in the interval [¢, x] for an order

of size m arriving at time ¢.

Observed number of orders of size n at time x.

Conditional number of orders of size i due to orders observed at

time x given that k circuits were observed at time x.

Mean total number of circuits at time y due to orders.

Mean of the total number of circuits at time y due to orders arriving

between x and y.

%\{Iean of the number of circuits at time y given k are observed at
ime x.

Conditional expectation of the number of circuits at time y due to

orders observed at time x given that k circuits are observed at time

x.

Conditional second moment of the number of circuits at time y due

to orders observed.

i\{lean order size at time y for an order observed to be of size n at
ime x.

Probability that an order of initial size m becomes of size n, t time

units after arrival.

Probability that an order arriving at time ¢ of initial size m becomes

of size n at time x.

gn(t) when there is no dependence on ¢.

Probability that an order at time ¢ is initially for m circuits.

Conditional probability that an order arriving as size m at time ¢

and of size n at time x becomes of size [ at time y.

Probability that an order of size n at time x becomes an order of

size [ at time y.

Expected total connect rate at time x.

Expected number of connects for an order of size m arriving at time

t in the interval [¢, x].

Variance of the total number of circuits at time y due to orders

observed active at time x.

Variance of the total number of circuits at time y due to orders

arriving between x and y.

Variance of the number of circuits at time y given that k are observed

at time x.

Conditional variance of the total number of circuits at time y due

to orders observed at x given that k circuits are observed at time x.

Variance of order size at time y for an order observed to be of size

n at time x.

Total number of active special service circuits at time x.

Constant of proportionality for the exponential growth of a.(x).

Mean number of orders of size n at time x.

The number of orders of size n at time y which arrived between

times x and y.

Growth rate.

Churn.

Conditional probability that there are j, orders of size 1, j» orders

of size 2, etc., at time x given that k total circuits are observed at

time x.

Defined in (27).

Length of observation period.

Present (¢ = 0) arrival rate of orders.

Instantaneous arrival rate of orders at time ¢.

Disconnect rate (per circuit).

Batchiness.

The conditional probability density that an order arrived at time ¢

of initial size m given that it is of size n at time x.




5.3 Estimation of p

The estimation of u is relatively straightforward. The maximum-
likelihood estimator is given in (14) and further details including
estimated values by service family are given in Reed and Smith.?

5.4 Estimation of D,
Equation (77) allows the MLE estimator of \,,

- nB
A = -y (91)
where the estimator 3 has been previously described in (82). The
estimator of D, (the instantaneous demand at the end of the obser-

vation interval of length @), D, then is
D, = \N, (92)

where N is an estimate of the average batch size. The previous
expectation can be estimated from the order sizes at arrival epochs, or
more crudely from the general distribution of order sizes at an arbitrary
point of time.

Interestingly enough, D,/(x + ) can be estimated solely from the
number of active circuits at a point of time. For simplicity, we assume
that the orders are solely of size one, although the analysis could be
repeated for other distributions. In this case, the following analysis is
applicable.

Suppose that the number of active circuits at time ¢ is a Poisson
random variable with mean Ae”. The time that the mean is between

x and x + dx is dx/xB. The expected time that the mean is between x
k

. .. . dxx
and x + dx and a total of k active circuits are observed is E o e,

Thus, if k active circuits are observed, the conditional distribution
of the mean (in our case this is D,/(x + 8)) has density proportional
to x*'e™* or is a standard gamma random variable with k degrees
of freedom. This random variable has mean and variance equal
to k. Thus, if k circuits are observed, the conditional distribution of
D,/(u + B8) has mean k and variance k, and is approximately normally
distributed if & is large. This information can be used to modify eqgs.
(2) and (3), to take into account the variability of D,/(u + ) to obtain:

Mk(t) = ke'ﬂt, (93)
and
Vi(t) = vk[e” — e™™] + k[e® — e ], (94)

where the subscript k& on the variables on the left-hand side indicates
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conditional means and variances knowing §, u, and » but not knowing
D,. Note that the variance-to-mean ratio is unbounded for increasing
t, since errors in estimation of D, accumulate indefinitely.

VI. SUMMARY

We have described a model for special-services activity useful in
forecasting special-services requirements. It requires three physical
characterizations of the process (growth rate, disconnect rate, and
batchiness) and two instantaneous measurements (the current number
of active circuits and the instantaneous rate of new connects). We
give means and variances for the numbers of active circuits at a given
point in the future and for the total number of connects or disconnects
during a future period. The distribution of these variables can be
computed by the methodology described in the paper. We also describe
general techniques for estimation of the required parameters.

Work is being undertaken to verify and calibrate the model with
the New Jersey Bell Telephone Co. database and will be reported
elsewhere.
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APPENDIX A
The Compound Poisson Random Variable

Briefly, a random variable is said to be a compound Poisson random
variable if it can be thought of as the sum of a Poisson number of
independent identically distributed positive integer-valued random
variables. Thus Y is a compound Poisson random variable if

N
Y= E X,',
i=1

where N is a Poisson random variable with mean «, N and the X; are
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independent and
P{X; = n} = p,.
We have rather easily
E(Y) = aE(X) = a Ynp,
Var(Y) = aE(X%) = a Ynp,.

An alternative (and equivalent) way of specifying a compound Poisson
random variable is

!
Il
8

VAR

1

where

Z; are independent Poisson random variables with E(Z;) = ap; = a;.
In this case it is convenient to think of Z; as the number of batches or
orders of size n that are aggregated to give the total number denoted
Y.

APPENDIX B
The Nonhomogeneous Poisson Process

A process which counts events is a nonhomogeneous Poisson process
(see, for example, Ross, Ref. 5) with intensity A(t) = 0 if the number
of events in the interval [x, y] is a Poisson random variable with mean
J% A(t)dt, and the number of events in disjoint intervals are independ-
ent.

Fact: If events from a nonhomogeneous Poisson process are of two
types, and an event at time ¢t is of Type 1 with probability p(t), then
the process which counts Type 1 events is a nonhomogeneous Poisson
process with intensity A(t)p(?), and it is independent of the counting
process which counts Type 2 events [which is a nonhomogeneous
Poisson process intensity A(t)(1 — p(t)].

Fact: Suppose that a nonhomogeneous Poisson process is observed
over the interval [x, y] and n events are observed. If the times of these
events are arranged in random order, their distribution is identical to
that of n independent identically distributed random variables whose
density at ¢ is

A(t)

e
f Az)dZ

if t € [x, ¥] and is zero otherwise.
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