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Let x; be members of a stationary sequence of zero mean gaussian random
variables having correlations Ex;x; = a%'"7!, 0 < p < 1, ¢ > 0. We address the
behavior of the averaged product g,(p, ¢) = Ex; x5 - - - X3m—1 Xam 88 m becomes
large. Our principal result when ¢* = 1 is that this average approaches zero
(infinity) as p is less (greater) than the critical value p. = 0.563007169 .... To
obtain this we introduce a linear recurrence for the g,-(p, ¢), and then con-
tinue generating an entire sequence of recurrences, where the (n + 1)-st
relation is a recurrence for the coefficients that appear in the nth relation.
This leads to a new, simple continued fraction representation for the gener-
ating function of the gn(p, o). The related problem with g.(p, ¢) = E|
I -+ Xn| is studied via integral equations and is shown to possess a smaller
critical correlation value.

I. INTRODUCTION

The problem that we consider in this paper is as follows: Let {x;}T
be a stationary sequence of zero mean, gaussian random variables with
covariances

pij = Exl'x' = 0,2p|i—j|' 0< p< 1! a> 0; i! j = 1: 2: ] (1)
/) 7

where E(.) denotes mathematical expectation. What is the behavior
of
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gm(p, 0) = Exyx; - -+ Xom-1%2m (2)

as m becomes large?

In other words, the product in (2) is formed from samples of a gauss-
markov process that are taken at regular intervals. Only an even
number of samples is considered in (2) since an odd number would
result in a zero average.

Originally, the problem was conceived as a simple model for averages
of multiplicative structures having infinite memory between the fac-
tors of the product. Such products arise in the analysis of learning
curves for many adaptive systems, and for these problems one encoun-
ters products whose factors are noncommuting matrices. We felt that
the analysis of a simple problem, such as that described above, would
serve as a valuable guide to what results might be achievable for more
realistic situations. However as one may readily imagine, as soon as
the problem described in (1) and (2) was written down it became of
interest in its own right, consisting as it does of a simple question
about long familiar quantities.

Our principal result is that for large m the behavior of the average
product g.(p, o) in (2) depends on the relationship of p to a critical
value, p. = pc(a). If p < p., then gn(p, o) will approach zero exponen-
tially fast; if p > pe, @m(p, o) approaches infinity exponentially fast;
finally, if p = pe; Gm(p, 0) = gu(0). We find for ¢ = 1, p(1) =
0.563007169391816 - - -, and g-(1) = 0.50900853 . . .. A plot of p.(s) is
given in Fig. 1. All of these results were obtained from a continued
fraction representation for the generating function

Q(z, p, 0) = 20 Gm(p, 0)2™. (3)

Since gm(p, 0) = a°"gm(p, 1), we have
Q(z, p, @) = Q(zd®, p, 1), (4)

8o it is without loss of generality that we will set ¢ = 1, Q(z, p) = @
(2, p, 1), and g.(p) = gm(p, 1). By introducing a sequence of generating
functions, we show in Section II that

Q(z, p) = (5

1— pz
1 - 2p%
1— 3p°2

1—"
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The value p{” is then the smallest p for which Q(s?, p) = , while the
value g.(c) is the limit as z — 1 of (1 — 2)Q(z02, p.).

Since methods are as interesting as results, Section III presents
another approach involving integral equations for discussing the g.,(p)
behavior. Although this method is not rigorously justified for the
present problem due to a non-hermitian kernel, it is applicable to a
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Fig. 1—Critical correlation value p.(¢?) vs. variance o>
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related problem, the behavior of E | x; - - - Xm | as m — oo [still assuming
(1)]. Using the integral equation we show that p, the critical value of
p for this new problem, is strictly smaller than the p. defined above.
This is of interest since it shows that the behavior of gn(p) is deter-
mined both by how large |, --- %.| is on the average, and by the
extent of cancellation between positive and negative values of gm.

Although we do not give the details here, it is not difficult to show
that for all p < 1, gm(p) approaches zero with probability one as m
becomes large.

II. LINEAR RECURRENCES AND GENERATING FUNCTIONS

Given 2m zero-mean jointly gaussian random variables x; of unit
variance and correlations Ex;x; = p;, then a known formula' states
that

Ex; -+ Xom = 5& PiyigPigiy *** Pigmoyiams (6)

pairs
where the unordered set {iy, - -, izn} is equal to the unordered set
(1,2, -+ -, 2m}. The sum in (6) is over all distinct, unordered pairs of

subscripts. That is, we do not count twice terms which differ only by
interchanging the values within one or more subscript pairs, nor do
we count twice terms which differ only by permuting subscript pairs.
Thus there are (2m)!/(2™m!) terms in the sum (6).

If we denote permutations of 2m objects by o(i): i — o(i), i = 1,

2, ..., 2m, then a succinct way of writing (6) when (1) holds is
(0) 1 }glﬂﬂjl—c(i’j-m )
WP = ol & : (

the sum in (7) being over all (2m)! permutations of Sz, the group of
permutations of 2m symbols. Formula (7) shows immediately that
gm(p) > 0if p > 0.

Now define go(p) = 1 and write

Qm(P) = z bs(P)Qm—s(P); m= 1: 2, . (8)
s=1
We evaluate a few of the b(p), writing for convenience b;(p) = b;,

gi(p) = gi. The evaluation is done from (8) by explicitly evaluating the
gn(p) as needed. A partial list of b;(p) follows:

bp=0p
bz = 2p4
ba = 4p7 + 6p9
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bs = 8p™ + 24p"% + 18p" + 24
bs = 16p™ + 72p" + 108p'" + 150p" + 144p*
+ 96p% + 120p%. 9

Equation (9) suggests the possibility that, for small p, only a few
terms in (8) would need to be kept for an accurate description of g,(p).
For example, keeping only one term yields

qm = pQm-1, (10)

or g, = p". Since Ex,x; = p, this approximation corresponds to treating
the successive pairs of gaussian variables which determine g,(p), via
(2), as independent. The next step after (10) would be to write

Gm = biGm-1 + baQm—s. (11)

This equation, involving b, as well, would be a correction to the
“independence assumption,” but one involving only up to fourth-order
correlations, since, from (8) the highest average appearing in b; is
E(x,x3%3%4). Further corrections are obtained by including more terms
of (8), with higher order correlations entering.”

Assuming the b;(p) to be known, the natural procedure would be to
“solve” (8) using generating functions. We define these as follows: if
Yo, ¥1, ¥2, - - - is a bounded sequence of numbers, then the generating
function, Y(z), of the sequence is defined for complex z, |z] < 1, by

Y(z) = ;ﬂ y;z', (12)

Given Y(z), the y; are, in principle, uniquely determined. We assume
that the reader is familiar with the use of generating functions. If not,
consult Chapters XI and XIII of Feller.?

We define by(p) = 0, go(p) = 1, and call the generating functions of
the b;(p), and g;(p) sequences B(z; p) and @(z; p), respectively. The p
dependence is explicitly indicated.

If we multiply (8) by z™ and sum from m = 1 to o (treating g, = 0,
m < 0 and b,, = 0, m < 0), we obtain the basic relation

1
1 — B(z; p)’

Equation (13) thus allows us to determine, in principle, the g, from
the b,,. In particular, we have

Q(z; p) = (13)

*The above interpretation prompts us to advocate consideration of the ideas repre-
sented by (8) for analyzing more complex multiplicative structures, particularly when
connections to some sort of independence approximation are a natural thing to seek.
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ol 1
nip) = Q1 p) =—F7——, (14)
El an(p) = Q(L; p) = T B )
and the critical value p. will be given by the equation

B(l, Pr) = ? bk(pc) =1 (15)

Although we could work with the bn(p) themselves, a more conve-
nient approach for finding p. numerically is to set up a continued
fraction representation for the generating functions Q(z; p), or equiv-
alently, B(z; p). It is this approach that we follow now.

Recall (8) defining b,(p). Since these b, coefficients are a numerical
sequence themselves, we can use the same reasoning that took us from
the gy to the b, and use it to suggest going from the b, to a new set of
coefficients, b?, via the following recurrence

k
b(p) = ¥ b (p)br-s(p), k=2,8, .-, (16)

s=1
where we define by(p) = 0. The recurrence (16) yields

bi(p)z

Bz p) = T gag )y

(17)

B®(z; p) being the generating function for the 5”(p). To continue this
procedure with a uniform notation, we define

b (p) = bs(p)
b™(p) =0, m=1,2 .- (18)

and write
k

b() = T BB, oy e (9)

s=1
The corresponding sequence of generating functions are related by

b(?ﬂ)(p)z
B™)(z- = ——i
@ 0) = 7= e ) (20)
We use this repeatedly in (13) and obtain the continued fraction
representation’

tThe fact that this continued fraction does not terminate implies that @(z; p) is not
a rational function of z, and thus one cannot find a (finite-order) difference equation
for the gm(p). See Ref. 3, Theorem 99.1, p. 400.
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Q(z, p) = 21

In (21) we have, for simplicity, written b{™(p) = b\"™.
A relation which will be used later to aid in finding the b\™ follows
by setting k = 2 in (19), to obtain

. b(m)
b (p) = 5?;;% (22)

We can calculate some of the b!™(p) using the partial list of the
br(p) given in (9) to derive several b‘;"’(p) from (19). Using (22) we
then obtain

b =p
b® = 249
b = 38
bW = 47
by = 5p°. (23)
The obvious guess that
b™ = mp*™!, m=12, ... (24)

follows from a direct proof of the continued fraction given in the
appendix. Assuming (24) to hold yields the simple representation

QG p) = ! (25)
1— pz

1— 2p%
1 — 3p°2

1"

The accurate numerical value
p. = 0.563007169391816 - - - (26)
was obtained by using this representation along with (14) and (15).
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When P = Pey

. 1
G- = lim gilp.) = =—. (27)

e )1: Eby(pe)

Using the computed value of p. and the definition of the bi(p), we
found numerically that

g- = 0.50900853 - ... (28)
It was quite surprising to us that Q(z, p) turned out to be a new, but

simple, continued fraction.

ll. INTEGRAL EQUATION METHOD

The purpose of this section is to introduce the integral equation
method and to show that p. < p., where p. is the critical correlation
value for the related problem involving E | x; - -« x,].

We begin by developing an expression for Ex; - - - x,. We have, from
the Markov property of the x; sequence,

Ex, --- xn =J- fxnp(xnlxn—l)

v 1y p(x; | %0)p(x0)dxo -+ - dxn, (29)
where

o(x) = J—;—; exp(~x?/2) (30)

is the standard normal density and

= ._—l-—- —_ —_ 2 —_ a2
p(ylx) m exp[—(y px)*/2(1 — p ]| (31)

is the generic form of the conditional densities occurring in (29).
Define a kernel K(x, y) by

K(x, y) = yp(y|x),

K = | K 900y

Then (29) may be written in the inner product notation of Hilbert
Space
Ex, -+ 2, = (K"1, ¢), (32)

where ¢ is the normal density (30), 1 is the unit constant function,
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and K" is the nth iterated kernel. Now assume, heuristically, that K"
has the usual expansion

K"(x, y) = _El Ay ()Y () (33)
-

in terms of eigenfunctions y;(x) and eigenvalues A; of K. Then
Ex, - - - x, would remain bounded, if, and only if, the largest eigenvalue
A = M(p) is less or equal to one; thus A\ (p.) = 1 would determine p.
Unfortunately there is no general eigenexpansion theory available for
K since it is not symmetric and is not symmetrizable.

Fortunately symmetry holds for the integral equation method when

one expresses E | x; - -+ x,| via kernels. Define, in analogy to (32),
K(x, y) = | y| p(y|x). (34)
If we further define
h(x)
J(x, K 35
(x, y) = () (x, ¥), (35)
where
h(x) = v|x|exp(—x?/4), (36)
then
N S J _11+ P’ 2 2
J(x:y)_m |xy|exP[ 41___p2(x + ¥°)
pxy
-exp [1 — pz] (37)

is a symmetric kernel.
As in (29),

Elxl e xnl = f e f R(In—h xn)K(xn—Q: xn—-l)
K(xo, x1) ¢(xo)dxo - - dxn

f fdxo <o dxn J(x0,x1)

h(x,)
° J(xn-]r xn)h( 0) ¢"( )

(g 2
() o
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Since o is symmetric and square-integrable, it is a Hilbert-Schmidt
kernel and so has a discrete spectrum. Further its maximum eigen-
value, A, is given by

i1
4N (39)

Since J(x, y) = 0, we see that the maximum eigenfunction g = g(x) is
nonnegative and \ > 0 as well. Further since h and ¢/h are nonnega-
tive, (h, g) > 0 and (¢/h, g) > 0 so that E|x; - -+ x,| = (J"h, ¢/h) —
o if and only if A > 1.

)\—sup

Define f, by
fulx) = V| x|exp(—ax®/4), (40)
and note that from (39),
A > (Ifay fa)/(far fa)- (41)
Now
(fas fa) = f | x| exp(—ax?/2)dx = 2/a (42)
and

NEn—
(Jf«n fn) = m A |xy|

- exp [—- —;- (x2 + y?) + ] dxdy, (43)
where
_1(Lts
—2(1_p2+a). (44)

Set y = xu and integrate over x to obtain

4 fw |u|du
Vler 1) = Joat = ) J= (e + u?) = "

2p
1 - p%
Using Ref. 4 (p. 68, 2.175) we evaluate the last integral as

(45)

'B=

3002 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983



-4 A 8 B
(Jf(u far) - 21,'(1 — pz) [A + Ag/g tan \/Z],
(A = 4¢* — B2 (46)

Setting a = 0.5, p = 0.55, we find that ¢ = 1.18369, 8 = 1.57706, A =
3.11738, (Jf,, f.) = 4.0824, (f., f.) = 4, so that A > 1.012. Thus for
p=055 E|X, --- X,| = o, and p. < 0.55. We have seen that p. >
0.563 so the claim is proven.
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APPENDIX
Combinatorial Derivation of Continued Fraction

In this appendix we give a direct combinatorial proof of the contin-
ued fraction representation (25) of @(z, p). This derivation is complete
in itself, but we preferred the method of the text for showing where
the continued fraction comes from. Qur starting point is the formula
(7). Let us define, for ¢ € S,

Vie) = § |o(2) — o(2i — 1)]. (47)
i=1

Forl<k<m,let
S(m, k) = {o € Son:c(2m) = 2m,
e(2m — 2) =2m - 1,
c2m—4)=2m -2, ...,
o(2m — 2k + 2) =2m — k + 1}. (48)
For k = 0, we adopt the convention that S(m, 0) = S;,,. We also define

1
m. k) = Vis)
u(m, k) 2" (m — k)! aES;m,k) P (49)

so that u(m, 0) = g,,. (We take u(0, 0) = gy = 1, and u(m, k) = 0 for
k < 0 and k > m.) Our key result is:

Lemma. If m=1, k=0, then
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u(m, k) = kp* 'ulm — 1, k = 1) + u(m, k + 1). (50)

Proof. We will prove this for 1< k< m — 1, as the other cases are
easy. Let

S’ ={oc € S(m, k):2m — k
€ {o(2m — 1), 6(2m — 3), ---, a(2m — 2k + 1)}},
S” = S(m, k) — S'. (51)

If ¢ € S”, we construct a permutation ¢* € S(m, k + 1) by changing
the action of ¢ on four letters in such a way that V(¢) = V(¢*) and
o*(2m — 2k) = 2m — k. To define o* precisely, let p and r be such that
{r, 2m — k} = {¢(2p — 1), o(2p)}. Then, if we associate to o the vector
A(o) = (a(1), a(2), - - -, (2m)), the vector A(c*) is obtained from A(c¢)
by interchanging the pairs {o(2m — 2k — 1), ¢(2m — k)} and {r, 2m —
k) so as to keep the same ordering in the first pair, but possibly
reversing it in the second, so as to have ¢*(2m — 2k) = 2m — k. As an
example, if m =5, k=3, and A(s) = (7,2, 4,1, 6, 8, 3,9, 5, 10), then
Alc*)=(4,1,2,7,6,8,3,9, 5, 10). It is clear that o* € S(m, k+1)
and V(o*) = V(o). Moreover, every 7 € S(m, k + 1) can be represented
in exactly 2(m — k) ways as 7 = ¢*, ¢* € §”. Therefore,

1

m ,2;- pV' = u(m, k + 1). (52)
Suppose now that ¢ € S’. Then 2m — k = ¢(2m — 2r + 1) for some
r, 1 < r < k. We now define a permutation ¢’ € S(m — 1, k—1) as
follows: In A(o), delete a = ¢(2m — 2r + 1)(= 2m — k) and b = ¢
.(2m — 2r + 2) and reduce the remaining entries that are between a
and b by 1, and those that are larger than max(a, b) = a by 2. As an
example, if m =5,k =3,and A(0) = (2,1,6,3,5,8,7,9, 4, 10), then
A(s") = (2, 1, 6, 3,5, 7, 4, 8). The resulting vector clearly equals A(c”)
for some ¢’ € S(m — 1, k — 1), and each + € S(m — 1, k — 1) has
exactly k such representations. Further, V(o) equals the sum of
(i) V(¢"), (ii) @ — b for the pair that was dropped, (iii) 2 for each of the
r — 1 pairs (¢(2m — 2j + 1), o(2m — 2j + 2)) for1 < j=<r—1,since
in each such pair ¢(2m — 2j + 2) > a, o(2m — 2j + 1) < b, and finally
(iv) 1 for each of the k — r pairs (¢(2m — 2j + 1), o(2m — 2j + 2)), r+
< j < k, since in each of them o(2m — j + 1) <b, b < o(2m — 2j + 2)

< a. Hence,

Vie)=V(e')+a—-b+20r—1)+k-r (53)

Buta = 2m — kand b = ¢(2m — 2r + 2) = 2m — r + 1 from the
definitions of S(m, k), so

Vie) = V(e’) + 2k — 1. (64)
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Hence, we have

1
T L, P = ke ulm — 1, k= 1), (55)

which proves the lemma.
We now can use the recurrence of the Lemma to derive the continued
fraction expansion of the generating function. Let

fe=fil2) = X ulm, k)z", k=0,1,...,
m=0

which for the moment we regard as formal power series in z. Then the
Lemma gives us

fl = fo -1, (56)
and for k = 2,

fe=Yulm k—1)z2"— (k= 1)p*3 ¥ ulm — 1, k = 2)z"

m

= fp1 — (k — 1)p* 2f4s. (57)
Relations (56) and (57) show that for &k = 0,
fr = Sefo — 1, (58)

where s = s, =1, r, =0, r, = 1, and for k = 2 both s, and r;, satisfy
the recurrence

xp = Xp-1 — (R — 1)p™ *22ps.

Hence the quotients ry/s, are the partial quotients of the continued
fraction R(z, p) on the right side of (25), and s; and r; converge as
k — o to power series (in 2) s(z, p) and r(z, p), respectively, for which

_rzp)
s(z, p)’
On the other hand, since f; starts with a term involving z, we conclude

that f, converges to 0 in the ring of formal power series as k — .
Therefore, from (58),

R(z, p) (59)

r(z, p)
fo=

s(z, p)

Since fo = Q(z, p), we obtain the relation (25), at least in the ring of

formal power series in z. However, the continued fraction (25) is

clearly a meromorphic function of z for p fixed, 0 < p < 1, and it is

analytic at 0. Hence (25) holds as an equality among meromorphic

functions, and we can obtain from this the exponential decrease of the
gm(p) for p < p. and the exponential increase for p > p..

= R(z, p). (60)
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