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A formal power series solution (i) x(t) = Xim*x.(t) is given for the
companding problem (ii) Bff{x(¢t)} = my(t), B{x(t)] = x(t), where B is the
bandlimiting operator defined by Bg = (Bg)(t) = [=. g(s)[sin A(t — s)]/[x (¢t —
s)]ds and f(t) has a Taylor series with f(0) = 0, f(0) # 0. Expressions for the
x, are given in terms of the coefficients of f, and operations on v, and in a
different form in terms of the coefficients of the inverse function ¢, ¢{f(x)} =
x. A series development is given for a bandlimited z(¢), Bz = z, such that the
solution of (ii) is given by x = B¢(z). Also a series development is given for
the “approximate identity”, x = B¢ {Bf(x)}, where x = x(¢), Bx = x, which is
shown to be a good approximation to x for fairly linear f(x), not necessarily
having a Taylor series expansion. As an example of one application of the
results, a few terms are given for correction of the “inband” distortion arising
in envelope detection of “full-carrier” single-sideband signals. The results
should prove useful in correcting small distortions in other transmission
systems. Finally, it is shown that the formal series solution (i) actually
converges for sufficiently small | m |. This involves proving that the compand-
ing problem (ii) has a unique solution for arbitrary complex-valued y(¢) and
complex m of sufficiently small magnitude, the solution x(¢; m) being, for each
t, an analytic function of the complex variable m in a neighborhood of the
origin. It is a curious fact, as shown by an interesting example, that the series
(i) may converge for values of m for which it is not a solution of (if).

I. INTRODUCTION

Suppose x(t) is a bandlimited signal whose Fourier transform van-
ishes outside the interval [—A, A]. If such a signal is instantaneously
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distorted by a nonlinear (companding) function f(x), the distorted
signal f{x(t)} will, in general, have frequency components outside the
interval [—), A]. If the out-of-band components of the distorted signal
are removed by ideal low-pass filtering, the result is a bandlimited
signal y(t) whose Fourier transform agrees with that of f{x(t)} over
(=, A). How, and under what conditions, may x(t) be recovered from
y(t)? When the signals are real-valued, this is known as the compand-
ing problem of Landau and Miranker (Refs. 1 and 2), hereafter referred
to as the r.v. companding problem. Before stating their result, and our
purpose, we introduce some notation.

The symbol %(\) will denote the subspace of Ly = La(—, o) whose
elements are those (square-integrable) functions whose Fourier trans-
forms vanish outside [—\A, A]. Associated with this subspace is the
bandlimiting operator B,, defined for g in L, by

sin A(t — s)
w(t — 8)
The Fourier transforms of g and B,g agree over (—A, A), the transform
of the latter vanishing outside [—A, A]. In the language of Hilbert

space, B, g is the projection of g on %5()), being the best approximation
to g in the subspace (). In case g belongs to By()\), we have

B)\g =4g.

Byg = (B\g)(t) = J: _86) ds.

It follows that
Blg = Byg, g in Lo, n=12 ---.

The operator B, may be applied also to functions belonging to Ly, 1=<
p < ; i.e., to functions g satisfying

o 1/p
gll, = ‘U; Ig(t)l"dt} <o (l<p<wm).

Here the notation | g |, designates the norm of g in L,, or simply the
L,-norm of g. The space L. consists of those functions g whose
magnitude is bounded on the real line, their norm lgll~ being the
“egsential supremum” of | g(t) |, which for functions we will be dealing
with here, is simply the maximum value of |g(t)|. The operator By
may not be applied to an arbitrary bounded function, since the
associated integral may not converge. However, the integral may
converge conditionally for a large class of functions; in particular,
B,g = g, for any constant function g.
The operator B, is a “contraction” operator on Ly; i..,

IBxgllz < lgllz,
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with equality attaining only for g in %(\). This follows from Parsev-
al’s theorem and the definition of B,.

Applying Schwarz’s inequality to the integral equation denoted by
B,g = g, we obtain the useful inequality

lgle< VM7 llglls, & in Za(N).
Also, it is easy to show from the integral equation that
lim g(t) =0, g In  Do(N).

t—+o
We shall also make use of the high-pass operator H,, defined by
H\,=1-B,,

where I is the identity operator. H, is an identity operator for functions
h of L, whose Fourier transforms vanish over (=), A), and it is also a
contraction operator on L,,

IHagllz < llglla,

with equality attaining only for H\g = g, i.e., for B,g = 0. (In these
operational equations, 0 is interpreted as the null function.)

It is clear from the operator definitions and the associated Fourier
transform relations that any function f in L, has the decomposition

f=g+h,
where
8= B)\f’ h= th

Since A will be fixed throughout the paper, we will, except where
emphasis is desired, simply write B, H, and %, for By, H,, %()\),
respectively.

Now, using our notation, we may state the important result of
Landau and Miranker as follows:

Theorem (Landau and Miranker): Let f(x) be a real-valued function of
the real variable x, satisfying
(1) f(0)=0

(@) 0<m <f'(x) <my <oo, (—oo < x < ),
Then to each real-valued y in %, there corresponds a unique x in %,,
also real-valued, satisfying

(iz) Bf(x) =y.
The solution x of (iii) may be obtained as the limit of the sequence of
approximants |x,} defined iteratively by

(V) Xn+1 = xp — eB{f(x,) — ¥},
provided only that x, is a real-valued function in %, and the real
constant ¢ is so chosen that
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(v) max|1 —¢f'(x)| <r<l.

The beauty of this result is that, under the hypotheses on f, every
(r.v.) y in %, has the representation (i) where x is a unique (r.v.)
function in %.. In some r.v. companding problems of interest, f(x)
may not be defined outside some interval and/or the condition on
f'(x) may not be satisfied over the whole real axis, but rather over
some interval including the origin. Then the conclusion will apply only
to y of sufficiently small norm. In such cases, the companding problem
has two essentially different interpretations. The first is the recovery
problem: y is known to be of the form (iii); recover x. The second is
the design problem: y is a prescribed (desired) signal; find x, if possible,
so that y is given by (iii). In this case, one is faced with the problem
of determining for what y the problem has a solution.

The speed of covergence of the iterative solution of Landau and
Miranker is a matter of practical concern. They show that

| %ns1 = 2allz < rll%n = %1 l2-

Then the constant ¢ in (v) should be chosen to make r as small as
possible. Assuming that equality may attain on both sides in (ii), one
should choose
-2 ing =M
c_m1+m2' gving r—m2+m1'

Thus rapid convergence is assured if (m»/m,) is not much larger than
1. If this is not the case, a large number of iterations are, in general,
required to obtain a close approximation to the solution of the problem.
In a practical implementation of the iterative scheme of solution (Ref.
1), the ideal bandlimiting operator is replaced by an approximate
operator, incurring a certain delay, in addition to (eventually) signifi-
cant spectral distortions, with the result that the sequence {x.} will
not converge to the solution x. Thus, in practice, the number of
iterations to be performed is limited both by practical and theoretical
considerations. The conclusion is that good approximate solutions to
companding problems may be conveniently obtained in practice only
in those cases where the companding function f(x) is fairly linear over
the range of x(t).

We should remark at this point that there is only one known
(nonlinear) r.v. companding problem (see Ref. 3) admitting of an
explicit noniterative solution; viz.,

Bflog(1 + x)} =y, x> -1, x In %,

which has a solution if, and only if, the function®

* Here we are applying the B operator to a function not in L,, the proper interpretation
being w = 1 + B|—1 + exp(-)].
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w(t) = Blexp 1/2[y(t) + y(¢)]},

where y is the Hilbert transform of y, extends as a function zero-free
in the upper half-plane, which will be the case if || y||; is sufficiently
small. Then the solution is given by

x(t) = |w(t)|* - 1.

Motivated by the above considerations, pure curiosity, and the fact
that in many cases of practical interest the companding function and/
or its inverse can be well approximated by a polynomial of low degree
over the range of interest, we are led to consider the case where the
companding function has a Taylor series expansion, allowing the
possibility of developing a corresponding series solution to the prob-
lem. To obtain the terms (1st order, 2nd order, etc.) in the series
solution it is convenient to multiply y by a scalar parameter m, and
consider the problem

Bf(x) = my (1)
to be solved for x in %, given y in %, for companding functions
flx) =T bex*,  |x| <Ro ()
1
b, # 0.
For sufficiently small | x|, f will have an inverse ¢,
x = ¢{f(x)}
o(y) =X ay®, |yl <RE. (3)
1

We assume that the solution x = x(¢; m) of (1) has a series expansion
in the parameter m,

x(t; m) = i m*x,(t), (4)
1

where the x,(t), aptly described as kth order corrections, (not to be
confused with the Landau-Miranker approximants) depend only on
y(t) and f. Presumably, in cases of small distortion, a few terms of the
series would give a satisfactory approximation to the solution.

Explicit expressions for the first five of the x.(t) are given in the
sequel, first in formulas involving the coefficients of ¢, and next, the
coefficients of f, together with certain operations on y. These formulas
reveal how the Fourier transforms of the x,(t) may be calculated from
the Fourier transform of y(t), if this be given.

Next, we find a series development of z in %,
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2(8) = 2(5 m) = ¥ m¥24(0) (5)

such that the solution to (1) is given (presumably for sufficiently small
|m|) by

x = Bo¢(2). (6)

We find that 2; = y, z, = 0, and in case a; in (3), or b, in (2), vanishes,
we have, in addition, z; = z; = 0. That is, under certain conditions,
z = my, implying that B¢{Bf(x)} is an “approximate identity” (=x) for
x in %, especially if f is odd and fairly linear, or if x(t) is a predomi-
nantly low-frequency function.

To further investigate the approximate identity, we introduce the
parameter m again, and obtain expressions for u in

B¢{Bf(mx)} = i m*uy, x in %. (7

To see how interchanging f and ¢ affects the approximate identity, we
compare uy, with vy in

Bf{B¢(mx)} = E m*v,  xin .. (8)
1

As expected from the series development of z, we find u, = v, = x, and
up = vy = 0. Further comparisons [with the same m in (7) and (8)]
should be made for the case f'(0) = ¢'(0) = 1. For this case, we find
us = vs = 2b2B(x- Hx?), which may be small if b, is small or if Hx? is
small. In case b, = 0, we find up = v, = 0 for k = 2, 3, 4, and u; =
vs = 3b3B(x2%. Hx?).

These series developments of the approximate identity suggest that
it would be useful in obtaining an approximate solution to the r.v.
companding problem for fairly linear companding functions, not
necessarily having a Taylor series expansion, but merely satisfying
f(0) =0and

0<m < f'(x) meg< x, (—o < x < ), (9)

Compelled by this suggestion, we digress in the Appendix to show for
such f that

|x — Bo{Bf ()} ll2 < vllxll, x in (10)

where

2
€ ma
e=——1.

) m
(Note that v = 1/8 for my/m; = 2.) Thus in many companding

Y
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problems, B¢(y), involving only one filtering operation, would be an
adequate approximation to the solution x. We go on to define an
iterative procedure, involving both f and its inverse ¢, obtaining
approximants converging to x for y < 1, offering an alternative to the
solution of Landau and Miranker in cases where (mq/m,) < 3 + 242.
In any case, B¢(y) is suggested as a good choice for x; in their iterative
solution. We note, in leaving this topic, that the inequality (10) is
invariant to the interchange of f and its inverse ¢.

Returning to the series solution, we apply the results to the problem
of compatible single-sideband transmission (Ref. 4), obtaining a few
terms for correction of the “in-band” distortion arising in envelope
detection of “full-carrier” single-sideband signals.

Although the original intent of the work here was to obtain expres-
sions for the first few terms of the series solution (4), supposedly
adequate for correcting small distortions, the mathematical question
naturally arises in the end as to whether the series actually converges
for sufficiently small | m| (or equivalently, for |m| = 1 and | ¥ |
sufficiently small), or whether it is merely an asymptotic series. It is
indeed a pertinent mathematical question, since the expressions for
the x;(¢) were obtained by purely formal manipulations of power series
and application of the operators B and H. The resulting expressions
become progressively cumbersome and complicated, with no obvious
general form, offering no possibility of establishing (from them)
bounds on | xx(t) | which would ensure convergence of the series. The
remainder of the paper is addressed to the problem of establishing the
convergence of the series.

If we suppose in the r.v. companding problem that the series con-
verges for real-valued m of sufficiently small magnitude, then it would
also converge for similar complex m, suggesting that the companding
problem [for fixed y(t)] would have a solution for all complex m of
sufficiently small magnitude. This, in turn, suggests that the problem
would have a solution for arbitrary complex-valued y(t) in %, and all
complex m of sufficiently small magnitude, depending on f and the
norm of y. That this is a fact has been established previously (Ref. 3)
only for complex-valued y(t) whose Fourier transforms vanish outside
[0, A], (or [—A, 0]), the Fourier transform of the solution x(t) having
the same property. In this case (with m = 1), the solution is given by
x = B¢(y) for y of sufficiently small norm; i.e., in case the Fourier
transform of x(t) vanishes outside [0, A], (or [=A, 0]) the “approximate
identity” is an exact identity,

x = Bo|Bf(x)] = ¢{f(x)}

for x of sufficiently small norm. This result can be explained, roughly,
by the fact that nonlinear (analytic) distortion of such x(t) does not
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produce both “sum and difference” frequency components, but only
“sum” components.

In order to prove that the series solution actually converges for
sufficiently small |m|, we show that the companding problem (1),
where y(t) is an arbitrary complex-valued function in %, has a solution
x(t; m) for all complex m of sufficiently small magnitude, this solution
being, for each fixed ¢, an anaytic function of the complex variable m,
from which it follows that the solution has a Taylor series expansion
in m; ie.,

x(tm) = E m*xu(t), |m| < mo. (11)
1

To obtain this result, we first have to establish for the complex-
valued (c.v.) companding problem the analogue of A. Beurling’s
uniqueness theorem (see Ref. 1) for the r.v. companding problem.

We then examine in detail a specific problem illustrative of the
theory and some of its nuances; viz., the problem (taking A = 2 for

convenience)
x sin 2t
B{l—x}_m o (12)
for which the solution is (at least for sufficiently small | m|)
. . 2
x = x(tm) = 26 202 _ g2 (S‘“ t) : (13)
2t t
where
g =m/(2 + m).

The rather surprising revelation of this example is that, although the
series expansion in m of x(t;m) converges, uniformly in ¢, for [m| <
2, it is not a solution of (12) for all such m. Furthermore, one might
reasonably assume that (13) is a solution of (12) for all m other than
—2, but this is not true either. As an illuminating exercise, we deter-
mine precisely the set of m for which (13) is a solution of (12).

Il. THE INVERSE SERIES METHOD

To obtain a series solution to (1), we first think of recovering from
y(t) the out-of-band components of f{x(t)}, so that we might apply the
inverse function ¢ to the whole in order to recover x(t) = x(t;m). We
have

flx(t)} = my(t) + h(t), (14)

3014 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983



where h(t) = h(t;m) is some unknown “high-pass” function satisfying
Bh(t) =0 (15)

and hence
x(t) = ¢{my(t) + h(t)}. (16)

It is convenient at this point to introduce the high-pass operator
defined by

H=1I1-18B, (17)
where I is the identity operator. Thus applying H to (16) we have
Holmy(t) + h(t)} = 0. (18)

We would like to solve (18) for A(t), which we think of as small in
cases of interest.
Now we assume that

¥) = X ay* for sufficiently small | y|, (19)
1

a; ¥ 0
and that in (16)

h(t) = h(t;m) = ): m*h(t), Hhy, = hy, k=2, (20)

x(t) = x(t:m) = 2 m*x(t), Bx), = x, k=1, (21)

where h,(t) and x.(¢) do not depend on m.
We want to expand ¢{my(t) + h(t)} as a power series in m. To do
this it is convenient to write

my(t) + h(t) = E m*h(t), (22)
where we identify
¥(t) = h(t) in %. (23)
Then we write
(b {i mkhk(t)} = F(m,'t) = § mka(t). (24)
1 1

For convenience we suppress the variable ¢ and write simply xy, hs, Fj.
In terms of the coefficients a; in
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o(y) = ; awy®,

we find, equating coefficients of m* in (24),
F=ah
F, = a1hs + ash?
Fs = a1hs + ax(2hihs) + ashi
Fi = ahy + a5(2hihs + h3) + as(3hihy) + a.hi
Fs = ashs + a2(2hhy + 2hohs) + as(3hihs + 3hh3)
+ ai(4h3hy) + ashd
Fs = ajhg + ax(2hihs + 2hshy + h3) + as(3hihy + 6hihghs

+ hd) + a(4h3hs + 6h3hY) + as(5hth,) + ashi
F7 = O‘.lhq + az(2h1h5 + 2h2h5 + 2h3h4)

4 as(3hihs + 6hihshy + 3hihi + 3hiho)

+ ay(4hhy + 12h3hshs + 4hyh3)
+ as(5hths + 10h$h3) + as(6hihs) + azhi

Fy = a1hs + a2(2hihy + 2hshe + 2hshs + hi)
+ as(3h2he + 6hihohs + 6hihshy + 3h3hy + 3hohi)
+ ay(4h3hs + 12h3hohy + 6R3H3 + 12hih3hs + h3)
+ as(5hths + 20h3hshs + 10h3R3)
+ ag(6h%hs + 15hih3) + a-(ThShy) + ashi

Fy = aiho + a2(2hihs + 2hohy + 2hshe + 2hshs)
+ as(3hZh; + 6hihohe + 6hihshs + 3hihi + 3h3hs
+ 6hshshs + h3) + as(4hihe + 12h%hohs + 12hihah,
+ 12hh2hy + 12hihoh3 + 4h3hs) + as(5hihs

+ ag(8hihs) + aohd
Fio= aihyp + 02(2h1h9 + 2h2h3 + 2h3h7 + 2hshs + h%)

+ a3(3h§h3 + 6h1h2h7 + Ghlhghe + 6h1h4h5 + 3h§hs
+ 6h2h3h5 + 3h2h42, + Bh%h.;) + (14(4]1:%}17 + 12h%h2h3

(25.1)
(25.2)
(25.3)
(25.4)

(25.5)

(25.6)

(25.7)

(25.8)

(25.9)
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+ 12hthshs + 6h3hi + 12h,h3hs + 24hhohsh, + 4hihd

+ 4hih, + 6h3h3) + as(5hths + 20h3hahs + 20h3hsh,

+ 30h3h3h, + 30h3hh3 + 20h,h3hs + h3) + as(6hShs

+ 30hthohs + 15hih3 + 60hih3h; + 15h3R3)

+ a7(ThShy + 42hShshs + 35h1h3) + ag(8hih,

+ 28h%h3) + ag(9hth,) + ayohi®. (25.10)

In general the coefficient of a,, in the expansion of F, consists of sums
of products of the h; corresponding to partitions of n into m parts.
The coefficient of the product is m! divided by the product of the
factorials of the exponents of the h, (the multinomial theorem). For
example, in Fyy the coefficient of a; is found by writing down the
partitions of 10 into 5 parts and proceeding thus (see Table 24.2, Ref.
5):
1,6 — hihg coef. =5!/4! =5

1°,2,5  hihshs 5!/3! =20
1%,3,4  hihsh, 5!/3! =20
12,22, 4 hihdh, 51/212! = 30
12,2, 3% hihyh} 51/212! = 30
1,253  hhih, 51/3! =20

2 h$ 5!/5! =1.

Now we may obtain a formal series solution (21) by successively
solving for the h, by requiring

HF(t) = 0, k=1,2, ... (26)
and setting
xi(t) = BF(t) = Fi(t), k=1,2, ... (27)

Recall that h, = y, the given bandlimited (low-pass) function, and all
the other h, are high-pass functions." We have Hh), = hy, k = 2 and

HF, = qHh, = 0 (28.1)
HFz = a]h/z + ath% = 0

a
hy = — = Hh? (28.2)
ay

" Actually, for k = 2, hy is a bandpass function whose Fourier transform vanishes
over (—\, A) and outside [—&A, kA]. This can be seen from (28.1)-(28.k).
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HFa = alh3 + 202H(h1h2) + 03.th =0

hs = % H(h,-Hh?) — Z—‘l‘ HR (28.3)
HF, = aihe + ay(2H(hhs) + Hh3) + 3asH(h3hy) + a,Hhi = 0
he = 4“2 7 Hib-Hh- HK) + 2“2“3 H(h,-Hh))
( ) H[(HR)? + =22 3“2“3  H(hd-HA) — ! Hh" (28.4)

HFs = ajhs + a;[2H(hihy) + 2H(hohs)] + as[3H(hihs)
+ 3H(h1 %)] + 4ﬂ4H(hgh2) + ﬂﬁHhﬁ =0

8a$ 4
ho = 52 Hih: Hibs-H(b- H)) ~ %% - H(h HH))

2a2

+ 77 Hih (HRY = 6"2“3

Hih,-H(hi- Hh)]

20204 4‘12

H(h-HhY) + — H[(th) H(h,-Hh})]

2“2"" HI(HR3)-HhY] - 6“”"3 HIh2-H(h,- HR))
303 2 3a2a3 22
H(h .HAK}) — H[h,-(HhY)]
4"2"‘ H(h-HR2) — = Hh“ (28.5)

Now replacmg h1 by y we have from (25), (27), and (28)

= BF, = a1y (29.1)
= BF, = a,By* (29.2)
= BF; = 2a,B(yhs) + asBy?®

2a2 (29.3)

=—-— B(y Hy?) + a3By®

x4 = BF, = a:(2B(yhs) + Bh3) + 3a;B(y*hs) + a.By*

4 2aza
= 2 piy-H(y-Hy) - 222 B(y-Hy)
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3
3a
+ % B(Hy)? - 22 B(y*. Hy) + a,By* (29.4)
1

x5 = BFs = a3[2B(yhs) + 2B(hshs)] + 3a[B(y*hs) + B(yhd))
+ 4a,B(y°hs) + asBy®

- 8— Bly-Hly-H(y-Hy")]} + 222% gy H(y. Hy%)]

- —2— Bly- H(Hy?)

2)]

20204 2520 p(y. Hy') — _B[(Hy2) H(y-Hy%)]

2aza3

BI(Hy?)- (Hy)] + S92 B gy Hy)

303 B( 2,

9%

40204

B(y®-Hy®) + asBy". (29.5)

If in (29) we replace the H operator by I — B and collect terms we
obtain

X = ay (30.1)
= a,By* (30.2)
2 2
X3 = 203 B(y-By? + (aa - 2ﬂ) By? (30.3)
a a;
2 4a}  2a.a, 3
X=— B[y B(y-By®)] — p . B(y-By®)

+ “-; B(By?)? — (6;‘;2 3"2“3) B(y*-By?)
a a a

1

3
N (m _ bayay 5;'22) Byt (30.4)
151 a
2 43203 8a2 3
e = 5% Bly-Bly-B(y-By))) + (*22 - &) gy, p(y.myo)

6 12 2
i (S 1268 gy ey + 228
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-Bly-B(By")"] + (3“2“3 - -63) Bly-(By*)]

2 10a3 10
+ ( Aoy _ d203 + ao

a al 01

) B(y-By") +2 — B[(B %)

2
-B(y-By)] + (6‘;21“3 10"2) Bly*B(y-By")]

+(2“%f d 4“2) B(By")- (By")]

ai 01

. (sig _ 12ala, 1ia2) B(y*-By)

a, a%

+ (40204 _ 20a2as + 2002) B(y*-By?)

a ﬂ% al
6 2lada; 14ai 3a}
+ (a5 _ [1 211 7Y + 112233 _ 22 — _GE) Bys_ (30.5)
a ai ai !
Note that if y belongs to B(\/n), then By* = y* fork=1,2, ---, n

In this case we will have x, = a,y". So the sum of all coefficients in
the expressions for x, must be a,. If ¢ is an odd function these formulas
simplify cons1derably It is rather curious that if a; = 0, a3 # 0, the
coefficient of B(y?.-By?) vanishes, whereas the coefficient of B(y*-
By®) does not. The coefficients in (30) are more simply expressed in
terms of the coefficients in the power series for f as we see below.

IIl. FORWARD SERIES METHOD
We can also solve (1) in the “forward” direction by writing

Bf(mx; + m%t; + mPx + ---) = my, (31)

where
flx) = 21‘, bex*. (32)

Then applying the expansion (24) and (25) to f(¥ m*x) we have,
equating coefficients of m*,

Bbyx, =y (33.1)
Bblxz + Bngf =0 (332)
Bb1x3 -+ Bb2(2x1xz) + Bbax? =0 (333)

Bbyx + Bbo(2x1x5 + x3) + Bba(3x3xs) + Bbixi =0  (33.4)
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Bb1x5 Bb2(2x1x4 + 2x2x3) + Bb3(311I3 + 3x1x2)
+ Bb4(4x1x2) + Bb5x1 = (. (33.5)

Then solving (33) successively for x;, (Bx: = x;), we have

x1 = y/b (34.1)
b
Xp = — b—g By? (34.2)
1
2b3 by
% = 35 B(y-By") = 3 By’ (34.3)
2 2b5bs 3
Xy =— B[y B(y-By?*)] + be B(y-By?)
(34.4)
b3 3b
—_ ET? B(By2)2 2 3 B( 2, 2) _ _; By‘

Bl y-Bly-B(y-By*]} 4 2 B[(Byz) B(y-By?)]

2b" B[ B(By??] — bzba Bly-B(y-By®]

GI;:ba Bly By By - 22 " Bl(By")- (By")]

szb"‘ B[y*-B(y-By?)] - 325;3 Bly-(By’)]

2’;”‘ B(y-By") + 222 B(y. By

35,2 B( 2. By?) — :_; By, (34.5)

These correspond to the solutions for the h; in (28) with H and B, and
a’s and b’s interchanged, except here x, = y/b;, as compared by h, =y
in (28). They agree with the formulas in (30) according to the identities
in reversion of series (see 3.6.25, Ref. 5)

b, =1 (35.1)
aib; = —a, (35.2)
ash; = 2a3 — aias (35.3)
aiby = bayasas — aias — 5al (35.4)
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albs = 6a’aa, + 3aZa? + 14a? — alas — 2la.adas (35.5)
allbe = Talasas + Talasas + 84aiaia; — atas

— 28a%a,a3 — 42a3 — 28aiala, (35.6)
al®h; = 8ataas + 8alasas + 120aiada,

+ 180a%a%d3 + 13245 — ala; — 36aiajas

— 72a3a0504 — 12a’a:03a; — 12ala3 — 330a,aia;.  (35.7)

Of course the a’s and b’s may be interchanged in (35). Actually the
expressions for x, in (34) are analogous in a way to the coefficients a,
expressed in terms of the b, as given by (35) (with the a’s and b’s
interchanged). That is, if it were not for the B operator in eq. (33.k),
we would have simply x; = a,y* according to the determining equations
for the inverse coefficients. Because of the B operator, successive
solutions for the x; generate powers of y interposed with B operators
and powers of {B(-)} in all combinations so that, for example, in x; we
have a number of terms with coefficients b3bs/b} that combine only
when B is replaced by I to give —21b3b;y°/bj, corresponding to the last
term in (35.5). Note if all the by, = 1, the sum of the integer coefficients
in x, is (—1)"*! as this is the case y = f(x) = x/(1 — x), x = ¢(¥) = ¥/
(1 + y). Note also that in the expression (34.5) for xs, for example,
there are five groups of functions with common “b” coefficients. These
combine with certain weights, depending only on the coefficients of
f(x), to give xs. Similarly, in the expression (29.5) obtained from the
inverse function, there are again five groups of functions with common
“g” coefficients that combine with certain weights, still depending
only on the coefficients of f(x), to give xs. The interesting and rather
puzzling fact is that the groups are not identical but overlap.

IV. A SOLUTION OF THE FORM x(f) = Bo{z(t)}, z in B,

For the solution to (1) we have x = ¥ m*x;, where according to
(25) and (29), we have

X = a1y
% = ahy + azy® = a;By*
% = mhs + 2a2yhs + a3y° = 205B(yha) + asBy’.
Since
d(my) = amy + aam®? + am®y® + -,
we see that x = Ba(my) + Z(m®), m — 0. Then setting m = 1 (with y

sufficiently small) we can conclude that
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x = Be(y) + O(y*), y—0. (36)

At least as y — 0, Bo(y) is a better approximation than ¢(y) = x +
A(y?. Also B¢(y) could be a good approximation to x without y being
small, as would be the case if y were a predominately low-frequency
function (compared with its top frequency). This suggests that given
y in (1) we determine a bandlimited function z, perhaps close to v,
such that the solution to (1) is given by

x = B¢(2). (37)

To determine a series solution for z we set
-]
z=Yzm*, Bz =2z (38)
1
and expand ¢(z) in a power series in m:

p(mz, + m?z, + m®z3 + --.) = ¥ mFF,. (39)

-IMB

The Fy are given by (25) with z, replacing h,. The difference now is
that the F; are bandlimited to [—kA, kA, i.e., ¢(2) is not bandlimited
(in general) with z in %,. However, we must have

BF,& = Xg, (40)

where in terms of operations on y the x, are given conveniently by
(29). We have

Ba;zl =X =My (41-1)
B(aizz + a:23) = x = a:By* (41.2)

2
B(aizs + 2022125 + a323) = 23 = — -2(% B(y-Hy? + a3;By® (41.3)
1

Blajzs + a2(22125 + Z%) + 03(3Z¥22) + CuZﬂ = X4

4a3
= a—; Bly-H(y-Hy )

3
3
+ % B(Hy)! - 22 B(y*-Hy’) + aiBy'  (414)
1
Blaizs + ay(22,24 + 22525) + 03(32123 + 3z,23)
+ ai(42iz,) + aszi] = x5 = — — Biy H[y-H(y-Hy?)}

40 203

Bly-H(y-Hy")] - — B[y H(Hy*?]
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6!1 zaa 2(12(14

B(y-Hy*)

Bly-H(y*-Hy®)] —

4a2 2aza3

-— B[(Hyz) H(y-Hy*)] +

B[(Hyz) (Hy?)]

60203 B[yz H(y Hyz)] _ U3 B( 2 Hy“)
+ 3223 S Bly. (Hy"] - “2% B(y". Hy") + asBy" (41.5)
1

Solving these equations successively for z, we find

2 =Yy (42.1)

2 = (42.2)
2 2

Zn=-— ai B(y-Hy? (42.3)
1

4a} 2 2
2= 22 Bly-H(y-Hy") - =5 B(y-Hy") + o3 BHy"’
1 1

4 3
- —-3@2& ® B(y*-Hy*) + f? Bly-B(y-Hy%). (42.4)
1

1

. 4a}
The first and last terms in (42.4) combine (H + B = I) to give %

1

B(y*- Hy?), which then combines with the fourth term to give

2 = :— (4a} — 3a:a5)B(y?-Hy?) — —a—“a B(y-Hy®)
1

1

3
+ % B(Hy?)? (42.4a)
1

8&4
2= — a—; Bly-H[y-H(y-Hy")]}

- 92 Bly-B(y*Hy)] + 2 (10} - 3,00)B(y* Hy’)
1

+ je (3mas — 2a3)Bly- (Hy?)?)
1

2aq, B(y-Hy')
G1

+ — (30203 — ma)B(y*-Hy?) —
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41‘12

~ —7 Bl(Hy)-H(y-Hy)] + =" 2aiay

B[(Hy?)- (Hy®). (42.5)

The expressions for the third- and fourth-order terms, z3 and z,, are
quite simple, owing to the fact that z; = y, zo = 0. Note in eq. (41.n)
the “diagonal” term a,Bz7 on the left is cancelled by the term a,By"
appearing in x, on the right. Also in case a; = 0 we have

1=y (43.1)

2=0 (43.2)

=0 (43.3)

zs=0 (43.4)
3 2

2= — ﬁ B(y*-Hy"). (43.5)
1

V. THE APPROXIMATE IDENTITY

The series development in the previous section suggests that as a
practical expedient one might take

x = Bg(y) = Bop{Bf(x)} = ¢{f(x)} = x.

That is, what appears to be the naive thing to do may in fact be quite
good, especially for odd functions ¢ (or f) that are not severely
nonlinear. The interposition of the bandlimiting operator between a
nonlinear function and its inverse and then subsequent bandlimiting
is an interesting “approximate identity” that we examine further in
the Appendix. One might ask how the interchange in the order of a
particular function and its inverse in the transformation affects the
approximate identity. The series expansion of the approximate iden-
tity may shed some light on the general problem. To keep track of the
various orders, it is convenient to introduce the parameter m as before.
We have

Bf(mx) = 3 m*b,Bx* (44)

o\Bf (mx)} = T m*Fy, (45)

where the F are given by (25) with b.Bx* replacing hi, and Bx = x.
Thus,

F,=abx=x (46.1)
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Fy = a,byBx? + azbix?

Fs = a,bsBx® + 2a,b,byx- Bx* + azbix®

F, = a;byBx* + 2a5b,b3x-Bx® + a;b3(Bx?)*
+ 3a3bibox®- Bx® + a.bix?

Fﬁ = alb5BI5 + 2azb1b4x-Bx" + 2azb2b3(Bx2)'(Bx3)

+ 3asb2bsx2. Bx® + 3asb,bix- (Bx?)?
+ 4a4b?bzx3-Bx2 + a5b?I5.

Now we set

where

B¢{Bf(mx)} = S;‘. m*uy,

Ur = BFk

(46.2)
(46.3)

(46.4)

(46.5)

(47)

(48)

Now note in (46) that if all the terms in BF; involving x were of the
form Bx* then BF), would vanish identically for k = 2 because ¢{f(x)}
= x. So we will introduce the high-pass operator H = I — B to collect
the terms Bx* that cancel. For example, to collect terms Bx® in BF;

we write
B(x-Bx?) = B(x® — x- Hx?) = Bx* — B(x- Hx?).
Thus,
u = BF| =Xx
us = BF, = a1b,Bx? + abiBx®* =0

us = BF; = a;bsBx® + 2a:b,b,B(x-Bx?) + asbiBx®

Uy

absBx® + 2ab,boB(x® — x- Hx?) + azbiBx®
—2a,b,b:B(x- Hx?)
BF, = a,b,Bx* + 2ab,b3B(x-Bx®) + azb3B(Bx?)*

+ 3asb?b.B(x*-Bx?) + abiBx*

= a,byBx* + 2a:b:b:B(x* — x- Hx?) + asb3B(x? — Hx?)?

+ 3asbb,B(x* — x*. Hx?) + a.biBx*

= —2ayb,bsB(x- Hx®) — (2a:b% + 3asbibs)B(x*. Hx?)
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us = BF; = a,bsBx® + 2ab,b,B(x-Bx*)
+ 2a5b.b3B[(Bx?) - (Bx®)]
+ 3asbib;B(x*- Bx®) + 3ash,b3B[x- (Bx?)?)
+ 4a,bib,B(x*- Bx?) + asb3Bx®
= a,bsBx® + 2a,b,b,B(x* — x.Hx*)
+ 2a:b,b3B[(x* — Hx?)-(x* — Hx%)]
+ 3asb2bsB(x® — x2. Hx®)

+ 3asbibiB[x- (x* — Hx*)?] + 4a:b3b,B(x® — x°. Hx?)

+ azb3Bx®

= —2a2b1b4B(x-Hx‘) - (202b2b3 + 3a3bfba)B(x2-Hx3)

- (2azb2b3 + Gagblbg + 4a4b§b2)B(x3-Hx2)

+ 2a:b,b3B[(Hx?) - (Hx)] + 3asbb3B[x- (Hx?)2). (49.5)

Now in order to assess the symmetry or lack of symmetry in inter-
changing ¢ and f we can use the identities (35) to express the mixed
coefficients of u, in terms of the b, or the a, alone. We have

U =x

Uy =0

uz = 3C,B(x- Hx?)

us = 4C1B(x- Hx®) + 4CoB(x*- Hx?) + ,CsB(Hx?)?

us = 5C\B(x- Hx*) + ;C.B(x*- Hx®) + 5C3B(x?- Hx?)
+ sC4B[(Hx?) - (Hx®)] + 5CsB[x- (Hx?)?,

where
2b7 2a}
sC1 = —2a3b,b, = ?%E = a_;
2b2b3 202ﬂ3 403
Ci = —2a5b,by = =272 = 2020 _ 202
4Ug a20,03 b2 a a?
4b3  3bob 2a3
Cy = —(2a3b} + 3asbdh,) = — — + =238 = _ =2
42 ( 2U2 3U1 2) b:la b% atls
3 3
403—0252——b—:=a—z
1 a;

(50.1)
(50.2)
(50.3)
(50.4)

(50.5)

(50.3a)

(50.4a)

3aya3
af

COMPANDING PROBLEMS 3027



2b2b4 10&%03 2&204 1 Oag

sC1 = —2asb,by = W - a + pr + o (50.5a)
4b b 3b3
5Cy = —(2asbubs + 3asb?bs) = bi, 2y =2 =

= (20} — @,a3)(2a3 — 3aya3)/a}
5C3 = —(2ﬂzb3 + Gagblb%’ + 4a4b¥b2)
Sb% 12b§bg 4bzb4 _ 4_(13 80%!.13 + 4_0291

1 b b ol  d ai
2b%b; 2aia; 4ai
—J 2 e _——— — ——
5Cs azbabs b3 al az}
6b% 3b3b; 3ala
505 = 3ﬂab1b2 = F} - —3_3 = a27 3.
1 1 1

Now if we interchange the order of ¢ and f in (45) and write
Bf{B¢(mx)} = E m*v, (51)

we obtain the vy by replacing u by v in (49.k) and then interchanging
the a’s and b’s. We have u; = v; = x and u = vy = 0. We should
compare u; and vy, k = 3, for f'(0) =1=a, = b,. Then we have

u=uv, k=123 (52)
But we have, for example (with a; = by = 1),
U = 2bsbsB(x- Hx®) + (3bobs — 4b3)B(x*- Hx?) — b3B(Hx*)* (53.1)
vy = (2boby — 4b3)B(x- Hx®)

+ (3bsby — 2b3)B(x?-Hx®) + b3B(Hx?%)%. (53.2)
If, however, b, = 0 (a; = 0) we have
Up = Up = 0’ k = 2a 3a 4! (533)

and if a = b1 = 1,
us = vs = 3b3B(x?. Hx?). (53.4)
In case by, = by = bg = 0, (az = as = ag = 0), we have

3bsb 5bsbs  9b
”B(2 x5)+(b3%5 b;*)B(*Hxﬂ)

U =

3b3

Ty Blx-(H2’)’), (54)
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where the coefficients expressed in terms of the a’s are

3bsbs _ 3asas 9(1%

R L
sty _ 96} _ sy _ 60} _ 363 _ 3
b? b? al al b3 al’

So we do not have, in general, u; = v; for odd functions f(x) with

f(0)=1.

VI. APPLICATION TO COMPATIBLE SINGLE-SIDEBAND TRANSMISSION

The mathematical problem of compatible single-sideband transmis-
sion was formulated in Ref. 4. Given a signal y(t) in &, the problem
is to determine m such that the equation

B{v(1 + s(t))? + §(t)*} = my(t) + 1 (55)

has a solution s(t) in %. In (55) §(t), sometimes called the quadrature
signal, is the Hilbert transform of s(¢), and B is operating on the
envelope of the single-sideband signal. The idea is to transmit a single-
sideband signal that is compatible with receivers designed for double-
sideband (AM) reception. Setting

2s(t) + si(t) + §%(t) = x(), (56)

we may write (55) as

Bf{x(t)} = my(t), (57)
where
flx)=+v1+2x—-1, x = —1. (58)

Then s(t) may be found from the solution x(t) of (57). (This requires
factoring 1 + x(t) in the form g(¢)g(t), where the bandwidth of g is
half the bandwidth of x.) Then with y = f(x) we have for the inverse

x=¢(y) =2 + . (59)
Setting
x =Y mx, (60)
1
we have from (29) witha; = 2,a, =1,a, =0 for k= 3,

X =2y (61.1)

x3 = By? (61.2)

x3 = —B(y-Hy?) (61.3)
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x4 = Bly-H(y-Hy%)] + 1/4B(Hy*)*

xs = —B{y-Hly-H(y-Hy")l} — 1/4Bly-H(Hy")’]

— 1/2B[(Hy*)-H(y-Hy").

Replacing H by I — B we have from (30) the alternate forms

x3 = B(y-By*) — By*

x4 = B[y-B(y-By*)] = B(y-By®) + 1/4B(By")’

— 3/2B(y*-By?) + 5/4By*
xs = B{y-B[y-B(y-By*]} — Bly-B(y-By®)]

— 3/2B[y-B(y*-By*)] + 1/4B[y-(By*)*]

— 3/4B[y-(By*?] + 5/4B(y-By*)
+ 1/2B[By*)-B(y-By*)]

— 8/2B[y*-B(y-By*)] — 1/2B[(By)*-(By")]

+ 3/2B(y*-By®)
+ 5/2B(y*-By?) — T/4By".

(61.4)

(61.5)

(61.3a)

(61.4a)

(61.5a)

The factoring of 1 + x can be avoided by developing a series solution

for s, Bs = s. We have
x =2 + s* + §*
x=mx; + mix + mixs + ...
Then setting
s = ms; + m?z + m®s3 + .-
§=mé +m+m+ .-,
we have
s? = m2s? + m32s;:8, + m*(2s,83 + 53)
+ m®(2s184 + 28283) + - - -
§2 = m%? + m®28,8, + m*(25:8; + §3)

+ m5(2§1§4 + 2§2§3) + .-

(62)
(63)

(64)

(65)

Note that if s belongs to %()\), then the Fourier transform* of (s +
i$) vanishes outside [0, A] and that of its complex conjugate (s — i8)

*Here the Fourier transform of § is —i(sgnw)S(w) where S(w) is the Fourier transform

of 5.
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vanishes outside [—A, 0]. Thus the Fourier transform of e (s + i§)
vanishes outside [—(A/2), A/2]. It follows that the Fourier transform
of s? + §% vanishes outside [—)\, \], and hence that the sums of the
coefficients of m" in (64) and (65) are functions whose Fourier trans-
forms vanish outside [—A, A].

Now we can solve successively for s;. It is convenient to introduce
the Hilbert transform (Quadrature) operator @

£=Qg (66)

to indicate the “hat” of complicated expressions.
Equating coefficients of m; in

x=2s+ s° + §%

we have
s;=x /2=y (67.1)
83 = 1/2xy — 1/2(s? + §%
= 1/2By* — 1/2(y* + 5), (67.2)
which may be written, using Bs, = s,, as
s = — 1/2By* (67.2a)

S3 = 1/213 - (8152 + §|§2)
— 1/2B(y-Hy*) + 1/2yBy? + 1/2y-QBy>. (67.3)

Here we may write

yBy* =y.y* — y-Hy*
and then use Bs; = s; to obtain
ss = — 1/2B(y-Hy®) — 1/2B(y-Hy*) + 1/2B(y-5°) + 1/2B(3-QBy")
= — 1/2B[y-H(y* + y*)] + 1/2B(y-y°) + 1/2B(5-QB5>).
Then since H(y% + %) = 0, we have
s3 = 1/2 B(y-y*) + 1/2 B(y-QBy?) (67.3a)
S = 1/2 x4 — (5183 + 1/2 s3) — (5,55 + 1/2 §2)
1/2 Bly-H(y-Hy®)] + 1/4 B(Hy*)?
- 1/2 yB(y-y*) — 1/2 3QB(y-5%)
- 1/8 (By*)* — 1/8 (@By*)*. (67.4)

There appears to be no simplification here. One may prefer the
alternate expression (61.4a) for x4 to eliminate the H operator. Note
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that @B can be replaced by the bandlimiting quadrature operator B
where

B = B0 = |_ g0 Lo 2=

ds. (68)

VIl. THE COMPLEX-VALUED COMPANDING PROBLEM

The c.v. companding problem is considerably more complicated than
the r.v. companding problem, even for the same analytic companding
function. For example, if

f(x) = tan™'x + ex, (e>0),

we know from the Landau-Miranker theory that the r.v. companding
problem

Bf(x) =y

has a unique solution x in %, corresponding to every real-valued y in
%,. However, in the case of complex-valued y, this may not be true
because x must then take complex values which, if the norm of y is
not restricted, may be singularities of f. In addition, we are confronted
with the problem of establishing the uniqueness of the solution, which
may require still more severe restrictions on the norm of y.

Beurling’s uniqueness proof (see Ref. 1) for the r.v. companding
problem is elegant and simple: Suppose f(x) = #(|x|), |x| — 0, and
is monotone increasing, and further that

Bf(x;)=y and  Bf(x)) =,

with x,, xo, (and y) in %,. Then f(x,) and f(x;) belong to L, and B{f-
(x1) — f(x2)] = 0, i.e., the Fourier transform of {f(x:) — f(x2)} vanishes
over (—A, A), and therefore {f(x;) — f(x;)} must be orthogonal to
(x1 — x;). But this is impossible unless x; = x3, for otherwise (x; — X3)
{f(x:) — f(x»)}, which is everywhere non-negative, will be positive
everywhere on the real axis, except at the isolated zeros (if any) of
(%1 = x2).

For establishing uniqueness in the c.v. companding problem, it
would seem that the weakest analogue of monotocity should be
“schlichtness” of f, i.e., that x should be confined to a region, where
f(x;) = f(x;) implies x; = x;. This suffices to establish uniqueness of
the solution in the special case where x has a one-sided Fourier
transform, but we are not able to see that it suffices in the general
case. We can establish the following analogue of Buerling’s theorem,
where, without loss of generality, we assume f’(0) is positive.
Theorem 1: Suppose f(0) = 0, f’(0) > 0, and f(2) is analytic in a convex
region G including the origin, wherein
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Re{f'(z)} > 0.
If x,(t) and x,(t) belong to %, and are confined to G for all real t, then
Bftx) =y and  Bf(x)=y
imply
x1(t) = xo(t).

Proof of Theorem 1: Since G is convex, any two points x; and x, in G
can be connected by a straight line segment in G. Suppose (x; — x») =
re, where r > 0. Then integrating f’ along the connecting line
segment, we have

flx1) = f(x2) = €” J; f'(x2 + se®)ds,

and hence

Re f(x) = f(xa) _

X1 — X2

Re -i- f f'(x2 + se®)ds > 0.
0

In case x; — x,, the limit is Re f’(x,) > 0.
Now {f[x:(¢)] — f[x2(t)]} belongs to L, and must be orthogonal to all
members of %,, in particular to {x;(¢) — x2(t)}; i.e., setting

_ e ) = f)

X — X

P(t) = (%, — fz){f(xl) - f(x2)} = |21

the integral of P(t) must vanish. However, we see that the real part of
P(t) is non-negative everywhere on the real axis, and vanishes only
where x; = x,. Since the integral of P is zero, its real part vanishes
a.e. Thus the function {x,(¢) — x2(¢)} in %, vanishes a.e., and hence
everywhere. [

Now we can establish that the c.v. companding problem,

Bf(x) =y,

will have a solution x, which will take values in a disk centered on the
origin, wherein Re{f’(z)} > 0, provided | y ||, is sufficiently small. Then
the uniqueness of the solution follows from Theorem 1.

An objectionable, but inherent, feature of companding problems (as
formulated here) is that a restriction on | ¥ | is not sufficient to give
a corresponding restriction on || x||.. We can, however, establish that
[ x|, will be small if || y|. is small, and hence that | x| . will be small,
according to the inequality (given in the introduction) for a function
gin F(N),

lglle < vA/ml gl (69)
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In the sequel, we assume, for convenience and without loss of
generality, that f'(0) =1,

f2) =2+ S baz", 2| <R, (70)
2

where R, (perhaps ) is the radius of convergence of the series. We
exclude the trivial case f(z) = z, and define

M(r) = maxlf () —1| = § klbe|r*Y,  r<R,, (71)
2

which increases steadily from 0 to o, allowing us to define p uniquely
by

M(p) = 1. (72)

Then it is clear that
Re{f’'(2)}] > 0 for |z| <p. (73)

We are now able to establish the following result.
Theorem 2: Let y(t) be any complex-valued function in %, = %)),
satisfying
\2VES BT PRS OrgraXIrll = M(n)]} = ro[1 = M(ro)]. (74)
<p

Then the companding problem
Bf(x) =

has a unigue solution x = x(t) in %,.
Proof of Theorem 2: We can use the method of Landau and Miranker

to obtain a Cauchy sequence {x,} converging to the solution x, provided
we restrict | y|z, in the end, to be sufficiently small that all the

approximants satisfy |x,| < p.
Assuming the norm of y to be sufficiently small, we take

x, =y = By, (75)

which should be a good approximation to x for small y. Then we set,
following Landau and Miranker,

Xn41 = Xn + Yy — Bf(xn): n=z=l, (76)

so that, by induction, Bx, = x,, i.e., x, belongs to %,. We have, writing
the same equation for n — 1 and subtracting,

Xns1 = Xn = %n — Bf(xa) = {%n1 — Bf (xn-1)}
= Blxn — f(xn) — {%a—1 — f(xa-1)}). (77)
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Now we write
f(xn) = Xn — gf(xn—l) - xn—l} = f if’(z) - ]-}dz (78)
Then assuming that
|x.] <=r<p forall n=>1 (79)

[and all ¢, suppressed in the notation x, = x,(t)] we have in (78)

U (@) - 1)dz

M(r) < M(p) = 1.

Substituting in (77) the inequality (80) for the magnitude of the
function in (78), we obtain

[%n41 — 2allo < M(r) [ 0 — 201 |2 (81)

So, under the assumption (79), {x,} forms a Cauchy sequence converg-
ing to x in %, [cf. Landau, Ref. 1]. It follows from (76) that

Bf(x) = y. (82)

Now we would like to see how large || v|. may be in order that (79)
hold, giving the conclusion in (82). We write

SM(r)Ixn_xn—llg (80)

where

Xn =2 + (X2 —x1) + (x3 — x2) + -« + (X0 — Xny) (83)

from which follows
[xall2 < ; Ik = xp—1ll2, (84)

where
=y and x0=0.
Applying (81) to (84), we have

l—«

—— 13l (85)

where @« = M(r) < 1, provided (79) holds. This will be the case,
according to (69), if
xalle < Va/Ar forall n=1, (86)

which, in turn, will hold if in (85) we have

[E PIES
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Va/x |yl < rl1 = M(0)]. (87)

Here we are free to take the maximum over r. Thus the problem
will have a solution x satisfying the hypotheses, provided the norm of
y satisfies

Va/x Iyl < max fr(L — M(r)} = ro[l - M(ro)), (88)

and the solution is unique according to Theorem 1. [l
We note that if (88) is satisfied, then the solution x satisfies,
according to (85) and (69),

lxlle < ro <p. (89)

So, in fact, the restriction (88) on the norm of y is too severe. We
obtain a slightly better result later, using a different method.

We now wish to show that if y; and y, are close to each other, then
the corresponding solutions, x; and xs, are also close to each other.
Lemma: Let y, and y, satisfy the hypotheses on y in Theorem 2. Then
the solutions of

Bf(x)) =n and Bf(x2) = y»

satisfy
1% — %2l < "i—}a,{i) <2 Valiro (90)
I = xolle < Va/ " A ;;:2”; 2ro. (91)

Proof of the Lemma: We have
X1 — X% =y — Y2 — B[f(m) — x1 — f(x2) + x2], (92)
giving
lzy = x2ll2 < |31 = y2llz + I B[-]llz < I y1 — vl + [[-1ll2.  (93)
Also, since, according to (89),

x| <sro<p and |x2| < ro<p,
we have from (78) and (80),
I fx)) — %1 — flx2) + xall2 < M(ro) |21 — %22, (94)

which with (93) gives

|y = vz

1- Mr)’ (65)

2y = xall2 <
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This, with (69) and the assumptions on y, and y,, establishes the
lemma. O
With this Lemma and Theorem 2 we can show that the problem

Bf{x(t;m)} = my(t),

for fixed y in %, has a unique solution in %, for all complex m of
sufficiently small magnitude, the solution x(¢; m) being a continuous
function of the complex variable m in a certain disk centered on the
origin. To establish for each t that F(m;t) = x(t;m) is an analytic
function of m in that disk, we show that F(m) has a derivative
(nondirectional) there. Working with the derivative we are able to
improve on Theorem 2. It is convenient now to set vA/x || y|. = 1 so
that | y(t)| < 1.

Theorem 3: Let y(t) be any complex-valued function in %@, = Bs()\)
satisfying

VM |yl = 1.
Then the problem
Bf{x(t;m)} = my(t)
has a unique solution x(t;m) in %, for all complex m satisfying
D

Im| < a(p) = _L [1 — M(r)]dr, (96)
where M(r) and p are defined in (71) and (72). Furthermore, for each
fixed real t, x(t;m) is an analytic function of m, |m| < a(p), and hence,
since x(t; 0) = 0,

xtm) = § minlt),  Iml<a(p), (-e<t<w) ()
1

where the x; (t) depend only on y(t) and f.
We note, before proving Theorem 3, that in Theorem 2, 0 < r, < p,
and in Theorem 3

fo P
mm=£nwaw+fu—Mwa
where M(r) increases from 0 to 1 over (0, p). Thus
j{: [1 = M(r))dr > ro[1 — M(ro)],

and hence
rol — M(ro)] < a(p) < p. (98)
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Then, according to Theorem 3, the c.v. companding problem
Bf(x) =

has solutions for y of larger norm than specified in Theorem 2.
Proof of Theorem 3: We first consider the solutions x; = x(t;m1), x2 =
x(t;mg), corresponding to y; = myy(t), y» = myy(t), where

me=m + ¢ e=|ele? (99)
and
|my| + |e| < ro[l — M(ro)], (100)
so that Theorem 2 and the Lemma apply.
We have
y2 = y1 = ey(t), (101)
and hence, from the Lemma,
T - ST
Now
B{f(xs) — f(x1)} = ey, (103)

which we rewrite as

won_ g {f(xz) “fe)=tosl oy

B €
We intend to let e — 0 (with any argument) and show that the quantity
on the left tends to a limit, independent of arg(e); viz., F’(m;t), where
d
F'(mit) = —— x(t;m),  |m| < roll — M(ro)]. (105)

From (78), (80), and (102) we have
Il f(xz) - f(xl) —(x2—x) 2= M(ro)ll x2 — x1 fl2

|e|\/17)\M(Fn)
T 1-Mr) (108)
So
f(xg) = f(x1) — (x2 — %1) belongs to Ls. (107)

€

We also have from (102), or the Lemma,
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- el
e MG (108)

Thus we may write
X2 = X + €U, (109)
where
u = u(t;m,, ¢) belongsto % and |u|
=/(1) as e—0. (110)
Then
f(x2) = f(x1) = fx + ew) — f(x1)
= euf’(x;) + A(&u?).
So (104) may be rewritten as
u=y— Bluf'(x;) — u + Aleu?). (111)

Now letting ¢ — 0 and replacing m; by m and x, by x(t;m), we obtain,
setting u(t;m, o) = u(t;m), the equation

u(t;m) = y(t) — Blu(t;m)[f’{x(t;m)} — 1]}, - (112)
[m| < A < ro[l = M(ro)].

Here we make the identification
d
u(t;m) = F'(m;t) = 3 x(t;m), Im| < A (113)

by verifying that (112) has a solution u(t;m) in %,, in fact, for | m|
larger than ro[1 — M(r,)]. We observe, since x(£;0) = 0, and f’(0) = 1,
that

u(t;0) = y(t). (114)

Actually, we can obtain better estimates for | x(t;m)| by integrating
its partial derivative from 0 to m.
We consider the equation for u,

u=y=Blu-[f'(x) — 1]}, (115)
assuming x = x(t; m) is known and satisfies
lxlle < r<p, (116)
so that
[f'(x) = 1] < M(r) < M(p) = 1. (117)
Using this inequality in (115) we obtain
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lulz < lyllz + M) ull (118)

or
Iyl _ A
1-M@r) 1-M(i)
The last inequality implies that (115) has a solution u in Py
(obtained iteratively), in fact, for || x || < p, since M(r) <1 for r <p.

We note further that the inequality (119) is crude, with equality
possible only for r = 0, for we cannot have

| frix(tm)} — 1| = M(r), (—»<t<®)

lule < (119)

unless x(t;m) = 0. Therefore, in (115) we have
I Bjulf'(x) = 1l < M(P)|ul: for 0<|xle=<r<p.
So we have strict inequality in (119) for 0 < r < p. Hence,

||u||.,<—1-_—1mr—) for 0<|xle<r<p. (120)
Now let us set
m=ae’ a>0 (121)
and
r(a) = max | x(t;ae”) . (122)

We want to see how large we can make «, say a(p), and have r(a) <
p. Using (120) in

x(t;m) = J; u(t;£)dt, (123)

we obtain the inequality
rla) < J.” ——di—— 0<a<alp) (124)

o 1—M[r@@l '
Then, after defining
I I S

s(a) = J; = MGET 0<a<alp), (125)
it is clear, since M(r) is an increasing function of r, that we will have
r(e) < s(a), 0 < a< alp). (126)

Differentiating (125) with respect to «, we obtain the simple equa-
tion
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s'(a){1 — M[s(a)]} = 1,

or, considering « as a function of s,

do
o 1 — M(s).
Thus
a(s) = j; [1 — M(r)]dr, 0<s=<np. (127)
We have s(a(p)) = p and r(a) < s(a) for a > 0. So we will have
lx(t;m)|l« <p for (128)
|m| < a(p) = f [1 - M(r)]dr. (129)

According to (120) and (128), the partial derivative u(;m) will exist
for |m| somewhat larger than a(p). This completes the proof of
Theorem 3. O

VIII. AN ILLUSTRATIVE EXAMPLE
It will be shown in a future paper that the r.v. companding problem

B{ z }=y, x<1, zy in BN,  (130)

1—x

is equivalent to finding the reproducing kernel for a certain Hilbert
space of bandlimited functions. The specific problem with A = 2 (for
convenience) and

sin 2t

y=m o (131)

is quite easily solved. For real m > —2, the solution is

x(tm) = 28 sin 2t 52(sm t) , (132)

t

where
B=m/(2+ m).

We need not be concerned here with the derivation of this solution,
as we will later show directly that it satisfies

x(t;m) __sin 2t
B{l - x(t;m)} =m 2t (133)
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for all m in a certain region of the complex plane, but for no other m.

We know from Theorem 3 that (133) has a unique solution for
sufficiently small | m|, and that the solution is an analytic function
of m. It follows that (132) is the solution of (133) for all complex m,
| m| < | mg|, for some | mq| > 0. Since m = =2 is the only point where
x(t;m) is not analytic, we might suppose | mo| = 2. The series expan-
sion of x(t;m) certainly converges (uniformly in t) for all
|m| < 2, but it is not a solution of (133) for all such m. For example,

we have
T 26\
+ —- —_ - —
{x5m)=- (%)
and
m—__2.ﬁ_
byt
Then for 8 = + inr/2, we have
m = 2 , and xiz;m =1.
.2 2
1+i—
m™

Therefore, the meromorphic function of ¢,

x(t;m)

flx(tm)} = 1= x&m)

will have poles at t = + /2 for m = —2/(1 + i2/x). Thus we have here
an example, |m| < 2, for which (132) is not a solution of (133).
However, it is, according to Theorem 3, for all m satisfying |m| <
3 — 2+4/2. This, as it turns out, is an overly conservative upper bound
for | m|.

We now turn to the problem of determining precisely those m for
which (132) is a solution of (133).

First we can easily show that the r.v. problem has no solution for
m < —2 by convolving both sides of (133) with 1/xK(¢), where K(t) =
(sin t)?/t?. The result is

* x(s;m) 1 3 m
-[w 1—x(s;m) = K(t — s)ds = 2 K(¢). (134)

Since x/(1 — x) > —1, and K(t) = 0, we have

f Msm) L p —gds > — X J: K(t)dt = -1

w1l —x(s;m) ™ T
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This gives, setting ¢t = 0 in (134),
m> —2. (135)
Now to proceed towards our stated goal, we first write

1 - x(tm) = (1 — Be® Sl—?t) (1 — Be™t El?—t) (136)

Then in order for x(¢;m) to be a solution of the problem, the Fourier
transform of the function

x(t;m) sin 2t

hit;m) = 1— x(t;m) -m 2t

(137)

must vanish over (—2,2). With a bit of manipulation we arrive at the
expression

h(t;m) = g(t;m) + g(—t;m), (138)
where
e2i!(1 _ el'! ﬂn_t)
_Bﬂ t
gltym) = T B o, (139)
2it (1 - ﬁe“ _t—)
and
_ (m/2)
= Tvmp ™

We now introduce the complex variable 7 = ¢ + iu, and observe that

—2u

€ '}, uw— + oo (140)

- S
|g(t + iu; m)| {|t+ o

Then if the denominator satisfies the condition,

(1 — Be" S T) is zero-free for u =0, (141)

T

it is easy to see (by contour integration in the upper half-plane) that
G(w;m) = f glbm)e™™dt =0 for w< 2. (142)
On the other hand, if the function in (141) has zeros 7 in the upper
half plane u > 0, (it must have no real zeros in order for g to have a

Fourier transform) we will have, by the calculus of residues,
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Glw;m) = ¥ ce™™, e # 0, (143)
1

where n, depending on B, is finite, since it is clear that the function in
(141) can have only a finite number of zeros in the upper half-plane.
Since the Fourier transform of h(t;m) is given by

H(w, m) = Glw;m) + G(—w;m) (144)

it will vanish over (—2,2) if, and only if, the condition (141) is satisfied.

Now the values taken by e sin 7/7 in the upper half-plane, u = 0
are precisely those values on the boundary and interior of the cardioid-
like region whose boundary is described parametrically by

sin t
t

e , —r<t=sm

(Some values are taken more than once.) Then x(t;m) will be a solution
to the problem except for those values of m such that 1/ is a point
on the boundary or in the interior of the cardioid-like region. By the
mapping

x(t;m) is a solution to the problem for precisely those (finite) m lying
in the region to the right of the boundary line described parametrically
by
2
m=————", - <t
et ML _
t
This region (see Fig. 1) includes the half-plane Re{m} = —4/3, its
boundary indenting more to the left near the real axis, having a cusp
at its leftmost point, m = —2, where it is tangent to the real axis. It is
found that the distance from the origin to the boundary is minimal

(see circle in Fig. 1) at the point m, and its conjugate, where
1
£ = r = 4895273114 = (2.42786943)7", (146)
0

I

. (145)

t, is the smallest positive root of sin ¢/t = cos t + sin ¢,
V2 b
= —— = 1.58781760, =—+to
| mo sin fo arg{mo} 4 0

So | mo| is the largest number such that x(t;m) is a solution for all m
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5

-1

2 1

-3 -2 -1
Re {m}
Fig. 1—Open region in m-plane (unshaded) for which eq. (132) is a solution of eq.
(133). Shown is the largest disk (centered on the origin) contained in the region.

satisfying | m| < | my|. Also,

| mo| = min Ry(t),
t

where Rq(t) is the radius of convergence of the series

x(t;m)  sin 2t

= + m? Sha(t) + - -
1= x(tm) m T m~hy(t) + m’hs(t) '

the minimum occurring for t = *¢,.

IX. CONCLUSION

The expressions for the nth order components x,(t) of the series
solution to the companding problem become so complicated that, for
practical purposes, only the first few are of interest. These should be
useful in correcting small distortions in nonlinear transmission sys-
tems which fit the companding model. It would appear that the
corrections applied internally to the inverse function (the z; in Section
V) would be more effective for correcting larger distortions, especially
if the lower frequency components are predominant in the signals. In
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this connection, the simpler “approximate identity” should be quite
effective for correcting small to moderate distortions of a more general
nature, as evidenced by the inequality given in the appendix. Experi-
mental evidence of the effectiveness of these correction schemes would
be desirable.

The question of the convergence of the series solution is a matter
of little practical concern, but the fact that it does attaches more
mathematical significance to the results. To settle this question we
had to show that the complex-valued companding problem has solu-
tions for functions of sufficiently small norm. This generalizes the
result for functions of one-sided spectra; and whether or not the
general result will ever find practical application, it is an interesting
addition to a theory, though still incomplete in many respects. For
example, it is doubtful that the condition that x(t) be confined to a
convex region G where Re{ '} > 0 is a necessary condition for unique-
ness of the solution. In this connection, one could probably use analytic
continuation arguments to show that the specific problem examined
in Section VIII has solutions only for those values of m for which the
(particular) solution given is the only solution, this being unique for
sufficiently small | m |, and being an analytic function of m having no
branch points. Also there is the difficult question of determining for
what y(t) the companding problem has a solution, where particular
interest is attached to the real-valued problem with analytic compand-
ing functions. It can be shown for the case f(x) = x/(1 — x), x <1,
that the problem has a solution for every (r.v.) ¥ in %, satisfying
y > —1. This suggests (conjecture) that the r.v. companding problem
with f(x) = x/(1 — x?), =1 < x < 1, has a solution for every (rv.) yin
%, or more generally for monotone f(x) defined on (-1, 1) having
singularities as strong as poles at +1. In general, it is not enough for
f(x) to increase from — to 4o over its range of definition in order to
draw the same conclusion; e.g., f(x) = log(1 + x), x > —1. The questions
raised here are certainly worthy of future consideration.

In connection with the series solution, one naturally inquires
whether an explicit formula (albeit complicated and involving parti-
tions of various kinds) can be given for the general term x,. Perhaps
the combinatorics experts will consider this question.

We note that the solution x = Be¢(y), valid for y (of sufficiently
small norm) whose Fourier transforms vanish outside [0, A], is verified
by the fact that in (29.n) the expression reduces to x, = a,By", the
other terms vanishing because B is operating on functions whose
Fourier transforms vanish over (—, \). The same reduction occurs in
the expression (34.n), because, in this case, B is operating on functions
whose Fourier transforms vanish over (—, 0) and agree over [0, A];
ie.,
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B[---]=By"

holds for each term in (34.n), the sum of all the coefficients being a,.

Some interesting identities are obtained by equating the expressions
for x, in the series solution of the general problem to those obtained
from the explicit solution (given in the introduction) to the special
problem

B log(1 + x) = my,

which involve y, the Hilbert transform of y, which does not appear in
the more general expressions. For example, we find from (34.3) that
x3 in the series solution of this problem is given by

x3 = 1/2B(y-By®) — 1/3By®,
and, from the series expansion of the explicit solution, by
x;3 = 1/8yB(y* — 3%) — 1/8B(y9?) + 1/24 By® + 1/49B(yy).

It is an interesting exercise to show directly that these two expressions
are identical.

Finally, since truly bandlimited signals exist only as mathematical
abstractions, some attention should be given to developing a mathe-
matical theory of practical companding problems,

J:m flx(s)}k(t — s)ds = y(t),

where k(t) is the (absolutely-integrable) impulse response of a practical
low-pass filter, so that the theory may be extended to signals that are
merely bounded. Here one may not be interested, for various reasons,
in the exact solution of this problem but, instead, a compromise
problem, where the equation is nearly satisfied with both x(¢) and y(t)
being close to bandlimited functions. For example, in many cases
fix(t)} is given (say) by an nth order differential operator acting on
y(t). Then the (exact) solution x(t) = ¢{f(x})] may be far from a
bandlimited function. However, if y(t) is close to a bandlimited func-
tion there should be an approximate solution which is also close to a
bandlimited function. A case in point is found in Landau’s simulation
of the iterative solution of the companding problem (Ref. 2), where,
in fact, the equation he was obtaining approximate solutions to was
the case y(t) = k(t), (approximately bandlimited) for which the unique
solution is (a multiple of) the Dirac delta function.
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APPENDIX

Suppose f(x) is a monotone increasing function of the real variable
x, satisfying

0] f(0)y=20
(i2) O<ms<fx)sm<w, (-0<zx<o)

Then f has an inverse ¢

(122) x = ol f(x)}, (=0 < x <),
satisfying, since 1 = f’(x)¢’{f(x)},
(iv) O<mi2==.q5’(y)smi1<om (—oo < y < ),
Now let x = x(¢) be any function in %. We wish to establish
x — Bo{Bf (x)}ll2 < vl x| (147)
2
where 7=4(1—£+E—), e=%?—1.
Set
y(t) =y = Bf(x). (148)
Then
f(xy=y+h, Bh=0. (149)
Now set
x; = Be(y) (150)
so that, since x = ¢(y + h) = Bx = B{¢(y + h)},
x—x = Bl¢(y + h) — ¢(¥)]. (151)
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Since |¢(y + h) — ¢(y)| < mi h, we see that
1

1
¢y + h) — (¥l < — [ k|,
m
and hence that
1
[x = zill < — [lRll2
m;

but we can improve this inequality by writing

'v+h
#(y + h) = d(y) = J; {¢7(8) — ajdf + ah, (152)

1(1 1)
where a=—=-|—+—).
2 m mao
Then, since
1/1 1
[¢'(8) — a| < 2 (— - -—), (153)
my mo
we have
¢y + h) — ¢(y) = u + ah, (154)
where u = u(t) and
1/1 1
IHISE(E_;Z)IM' (155)
Thus
x — x = B(u + ah) = Bu, (156)
and hence
11 1
lx = xifl2 < ul. < 2 (— - —) (R P (157)
m, Mo

Now we need an inequality of the form ||k ||z < c¢| x|;. We have
h = Hf(x), (158)
where H = I — B is the high-pass operator. So, clearly
IRz =< [ f(x)llz < mal x|,
We can improve this inequality by setting
u(t) = v = f(x) — Bx, (159)
where B=1/2(m, + my).
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Then

lv] = 1/2(me — my)| x|, (160)
and, since Hx = 0,
h = Hf(x) = H{f(x) — 8x] = Hv. (161)
Hence
IRl < vl < 1/2(ms — mi)| xl2. (162)

This, with (157) gives

Iz =l <3 (l - —1-) (ms = m)lxlls = vzl (163)
mi ms
which is the result (147). The number « in the inequality is invariant
under the interchange of ¢ and f in the approximate identity (147), as
we would expect from using only (ii) and (iv).
So x, = B¢|{Bf(x)} is a good approximation to x if v is small. The
manipulations leading to the inequality (163) suggest an iterative
scheme for solving, given y in %,

BF(x) =y, x In %, (164)

provided vy < 1, which will be the case if (mz/m;) <3 + 2 V2.
We set

%, = Bo(y + hni), n=1, (165)
where
h, = Hf(x,), n =0, (166)
and Xo = hy =0,
giving x; = Be(y) as in (150).
Now we wish to show that
[x = xallz < ¥"lxllzy n=1 (167)
We have
x — x, = Bl¢(y + h) — ¢(y + hn-1)}. (168)
Following the previous pattern we write
¢(y + h) — ¢(y + hnt) = tn + alh — hn), (169)
where
y+h
Un = J; . {¢'(§) — aldg,
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and hence

1 1
n o\ - h - n—
|un| < 2( m)l hn-l.

Then

x — x, = Blu, + a(h — h,-)} = Bu,,
giving

Ix = als < 3 (—1~ - i) 1A = hocsla
Now

h = hoy = H{f(x) = f(xn-1)], n=1, with x,=ho=0.

Here we write

f(x) = fxn1) = _[ {f'(€) — BldE + Blx — xn-)

'n—1
= Un + Bx — xp-1),
where

ms —my
2

|va| < lx — xpa].

Then
h - hn-l = Hivn + B(I - xn—l)! = va
giving, with (175),

my — My

1A= honills < ™25

lx = xn-all2.

This, with (172), gives
[ = xalla < yllx = 2004l
whence follows, with x, = 0,

lx = xallz < ¥"lxll2y, n=1

(170)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)

Note that there is a bonus attached to x, = B¢(y), in that only one
filtering operation is required to obtain it. Thereafter, two filtering

operations are required to obtain x, from y and x,_,.
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