THE BELL SYSTEM TECHNICAL JOURNAL
Vol. 62, No. 10, December 1983
Printed in U.S.A.

Two New Kinds of Biased Search Trees

By). FEIGENBAUM* and R. E. TARJAN?
(Manuscript received May 20, 1983)

In this paper, we introduce two new kinds of biased search trees: biased, a,
b trees and pseudo-weight-balanced trees. A biased search tree is a data
structure for storing a sorted set in which the access time for an item depends
on its estimated access frequency in such a way that the average access time
is small. Bent, Sleator, and Tarjan were the first to describe classes of biased
search trees that are easy to update; such trees have applications not only in
efficient table storage but also in various network optimization algorithms.
Our biased a, b trees generalize the biased 2, b trees of Bent, Sleator, and
Tarjan. They provide a biased generalization of B-trees and are suitable for
use in paged external memory, whereas previous kinds of biased trees are
suitable for internal memory. Our pseudo-weight-balanced trees are a biased
version of weight-balanced trees much simpler than Bent’s version. Weight
balance is the natural kind of balance to use in designing biased trees; pseudo-
weight-balanced trees are especially easy to implement and analyze.

I. INTRODUCTION

The following problem, which we shall call the dictionary problem,
occurs frequently in computer science. Given a totally ordered universe
U, we wish to maintain one or more subsets of U under the following
operations, where K and S denote any subsets of U/ and i denotes any
item in U:

access (i, S)—If item I is in S, return a pointer to its location.
Otherwise, return a special null pointer.

* Research done partly while a summer employee of Bell Laboratories and
partly while a graduate student supported by Air Force grant AFOSR-80-042.
* Bell Laboratories.

©Copyright 1983, American Telephone & Telegraph Company. Photo reproduction for
noncommercial use is permitted without payment of royalty provided that each repro-
duction is done without alteration and that the Journal reference and copyright notice
are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free by computer-based and other informa-
tion-service systems without further permission. Permission to reproduce or republish
any other portion of this paper must be obtained from the Editor.

3139

insert (i, S)—Insert i in S, assuming it is not previously there.

delete (i, S)—Delete i from S.

join (R, S) (two-way join)—Return the set consisting of the union
of R and S, assuming that every item in R precedes every item in S.
This operation destroys R and S, and can be regarded as a concaten-
ation of R and S.

split (i, S)—Split S into three sets L, I, and R, where L and R are
the sets of items strictly smaller and strictly larger than i, respectively,
and I = {i} if i is in S (three-way split), I = @ if i is not in S (two-way
split).

One way to solve the dictionary problem is to store the items of
each set in the external nodes of a search tree in left-to-right order,
one item per external node. To guide the operations, the search tree
also contains auxiliary items, called keys, in the internal nodes. The
worst-case access time in a search tree is proportional to the depth of
the tree. By imposing any one of a number of well-known balance
conditions on the tree, we can guarantee that its depth is O(log n),
where n is the number of items it contains. Such a balance condition
can be maintained during update operations by performing appropriate
local rearrangements of the tree. With balanced search trees, each of
the dictionary operations has an O(log n) time bound. Examples of
balanced trees include height-balanced (AVL) trees,' 2, 3 trees,* B-
trees,® and trees of bounded balance.*

In many applications of search trees the access frequencies of
different items are different, and we would like our data structure to
take this into account. To deal with this problem formally we assume
that each item i has a known weight w; providing an estimate of the
access frequency. The biased dictionary problem is that of implement-
ing the dictionary operations so that operations on heavier items are
faster than those on lighter items. In particular, when representing a
set S as a search tree, we wish to bias the tree so as to approximately
minimize its total weighted depth Yis wid;, where d; is the depth of
the external node containing item i, while preserving the ability to
update the tree rapidly. In addition to the five dictionary operations,
we allow the following operation for changing the weight of an item:

reweight (i, w, S)—Redefine the weight of item i in set S to be w.

The following theorem, due to Shannon, gives a lower bound on the
total weighted depth of a search tree:

Theorem 1:® If T is a search tree for a set S and every node of T has no
more than b children, then

w; w
Eé wd; = ZS w108
where W = Yi.s w; is the total weight of the items in S.

3140 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

In light of Theorem 1, our goal is to devise classes of search trees
that are easy to update and have d; = O(log, W/w;) for every item i.
We call O(log, W/w;) the ideal access time of item 1i.

Bent, Sleator, and Tarjan®® have devised several kinds of such
biased search trees. Our work is an extension of theirs. A thorough
discussion of previous work by others on the biased dictionary problem
may be found in Ref. 8.

In their running time analyses, Bent, Sleator, and Tarjan used a
technique called amortization, which we shall also use. The idea of
amortization is to average the running time of individual operations
over a (worst-case) sequence of operations. As a tool in deriving
amortized time bounds we use credits. A credit will pay for one unit of
computing time. To each operation we allocate a certain number of
credits, called the credit time or amortized time of the operation. If a
given operation does not need all its credits, we can save them for use
in later operations; if an operation needs more than its share of credits
we can use those previously saved. In any analysis using credits, the
objective is to prove that an arbitrary sequence of operations can be
performed without running out of credits.

Three points about amortization using credits are worth making.
First, credits are a way of charging earlier operations for later ones. If
a credit analysis is successful, we can assert that any sequence of
operations requires an amount of actual time that is at most a constant
multiplied by the sum of the credit times of the individual operations;
slow operations are only possible if there are corresponding earlier
fast ones. Second, although the word “average” appears in the descrip-
tion of the technique, it is not the usual kind of average-case analysis,
and in particular we make no probabilistic assumptions; we obtain
worst-case bounds holding for any sequence of operations. Third,
credits serve as a kind of “potential energy”: we place them in regions
of search trees that may cause abnormally long update operations.
This idea may illuminate the credit invariants we define below.

The remainder of the paper consists of three sections. In Sections
II and III, we define and analyze biased a, b trees, which generalize
the biased 2, b trees of Ref. 8 and provide a biased version of B-trees.
Biased a, b trees are a form of biased tree appropriate for paged
external memory; earlier forms of biased trees are more appropriate
for internal memory. In Section IV we introduce pseudo-weight-
balanced trees, which give a biased version of weight-balanced trees
much simpler than Bent’s earlier version.® Weight balance is the
natural kind of balance to use in designing a biased search tree; pseudo-
weight-balanced trees are especially easy to implement and analyze.

We shall assume that the reader is familiar with search trees. In
particular we shall not discuss the use and updating of keys, and we

BIASED SEARCH TREES 3141

shall draw freely on the results and techniques of Ref. 8. We shall use
the terminology of Ref. 8 except that we use “external node” in place
of “leaf”. When appropriate we shall regard a node x of a search tree
as denoting the entire subtree rooted at x, with the context resolving
whether a node or a tree is meant. The null node denotes the empty
search tree. We denote the parent of a node x by p(x); p(x) = null if
x is a tree root.

Il. LOCALLY BIASED a, b TREES

Our first class of biased trees uses height balance to guarantee fast
access and variable node size to allow easy updating. The class is
parameterized by two positive integer constants a and b such that 2 =
a < Tb/21. The integer b specifies the maximum allowed number of
children of an internal node. If an internal node has at least a children,
we say it is filled; otherwise it is underfilled. (An external node is
always filled.) Ideally, we would like every node to have at least a
children; since in our scheme this is impossible to achieve, we allow
underfilled nodes but treat them specially.

If x is a node in a search tree, we define its weight w(x) to be the
sum of the weights of all items in descendants of x. (We use the
convention that every node is a descendant of itself.) We define the
rank s(x) of x recursively by s(x) = Llogzw(x)] if x is an external node,
s(x) = 1 + max{s(y)|p(y) = x} if x is an internal node. A node x is
minor if x is not a root and either s(x) <s(p(x)) — 1 or x is underfilled.
All other nodes are major. A locally biased a, b tree is a search tree
with the following properties (see Fig. 1):

1. Every internal node has at least two and at most b children;

Fig. 1—A biased 3, b tree. The numbers in nodes are ranks, and the numbers beside
nodes are credits for the credit invariant.

3142 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

2. If x is a minor node, any adjacent sibling of x is both major and
external. When a node x has this property, we say the tree is locally
biased at x.

We call two nodes r-compatible if they can be adjacent children of
a node of rank r in a biased a, b tree. That is, two nodes are r-
compatible if both have rank at most r — 1 and either at least one has
rank r — 1 and is external or both have rank r — 1 and at least a
children each.

If a = 2 we obtain exactly the biased 2, b trees of Bent, Sleator, and
Tarjan. Our main new idea is in the definition and handling of
underfilled nodes. Our first theorem guarantees that a, b trees have
ideal access time if b is chosen appropriately.

Lemma 1: Consider any biased a, b tree. If x is an external node,
a™® = w(x) < & If x is an internal node with at least one minor
child, a*®' < w(x). If x is an internal node with k children,
k'a*®? < w(x), where k' = m|k, a}.

Proof: The first part of the lemma is immediate from the definition of
rank. The second part follows from the first part and property 2: if x
has a minor child, it must have another child that is major and
external. We prove the third part by induction on the height of x. If x
has a minor child, then k’a**~? < ¢***~! < w(x) by the second part
of the lemma. Otherwise, all children of x are major. Let y be a child
of x. If y is external, or internal with a minor child, then a**-2 =
@' < w(y). Otherwise, y has at least a major children, and by the
induction hypothesis a**’* = a.a’*’"* = w(y). Summing over the &
children of x gives ka**"~? < w(x). O
Lemma 2: If x is an external node in a biased a, b tree of total weight
W, the depth of x is at most log, W/(w(x)) + 3.

Proof: Let r be the root of the tree and d the depth of x. Since the
rank increases by at least one from child to parent, d < s(r) — s(x).
Lemma 1 implies log.w(x) < s(x) + 1 and log, W = logaw(r) = s(r) —
2. Combining inequalities gives the lemma. O
Theorem 2: A biased a, b tree has ideal access time, with a constant
factor proportional to log,b.

Proof: Immediate from Lemma 2. O

According to Theorem 2, to minimize the access time in a, b trees,
we should choose b as small as possible. The requirement b = 2a¢ — 1
is necessary to allow efficient updating. The best choice of b seems to
be 2a — 1 or 2a. The choice b = 2a allows purely up-down updates
(see the end of Section III). The choice b = 2a — 1 gives a biased
version of ordinary B-trees.> Any other choice gives a biased version
of “hysterical” or “weak” B-trees.®'! Note also that Theorem 2 gives
a worst-case example, not an amortized bound on the access time.

BIASED SEARCH TREES 3143

As Ref. 8 shows, all the update operations on search trees can be
carried out using one or more joins. Our next task is thus to define a
join algorithm for biased a, b trees.

Algorithm I: local join (x, y). Join two locally biased g, b trees with
roots x and y, assuming that all items in tree x precede all items in
tree y.

Case 0—x = null or y = null. If x = null, return y; if y = null,
return x.

Case 1—s(x) = s(y) and x and y are (s(x) + 1)-compatible, or s(x)
< s(y) and x and y are (s(y) + 1)-compatible. Create a new node with
x and y as its children and return the new node.

Case 2—s(x) = s(y) and x and y are not (s(x) + 1) compatible. Let
u be the rightmost child of x and v the leftmost child of y (see Fig.
2a). Perform join(u, v), letting w be the root of the resulting tree. If
s(w) < s(x), construct a node z whose children are those of x not
including v, the node w, and the children of y not including v. If s (w)=
s(x), construct a node z whose children are those of x not including ,
those of w, and those of y not including v (see Fig. 2b). In either case,
if z has more than b children, split it into two nodes 2z’ and 2” with z
as parent, dividing the old children of z as evenly as possible between
2’ and z” (see Fig. 2c). Return z.

Case 3—s(x) > s(y) and x and y are not (s(x) + 1)-compatible. Let
u be the rightmost child of x (see Fig. 2d). Perform join (u, y), letting
v be the root of the resulting tree. If s(v) < s(x), replace u as a child
of x by v. If s(v) = s(x), replace u as a child of x by the set of children
of v. If x now has more than b children, split it into two nodes x’ and
x” with x as parent, dividing the old children of x as evenly as possible
between x’ and x”. Return x.

Case 4—s(x) < s(y) and x and y are (s(y) + 1)-compatible. Sym-
metric to Case 3.

Theorem 3: Given two biased a, b trees with roots x and y, the join
algorithm produces a biased a, b tree whose root has rank max{s(x),
s(y)} or max{s(x), s(y)} + 1. In the latter case, the root of the new tree
has exactly two children.

Proof: An easy induction on rank shows that the root of the tree
produced by the join has rank max{s(x), s(y)} or max{s(x), s(y)} +1
and that in the latter case the root has exactly two children. Further-
more, it is clear that every internal node in the new tree has at least
two and at most b children. All that remains is to show that any two
adjacent siblings in the new tree are allowed to be adjacent by property
2. We prove this by induction on rank, using the same cases as in the
algorithm.

Case 1—Assume without loss of generality that s(x) = s(y). Since

3144 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

slx) = s(y)

(a)

slw) = s(x)

six) > sly)

/N

(d)

Fig. 2—Cases of the join algorithm. (a) Situation at the beginning of Case 2. (b)
Recursive call join (u, v) produces a tree of rank s(x) with root w. (¢) Division of an
overfilled root. (d) Case 3.

x and y are (s(x) + 1)-compatible, the new tree is locally biased at x
and y.

Case 2—For the moment, ignore the split of z if it takes place. Since
x and y are not (s(x) + 1)-compatible, neither x nor y is external, and
u and v exist. Suppose the left sibling of u, say g, is minor. Then u is
major and external, which means that the join of u and v will imme-
diately terminate in Case 1, and the new right sibling of g will be u.
The symmetric statement holds for the right sibling of v. Finally,
suppose w is minor, i.e., s(w) < s(x) — 1 or w has fewer than a
children. Then both u and v must be minor as children of x and y,
respectively, and both adjacent siblings of w in the new tree will be
major and external. Thus the tree before the split has property 2.

BIASED SEARCH TREES 3145

Splitting z preserves property 2 since both new children of 2 will have
at least a children of their own (this is where we use b > 2a — 1) and
each will have rank s(x). (Property 2 implies that before the split, of
any two adjacent children of z, at least one has rank s(z) — 1).

Case 3—Similar to but simpler than Case 2. Case 4 is symmetric.[]

To make our timing analysis as similar as possible to the one in
Ref. 8 for biased 2, b trees, we shall assume that credits can be divided
in half, and that half a credit will pay for the work in one call of join,
not counting the work in the recursive call. We use the following credit
invariant: A nonroot node x holds s(p(x)) — s(x) — 1 credits, plus an
additional half credit if x is underfilled.

Theorem 4: The join algorithm runs in O(|s(x) — s(y)|) amortized
time. Specifically, carrying out the join while preserving the invariant
takes |s(x) — s(¥)| + 1 credits in Case 1 or 2, |s(x) — s(y)| + 1/2
credits in Case 3 or 4.

Proof: We use induction on rank and a surprisingly complicated case
analysis.

Case 1—Assume without loss of generality that s(x) = s(y) and
that if s(x) = s(v), then x is external or filled. We need half a credit
for the work in the join and at most s(x) — s(y) + 1/2 credits to place
on y, for a total of s(x) — s(y) + 1.

Case 2—The split of z, if it occurs, does not affect the credit
invariant; therefore we ignore it. Assume without loss of generality
that s(u) = s(v). There are three subcases:

Subcase 2a—s(w) = s(x) and join (u, v) is a Case 1 join. The credits

originally on u and v suffice to maintain the credit invariant on u

and v after the join of x and y is completed. We have one credit on

hand to join x and y; we spend half for the work in the outer call

and half for the work in the inner call. .

Subcase 2b—s(w) = s(x) and join (u, v) is not a Case 1 join. To

perform the join of x and y we are given one credit and can obtain

at least 2s(x) — s(u) — s(v) — 2 from u and v, for a total of 2s(x)

— s(u) — s(v) — 1. We need half a credit for the work in the outer-

most call and at most s(z) — s(v) + 1 for the recursive call, for a

total of at most s(u) — s(v) + 3/2. The difference between what we

have and what we need is 2(s(x) — s(u)) — 5/2. Since s(x) — s(u)

> 1, we must find at most an additional half credit to spend.

If join (u, v) is a Case 2 join, and s(x) — s(u) = 1, then either u

or v is underfilled and yields an extra half credit. If join (u, v) is a

Case 3 join, we save half a credit on the join. Thus, in any case we

can obtain the needed half credit.

Subcase 2c—s(w) < s(x). As in Subcase 2b we have at least 2s(x)

— s(u) — s(v) — 1 credits to perform the join of x and y. We need

3146 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

one half for the work in the outermost call, at most s(u) — s(v) +
1 for the recursive call, and at most s(x) — s(w) — 1/2 to place on
w, for a total of at most s(x) + s(u) — s(v) — s(w) + 1. The
difference between what we have and what we need is s(x) — s(u)
+ s(w) —s(u) — 2. Since s(x) — s(u) =1 and s(w) = s(u), we have
enough credits unless s(x) — s(u) = 1 and s(w) = s(u), in which
case we must find an extra credit.

Suppose s(x) — s(u) = 1 and s(w) = s(u). Since s(w) = s(u),
Jjoin (u, v) is not a Case 1 join, and u is internal. If join (u, v) is a
Case 2 join, then both u and v are internal. Either both u and v are
underfilled, giving us two additional half credits, or one of u and v
is underfilled and w is filled, giving us an extra half credit from u or
v and saving a half credit that does not need to go on w. The only
other possibility is that join (u, v) is a Case 3 join, which saves us
half a credit.

Furthermore in this case either u is underfilled or w is filled, either
giving us an extra half credit from u or saving us a half credit on w.
Thus in all cases we obtain the necessary extra credit.
Case 3—We ignore the possible split of x, which does not affect the
credit invariant. There are two subcases:
Subcase 3a—s(v) = s(x). To perform the join we are given s(x) —
s(y) + 1/2 credits and can obtain at least s(x) — s(z) — 1 more
from u, for a total of 2s(x) — s(u) — s(y) — 1/2. We need one half
for the outermost call and at most |s(u) — s(y)| + 1 for the recursive
call, for a total of |s(u) — s(y)| + 3/2. The difference between what
we need and what we have is 2(s(x) — max{s(u), s(y)}) —2=0.
Subcase 3b—s(v) < s(x). To perform the join we have at least 2s(x)
— s(u) — s(y) — 1/2 credits. We need |s(u) — s(y)| + 3/2 for the
outermost and recursive calls, plus at most s(x) — s(v) — 1/2 to
place on v, for a total of s(x) + |s(u) — s(¥)] — s(v) + 1. The
difference between what we have and what we need is s(x) —
max{s(u), s(y)} + s(v) — max{s(u), s(y)} — 3/2. We have enough
credits unless s(x) — max{s(u), s(y)} = 1 and s(v) = max{s(u),
s(y)}, in which case we need an extra half credit.

Suppose s(x) — max{s(u), s(y)} = 1 and s(v) = max{s(u), s(y)}}.
Then join (u, y) is not a Case 1 join. If it is a Case 2 join, then
either u is underfilled, giving us an extra half credit, or v is filled,
saving us a half credit on v. If it is a Case 3 join, we save half a
credit on the join. Thus in all cases we obtain the necessary half
credit.

Case 4—Symmetric to Case 3. (]
It is useful to restate Theorem 4 as follows. We say a biased a, b
tree with root x is cast to rank k if it satisfies the credit invariant and
has k& — s(x) credits on its root. Theorem 4 implies that if x and y are

BIASED SEARCH TREES 3147

the roots of two biased a, b trees cast to a rank k > max{s(x), s(y)},
then they can be joined, without using additional credits, to produce a
tree cast to rank k.

We can implement a split as a sequence of joins, exactly as described
in Ref. 8. The following algorithm splits at an item i in the tree:
Algorithm 2: split (i, r). Split the biased a, b tree with root r at item i,
assumed to be in the tree.

Locate the node x containing item i. Initialize the current node to
be p(x) and the previous node to be x. Initialize the left and right trees
to empty; they will contain the items smaller than and larger than i,
respectively. Repeat the following step until the current node is null
(the previous node is the root of the tree):

Split Step—Delete every child of the current node to the left of the
previous node. If there is one such child, join it to the left tree; if there
are two or more such children, give them a common parent and join
the resulting tree to the left tree. Repeat this process with the children
to the right of the previous node, joining the resulting tree to the right
tree. Remove the previous node as a child of the current node and
destroy it if it is not x. Make the current node the new previous node
and its parent the new current node.

Theorem 5: The split algorithm is correct and takes O(s(r) — s(x))
credit time, where x is the node containing item L.
Proof: Correctness follows immediately from the correctness of the
join algorithm. The time bound follows as in Ref. 8; we shall sketch
the idea. Let cur, prev, left, and right be the current node, the previous
node, and the roots of the left and right trees, respectively. An
induction shows that s(prev) = max{s(left), s(right)} just before each
split step. Another induction shows that by allocating O(s(cur) —
s(prev)) credits to a split step, we can carry out the step while
preserving the invariant that the left and right trees are cast to a rank
of s(prev) + 1. That is, the amortized time associated with a single
step of the split is proportional to the rank difference of two consec-
utive nodes along the split path. If we sum over all split steps, then
the sum telescopes, and we obtain the time bound in the statement of
the theorem. O
Splitting at an item not in the tree is just like splitting at an item
in the tree, except that the initialization is different. Let r be the root
of the tree, i the item at which the split is to take place, i~ and i* the
largest item in the tree less than i and the smallest item in the tree
greater than i, respectively, and x the handle of i, defined to be the
nearest common ancestor of the external nodes containing i~ and i*.
We can locate x by searching down the path from r to x if appropriate
keys are stored in the tree (see Ref. 8). To carry out the split, we
combine all children of x whose descendants contain items less than i

3148 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

to form the initial left tree and all other children of i to form the
initial right tree. Then we initialize the previous and current nodes to
be x and p(x), respectively, and repeat the split step until the current
node is null. Such a split also runs in O(s(r) — s(x)) credit time.

We can implement insert, delete, and reweight as combinations of
splits and joins: an insertion is a two-way split followed by two joins,
a deletion is a three-way split followed by one join, and a weight
change is a three-way split followed by two joins. Using the same kind
of analysis as in Ref. 8, we obtain the following credit times for these
three operations (we have stated the bounds in terms of weights rather
than ranks):

insert (i, x): o(log.,(wiz) + w))

min{w;- + w;+, w;

where i~ and i* are as defined above.

delete (i, x): O(log,, (wix)))

max{w(x), w}))

min{w;, w}

reweight (i, w, x): 0(loga(

where w(x) and w; are as defined before the weight change.

Remark: In all the time bounds derived in this section and the next
the constant factor is proportional to b. O

Ill. GLOBALLY BIASED a, b TREES

Local bias is sufficient to guarantee good amortized but not good
worst-case running times for the dictionary operations. If it is impor-
tant that every single operation be fast, we need a stronger balance
condition. Figure 3 shows how a split can take more actual time than

Fig. 3—Locally biased a, b tree that cannot be split at x in actual time O(s(r) —
s(x)). Not all children of y, z, and v are shown. Join of u and v can take an unbounded
amount of time.

BIASED SEARCH TREES 3149

its credit time, and illustrates why local bias is not enough: a minor
node that is the leftmost child of its parent has a constraint on its
right but not on its left side, and symmetrically for a minor node that
is the rightmost child of its parent. To overcome this problem we
introduce globally biased a, b trees.

If x is a node in a search tree, we define x* to be the external node
containing the smallest item greater than the largest item in a descen-
dant of x. Symmetrically, x~ is the external node containing the largest
item less than the smallest item in a descendant of x. If x is on the
rightmost path of the tree, x* is undefined; if x is on the leftmost path,
¥~ is undefined. A globally biased a, b tree is a search tree with two
properties (see Fig. 4):

1. Every internal node has at least two and at most b children.

9. If x is a minor nonroot node and x* is defined, s(x*) = s(p(x))
— 1; if x~ is defined, s(x”) = s(p(x)) — 1. When a node x has this
property, we say the tree is globally biased at x.

Global bias implies local bias. Thus globally biased a, b trees have
ideal access time. We can join two globally biased a, b trees using
almost the same join algorithm as in Section II; the only difference is
that the conditions determininng the cases are different. We shall call
the algorithm in Section II local join to distinguish it from the following
global join algorithm:

Algorithm 3: global join (x, ¥). Join two globally biased a, b trees with
roots x and y, assuming that all items in tree x precede all items in
tree y.

In each case, proceed as in the corresponding case of the local join
algorithm:

Case 0—x = null or y = null.

(a) (b)

Fig. 4—Two biased 2, 3 trees with the same external nodes. Numbers in nodes are
ranks. (a) Locally biased tree. (b) Globally biased tree.

3150 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

Case 1—s(x) = s(y) and x is external, or s(x) < s(y) and y is
external.

Case 2—s(x) = s(y) and both x and y are internal.

Case 3—s(x) > s(y) and x is internal.

Case 4—s(x) < s(y) and y is internal.

The only difference between this and the local join algorithm is that
if x and y have the same rank and both are internal with at least a
children, we apply Case 2 instead of Case 1. The algorithm is identical
to the join algorithm for globally biased 2, b trees given in Ref. 8.

Theorem 6: The global join algorithm is correct.

Proof: As in the proof of Theorem 3, we use induction on rank and a
case analysis.

Case 1—Immediate.

Case 2—Ignore the split of z if it takes place. Let g be the left sibling
of u (recall that u is the rightmost child of x). Suppose g or one of the
nodes on the rightmost path descending from ¢ is minor. Let this
minor node be r. The join changes neither p(r) nor r* and thus
preserves global bias at r. The symmetric statement holds for the right
sibling of v (recall that v is the leftmost child of y). Suppose w (the
join of u and v) or one of the nodes on the leftmost path descending
from w is minor. Let this minor node be r. There must be a correspond-
ing minor node r’ on the leftmost path descending from u, such that
s(p(r)) = s(p(r’)). Since the original tree is globally regular at r’, the
new tree must be globally regular at r. The symmetric statement holds
for the rightmost path descending from w. Thus the new tree is globally
biased before the split. The split preserves global bias.

Case 3—Similar to but simpler than Case 2. Case 4 is symmetric.O

Theorem 7: The worst-case running time of the global join algorithm is
O(max{s(x), s(y)} — max{s(u), s(v)}), where u is the rightmost exter-
nal descendant of x and v is the leftmost external descendant of y.

Proof: The global join algorithm descends rank by rank concurrently
along the rightmost path descending from x and the leftmost path
descending from y, until reaching a leaf; then it ascends. The theorem
follows. O

We split a globally biased a, b tree in exactly the same way as a
locally biased a, b tree, using local rather than global joins. This method
not only produces globally biased trees, it has a worst-case time bound
equal to the amortized bound given in Theorem 5.

Theorem 8: Algorithm 2 (or its variant for an item not in the tree)
correctly splits a globally biased a, b tree with root r at a node x in
O(s(r) — s(x)) worst-case time.

Proof: The proof is the same as the corresponding proof for globally

BIASED SEARCH TREES 3151

biased 2, b trees given in Ref. 8. For completeness, we sketch it here.
Let xy, X2, - - -, Xx be the roots of the trees joined to form the final left
tree. Let y, = x; and for i = 2, ---, k let y; be the root of the tree
formed by executing join (x;, yi-1). With this definition y; is the final
left tree. Each node x; is either a child of an ancestor of x, say a;, in
the original tree, or the newly constructed parent of a set of children
of such a node a; furthermore @ is a proper ancestor of a; fori = 1,
..., k — 1. Consider a node x; for i = 2. If x; is a child of a;, global bias
implies x; is a major child, for otherwise its right sibling is external,
which is impossible since this right sibling has x; or its children as
ancestors. Thus s(x;) = s(a;) — 1. If x; is the new parent of children
of a;, then s(x;) = s(a;). It follows that s(x;) < s(xi) fori=1, ---,
k — 1. As noted in the proof of Theorem 5, an induction shows that
s(y) =s(a) fori=1, ---, k;if i = 2 and s(x;) = s(a), x has at most
b — 1 children, and the join of x; and y;—; cannot split x;. Thus if i = 2,
s(a) — 1= s(x;) < s(y:) = s(a).

Consider the join of x;; and y:. The join will descend rank by rank
along the rightmost path from x;:, and the leftmost path from y.
Global bias in the original tree implies that if the descent from x;.;
encounters a minor node z (other than the root of x;1,), the leftmost
external node of y; will have rank at least s(p(z)) — 1 and the join will
immediately terminate. Thus the join either terminates by reaching
an external descendant of x;;, of rank at least s(y;), in which case the
global bias of the joined tree is immediate, or it reaches an internal
descendant, say 2, of x4, of rank exactly s(y;). Now we need a similar
but more complicated statement about the leftmost path from y;
There are several cases.

Case 1—s(x;) < s(a;) and x; is minor in the original tree. This can
only happen if i = 1, i.e., x; = ¥ Global bias implies that the rightmost
external descendant of x;; has rank at least s(a;) — 1. The join
descends along the path from x;; to this external node and then
ascends.

Case 2—s(x;) < s(a:), x; is major, and s(x;) < s(y:). In this case y;
is also major and the leftmost paths descending from x; and y;, not
including x; and y; themselves, are identical. If z is underfilled, y; is
external, and the join terminates in Case 1. If z is filled, y; is either
external or filled, and the join also terminates in Case 1.

Case 3—s(x;) < s(a;), x; is major, and s(x;) < s(y:). In this case the
left child of y; is major and the join stops descending either at rank
s(y:) (if y; is external or filled) or at rank s(¥;) — 1 (if y is internal).

Case 4—s(x;) = s(a;). In this case the leftmost paths descending
from x; and y;, not including x; and y; themselves, are identical. If y; is
external or filled, the join will stop descending at rank s(y;). If y; is
underfilled, the join will stop at rank s (yi-1); either the rightmost child

3152 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

of z or the leftmost child of y; is external of rank s(y;_;), or both are
filled and of rank s(v;—).

In all cases the global bias of the original tree implies that the joined
tree is globally biased. This means that the final left tree is globally
biased. Furthermore, the time required for joining x;;; and y; is
O(s(ai+1) — s(a;)) in all cases. Summing over all joins gives a time
bound of O(s(r) — s(x)) to form the final left tree. A symmetric
argument applies to the right tree. O

If we implement insertion, deletion, and weight change as described
in Section II, we obtain the following worst-case time bounds for the
various operations on globally biased a, b trees (see Ref. 8):

split (i, r): o(log,, (w’i’)))
w(r)
ofe. (%)

if i is not in the tree, where i~ and i* are the items before and after i
in the tree, respectively.

if i is in the tree, or

w(x) + log wi(x) + w,-)

f Wi+ w;

delete (i, x): 0(10&. % + log, —w~T w_+)=

insert (i, x): O(logﬂ

where W’ is the weight of the tree root after the deletion.
w(x) W')

reweight (i, w, x): 0(10g,, + log, o

i

where w(x) and w; are as defined before the weight change, and W’ is
the weight of the tree root after the change.

As compared with the amortized time bounds for locally biased a, b
trees, the worst-case bounds for globally biased a, b trees are larger for
join and delete and the same for the other operations.

We conclude our discussion of biased a, b trees with two remarks.
First, if b = 2a we can implement either local or global join in an
iterative, purely top-down fashion by preemptively splitting nodes
with b children as they are encountered. By extending this idea we
can implement all the operations top-down. This is a reason to choose
b= 2aover b=2a—1.

Second, for appropriate large values of a and b, biased a, b trees
offer a biased alternative to B-trees. One of the advantages of B-trees
is that there are no underfilled nodes except tree roots; thus if nodes

BIASED SEARCH TREES 3153

are stored one node per page in fixed-size pages, the storage efficiency
is at least 50 percent, not counting root pages. Biased a, b trees do not
share this property. We leave open the problem of devising a space-
efficient version of biased a, b trees.

IV. PSEUDO-WEIGHT-BALANCED TREES

In biased a, b trees, we maintain balance through a height constraint.
However, there are other possible balance constraints, such as weight
balance. Nievergelt and Reingold* defined trees of bounded balance by
imposing upper and lower bounds on the ratio leftweight/rightweight
at each internal node, where the left and right weights count the
number of items in the left and right subtrees, respectively. Bent
developed a biased version of weight-balanced trees.® However, his
data structure suffers from a complicated seven-case join algorithm
that needs up to three recursive calls and also uses rebalancing
rotations more complicated than standard single and double rotations.
In this section we introduce a form of biased weight-balanced trees
much simpler than Bent’s. Our simplification comes from two new
ideas: we discretize the weights and allow arbitrarily bad imbalance in
some situations where balancing is possible. We call our trees pseudo-
weight-balanced.

We consider binary trees, in which each internal node x has exactly
two children, a left child /(x) and a right child r(x). As in Section II
we define the weight w(x) of a node x by w(x) = w; if x is an external
node containing item i, w(x) = w(I(x)) + w(r(x)) if x is an internal
node. We define the rank s(x) of a node x differently:
s(x) = Llg w(x)). We call a binary search tree pseudo-weight-balanced
(pwb) if it has two properties:

1. If three nodes in a row, say x, p(x), and p(p(x)), have the same
rank, then x is external and either x is a left child and p(x) a right
child or vice-versa (see Fig. 5a).

2. If x and I(x) (symmetrically x and r(x)) are internal nodes of the
same rank, then w(r(l(x))) + w(r(x)) (symmetrically w(i(r(x))) +
w(l(x))) is at least 2°* (see Figure 5b). (This property allows us to
do single rotations when necessary to maintain property 1.)

The following result bounds the access time in pwb trees.

Theorem 9: A pwb tree has ideal access time for all items. Specifically,
if x is an external node containing item i in a tree of total weight W,
then the depth of x is at most 2 1g(W/w;) + 3.

Proof: Let r be the root of the tree and d the depth of x. According to
property' 1, after the first step up from x, every two steps taken along
the path from x to r must cause a rank increase. Thus L(d — 1)/2] <
s(r) — s(x) = llg W1 — llg w(x)J, which implies d < 2L(d — 1)/2] + 1
<2lgW-lgw(x)+1)+1=2lg(Ww(x)) + 3. O

3154 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

(a)
() (=)
O on /N ()
ANEERAN ANEERVAN

(b)

Fig. 5—Legal configurations in a pseudo-weight-balanced tree. (a) Three nodes of
the same rank in a row. (b) Two internal nodes of the same rank in a row.

We join two pwb trees using the following algorithm:

Algorithm 4: join (x, y). Join two pwb trees with roots x and y, assuming
that all items in tree x precede all items in tree y.

Case 0—x = null or y = null. Return y if x = null or x if y = null.

Case 1—lg(w(x) + w(y)) = 1 + max{s(x), s(y)} or the heavier of x
and y is an external node. Return a new root with left child x and
right child y.

Case 2—s(x) > s(y) and Ig(w(x) + w(y)) <1 + s(x) and x is not
external. If r(x) is external, or internal of rank at most s(x) — 1,
replace r(x) by join (r(x), y). Otherwise, perform a single left rotation
at x and replace the right child r(u) of the new root u by join (r(u),
y) (see Fig. 6).

Case 3—s(x) < s(y) and lg(w(x) + w(y)) <1 + s(y). Symmetric
to Case 2.

Remark: Although the join algorithm is stated recursively, it is easy to
implement it in an iterative, purely top-down fashion, since the rank
of a node depends only on the total weight of its descendants and not
on their arrangement.

Theorem 10: Algorithm 4 produces a pwb tree of rank max{s(x), s(y)}
or 1 + max{s(x), s(y)}.

Proof: By induction on the depth of the recursion. The definition of
rank implies that the rank of the new tree is max{s(x), s(y)} or 1 +

BIASED SEARCH TREES 3155

A l:> JOIN {u,y)

A — JOIN (v9)

(b)

Fig. 6—Case 2 of the join algorithm for pwb trees. (a) Node u = r(x) external or s(u)
< g(x): no rotation. (b) Node u internal and s(u) = s(x): rotation.

max{s(x), s(y)}. In the latter case, the join must have executed Case
1 and both children of the new root must have rank smaller than the
root’s rank. Case 1 obviously constructs a tree with properties 1 and
2. In Case 2, property 2 guarantees that the single rotation, if it occurs,
creates a pwb tree. If the tree produced by the recursive join has rank
less than s(x), the overall joined tree clearly has properties 1 and 2.
This is also true if the tree produced by the recursive join has rank
s(x), by the observation above. O

In analyzing the running time of Algorithm 4, we use the following

credit invariant: Any node x contains max{0, s(p(x)) — s(x) — 1}
credits.
Theorem 11: Algorithm 4 runs in O(|s(x) — s(y)|) = O(lg (w(x) +
w(y))/minjw(x), w(y)}) amortized time. Specifically, if we assume
without loss of generality that s(x) = s(y), performing the join while
maintaining the credit invariant takes at most s(x) — s(y) + 1 credits.
Proof: We consider the same cases as in the algorithm.

Case 1—We need one credit to build the new tree and either s(x) —
s(y) or s(x) — s(y) — 1 to establish the invariant on y, for a total of
at most s(x) — s(y) + 1.

Case 2—Suppose the single rotation does not take place. We have
on hand s(x) — s(y) + 1 tokens for performing the join plus s(x) —
s(r(x)) — 1 from r(x), for a total of 2s(x) — s(y) — s(r(x)). We need
one token for performing the outermost call of join plus max{s(r(x)),
s(y)} — min{s(r(x)), s(y)} + 1 for the recursive call plus s(x) —
max{s(r(x)), s(y)} — 1 to establish the invariant on the root of the

3156 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

tree returned by the recursive call, for a total of s(x) — min{s(r(x)),
s(y)} + 1 < 2s(x) — s(y) — s(r(x)), since s(x) > max(s(r(x)), s(¥}.
Exactly the same argument applies if the rotation does take place,
since the rotation preserves the credit invariant. O

The algorithm for splitting a pwb tree is almost identical to but
simpler than the algorithm for splitting a biased q, b tree.

Algorithm 5: split (x, r). Split a pwb tree with root r at a node x.

Initialize the current node cur, the previous node prev, and the left
and right nodes left and right to be p(x), x, [(x), and r(x), respectively.
Repeat the following step until cur = null:

Split step—If prev = l(cur), replace right by join (right, r(cur));
otherwise, replace left by join (I(cur), left). Remove prev as a child of
cur and destroy it if it is not x. Replace prev and cur by cur and p(cur),
respectively.

This algorithm is the same as that described by Bent, Sleator, and
Tarjan® for splitting biased binary trees, and indeed will work for any
class of binary search trees for which a join algorithm is known.

Theorem 12: The amortized time of split (x, r) is

(o)

More precisely, performing the split while maintaining the credit
invariant takes O(s(r) — s(x)) credits, where x is the node containing
item 1.
Proof: The definition of ranks implies that s(prev) = max{s(left),
s(right)} before each split step. An easy induction shows that if we
allocate O(s(cur) — s(prev) + 1) credits to each split step, we can
carry out the step while maintaining the credit invariant on the trees
left and right and in addition maintaining 2s(prev) — s(left) — s(right)
credits on hand. Summing over all split steps and using property 2
gives the theorem. O
Using the appropriate combinations of join and split, we obtain the
same amortized time bounds as in Section II (with binary logarithms)
for insertion, deletion, and weight change in pwb trees. Pseudo-weight-
balanced trees are a very simple version of locally biased trees, com-
petitive with the biased binary trees presented in Ref. 8. We have been
unable to devise a globally biased version of pwb trees and leave this
as an open problem.

REFERENCES

1. G. M. Adelson-Vel’skii and Y. M. Landis, “An algorithm for the organization of
information,” Soviet Math. Dokl., 3, No. 5 (September 1962), pp. 1259-62.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Reading, MA: Addison-Wesley, 1974.

BIASED SEARCH TREES 3157

3. R. Bayer and E. M. McCreight, “Organization and maintenance of large ordered
indexes,” Acta Info., 1, No. 3 (1972), pp. 173-89.

4. J. Nievergelt and E. M. Reingold, “Binary search trees of bounded balance,” SIAM
J. Comput., 2 (1973), pp. 33-43.

5. N. Abramson, Information Theory and Coding, New York: McGraw-Hill, 1963.

6. S. W. Bent, “Dynamic weighted data structures,” Ph.D. thesis, Computer Science
Department, Stanford University, Stanford, CA, 1982.

7. S. W. Bent, D. D. Sleator, and R. E. Tarjan, “Biased 2-3 trees,” Proc. Twenty-First
Annual IEEE Symp. on Foundations of Computer Science, October 13-15, 1980,

pp. 248-54.
8. S. W. Bent, D. D. Sleator, and R. E. Tarjan, “Biased search trees,” unpublished

work.
9. S. Huddleston and K. Mehlhorn, “Robust balancing in B-trees,” Lecture Notes in
Computer Science, 104 (1981), Berlin: Springer-Verlag, pp. 234-44.
10. S. Huddleston and K. Mehlhorn, “A new data Structure for representing sorted
lists,” Acta Info., 17, No. 2 (1982), pp. 1567-84.
11. D. Maier and S. C. Salveter, “Hysterical B-trees,” Info. Proc. Letters, 12, No. 4

(August 1981), pp. 199-205.

AUTHORS

Joan Feigenbaum, B.A. (Mathematics), 1981, Harvard University. Ms.
Feigenbaum is a graduate student in the Computer Science Department of
Stanford University and holds a grant from the Bell Laboratories Graduate
Research Program for Women. She spent the summers of 1980, 1981, and
1982 at Bell Laboratories. During the summer of 1982, she was a member of
the Mathematical Foundations of Computing Department. Her current re-
search is in the areas of data structures and cryptography. Member, Phi Beta
Kappa.

Robert E. Tarjan, B.S. (Mathematics), 1969, California Institute of Tech-
nology; M.S., 1971, and Ph.D., 1972 (Computer Science), Stanford University;
Cornell University, 1972-1973; University of California, Berkeley, 1973-1975;
Stanford University, 1975-1980; Bell Laboratories, 1980—. Mr. Tarjan is a
member of the Mathematical Foundations of Computing Department, where
he has been studying the design and analysis of efficient data structures and
combinatorial algorithms. Member, ACM, SIAM, AAAS, Tau Beta Pi, and
Sigma Xi.

3158 THE BELL SYSTEM TECHNICAL JOURNAL, DECEMBER 1983

